# Mathematics Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Mathematics Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs of statements below and partial credit will be awarded for every problem attempted. (1) Show that each line contains infinitely many points. (2) Prove the following: if l,m are two distinct lines, then they can have at most one point in common. (3) Prove the following: if l,m are two distinct lines intersecting at a point O, a point P O is such that P l, a point Q O is such that Q m, then the points P,Q,O are not collinear. (4) Prove the following: if l,m are two distinct lines intersecting at a point O, then there is a unique plane containing both lines. (5) Suppose A,B are points and under some placement of a ruler along line AB we have that x A = 1 and x B = 2, where x A, x B are the real numbers assigned to A and B. Is there a ruler placement such that x A = 1 and x B = 3? Justify your answer. (6) Let A,P,B be collinear points such that under some ruler placement they were assigned coordinates x A, x P, x B respectively,with x A x P x B. Prove that under any other ruler placement assigning coordinates y A, y P, y B to A,P,B respectively we must have that either y A y P y B or y B y P y A. (7) How do we use Ruler Postulate to define a segment? (8) Prove that a segment is well defined, i.e. it does not depend on a placement of a ruler. (9) How do we use Ruler Postulate to define a ray? (10) Prove that a ray is well defined, i.e. it does not depend on a placement of a ruler. (11) Let A,B,C be distinct collinear points such that C AB. Show that AC AB = {A} and AC AB = AB. (12) Prove the following: if l,m are two distinct lines intersecting at a point O, a point A l is such that A O, a point B l is such that B OA, then A and B are in different halfplanes with respect to m. (13) Let l be a line and let P x P be a ruler placement. Let C be a real number. Prove that P y P = x P +C is a ruler placement by showing (a) P y P is a bijection, and (b) the distance requirement is satisfied. (14) Let l be a line and let P x P be a ruler placement. Prove that P y P = x P is a ruler placement by showing (a) P y P is a bijection, and (b) the distance requirement is satisfied. (15) Show that Ruler Postulate implies Ruler Placement Postulate. 1

2 (16) Prove the segment construction theorem: given a point P, a line l such that P l and a real number d > 0, there are two points on l exactly d units away from P. (17) Given three points A,B,C, define ABC and its interior. Don t forget the collinear case. (18) Define a convex set. (19) Show that the intersection of convex sets is convex. (20) Show that the interior of an angle is convex. (21) Show that a union of two distinct lines is not convex. (22) Prove that a line is convex. (23) Prove that a ray is convex. (24) Prove that if l is a line, a point A l, a point B l, then all points of AB \ {A} are in H l,b. (25) Prove that a half-plane with its boundary is convex. (26) Rewrite (A B) (C D) using distributive law. 5 points (27) Let l be a line, a point B l, a point A l. Show H l,a B A= B A \{B}. (28) Show that any ABC, where A,B,C are not collinear, is convex by showing that ABC = (H AB) (H CB). AB,C CB,A (29) Let B AC. Show ABC is convex. (30) Show that AB B A= AB. (31) Show: if P AC \ AC, then P ABC. See picture above. Assume points A, B,C are not collinear. (32) Show that if P AC ABC, then P AC. See picture above. Assume points A, B,C are not collinear. (33) Show ABC AC is exactly AC. See picture above. Assume points A,B,C are not collinear. (34) Show H AB,C CB= BC \ {B}. (35) Define a triangle and its interior. 2

3 (36) Let A, B,C be non-collinear. Show that the interior of the triangle ABC is equal to H H H. AB,C BC,A C A,B (37) Show (H AB) (H BC ) (H AC ) = ( ABC AC ) ( ABC H ). AB,C BC,A AC,B AC,B (38) Show ABC H = ( B A H ) ( BC H ) (H H H ). AC,B AC,B AC,B AB,C BC,A C A,B (39) Show a triangle is convex. 10 points (40) Let E be a point in the interior of ABC. In this case BE \B is in the interior of ABC. (Assume A, B,C are non-collinear.) (41) Let A,B,C be non-collinear points, and let D be in the interior of ABC. Let E BD, E BD. Prove that no point of BE is in the interior of ABC. (42) Let AB CD= {O} (assume A B, C D). Let P AB CD. Show P must be in the interior of exactly one of the following angles: COA, AOD, DOB, BOC. (43) Let B AC, let D AB, let P be in the same half-plane with respect to AB as D but P BD. In this case, either P is in the interior of DB A or DBC. (44) Let D,B in the same half-plane with respect to AC with m D AC < m B AC, then B is not in the interior of D AC. (45) If D,B are in the same half-plane with respect to AC with m D AC < m B AC, then D is in the interior of B AC. (46) Prove existence and uniqueness of an angle bisector for an angle of positive measure. (47) Define congruence of segments and angles. (48) Define congruence of triangles. (49) Show each segment has a unique midpoint. (50) Show that supplements and complements of congruent angles are congruent. (51) Define a linear pair of angles. (52) Show that angles forming linear pair are supplementary. Hint: use the definition of the angle interior. (53) Define vertical angles. (54) Show vertical angles are congruent. (55) Prove Pasch s Axiom: If a line l intersects PQR at a point S PQ, then l intersects PR or PQ. (56) Let U,V,W be non-collinear points. Let X be in the interior of W UV. Show W and V are in different half-planes with respect to U X and W V U X. See picture below: 3

4 (57) Under assumptions of Problem 56 show that V W int( V UW ) = V W \ {V,W }. (58) Under assumptions of Problem 56 show that V W U X V,W. (59) Under assumptions of Problem 56 show W V U X must be in the interior of W UV. (60) Prove Crossbar Theorem: Let U,V,W be non-collinear points. Let X be in the interior of W UV. The U X W V. (61) Prove the Isosceles Triangle Theorem: if A,B,C are non-collinear and B A = BC, then BC A = B AC. (62) Prove the Perpendicular Bisector Theorem: If A,C are two distinct points, then B is equidistant from A and C if and only if B l, where l AC and l intersects AC at the midpoint of the segment. (63) Prove that for any two distinct points B and C there exists a point D on a BC such that C BD. (64) Prove that for any collinear points A,B,C with B AC we have d(a,b) + d(b,c ) = d(a,c ). (65) Given two distinct points A and B, there exists a point C AB such that B AC, and B is the midpoint of AC. (66) Let A B be two points. Let x be a real number such that x is less than the distance from A to B. Show there exists a point C AB such that d(a,c ) = x. (67) Prove that given A,B,C non-collinear, E AC \ {A,C }, F BE, E BF, we have that A and F are in the same half-plane with respect to BC. See picture below. (68) Prove that given A,B,C non-collinear, E AC \ {A,C }, F BE, E BF, D BC with C BD, we have that F H AC,D. See picture below. 4

5 (69) Prove that given A,B,C non-collinear, E AC \ {A,C }, F BE, E BF, D BC with C BD, we have that F is in the interior of ACD. See picture below. (70) Prove the Exterior Angle Theorem: under assumptions of Problem 69, show that m AC D > m B AC. (71) Prove Angle-Side-Angle Congruence Condition. Please state it explicitly with two triangles before the proof. (72) Prove Angle-Angle-Side Congruence Condition. Please state it explicitly with two triangles before the proof. (73) Prove the Converse of the Isosceles Triangle Theorem. Please state it explicitly for a triangle before the proof. (74) Prove the Inverse of the Isosceles Triangle Theorem. Please state it explicitly for a triangle before the proof. (75) Prove that if two angles of a triangle are not congruent, then the opposite sides are not congruent. Please state it explicitly for a triangle before the proof. (76) Let A,B,C be non-collinear and let r be a real number such that r < m( ABC ). Show that in this case there exists X int( ABC ) such that m( X BC ) = r. (Hint: use # 45.) (77) Prove the triangular inequality for non-collinear points. Please state it explicitly before the proof. (78) Prove Hinge Theorem. Please state it explicitly for a pair of triangles before the proof. (79) Prove SSS-congruence Theorem. Please state it explicitly for a pair of triangles before the proof. 5

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Terminology: When one line intersects each of two given lines, we call that line a transversal.

Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

### CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### 12. Parallels. Then there exists a line through P parallel to l.

12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Most popular response to

Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

### 1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

### 15. Appendix 1: List of Definitions

page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,

### Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

### CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,

Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Solutions to Practice Problems

Higher Geometry Final Exam Tues Dec 11, 5-7:30 pm Practice Problems (1) Know the following definitions, statements of theorems, properties from the notes: congruent, triangle, quadrilateral, isosceles

### Triangle Congruence and Similarity A Common-Core-Compatible Approach

Triangle Congruence and Similarity A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry program in grades 8 to 10: geometric

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### QUADRILATERALS CHAPTER 8. (A) Main Concepts and Results

CHAPTER 8 QUADRILATERALS (A) Main Concepts and Results Sides, Angles and diagonals of a quadrilateral; Different types of quadrilaterals: Trapezium, parallelogram, rectangle, rhombus and square. Sum of

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Testing for Congruent Triangles Examples

Testing for Congruent Triangles Examples 1. Why is congruency important? In 1913, Henry Ford began producing automobiles using an assembly line. When products are mass-produced, each piece must be interchangeable,

### Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Triangles. Triangle. a. What are other names for triangle ABC?

Triangles Triangle A triangle is a closed figure in a plane consisting of three segments called sides. Any two sides intersect in exactly one point called a vertex. A triangle is named using the capital

### The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations

The Use of Dynamic Geometry Software in the Teaching and Learning of Geometry through Transformations Dynamic geometry technology should be used to maximize student learning in geometry. Such technology

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### GEOMETRY - QUARTER 1 BENCHMARK

Name: Class: _ Date: _ GEOMETRY - QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name

### Geo, Chap 4 Practice Test, EV Ver 1

Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (4-3) In each pair of triangles, parts are congruent as

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### Angles in a Circle and Cyclic Quadrilateral

130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook

Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook Objectives Identify congruent figures and corresponding parts of closed plane figures. Prove that

### NAME DATE PERIOD. Study Guide and Intervention

opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### The Triangle and its Properties

THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Hon Geometry Midterm Review

Class: Date: Hon Geometry Midterm Review Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. Name the plane containing lines m

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### @12 @1. G5 definition s. G1 Little devils. G3 false proofs. G2 sketches. G1 Little devils. G3 definition s. G5 examples and counters

Class #31 @12 @1 G1 Little devils G2 False proofs G3 definition s G4 sketches G5 examples and counters G1 Little devils G2 sketches G3 false proofs G4 examples and counters G5 definition s Jacob Amanda

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Chapter 3. Inversion and Applications to Ptolemy and Euler

Chapter 3. Inversion and Applications to Ptolemy and Euler 2 Power of a point with respect to a circle Let A be a point and C a circle (Figure 1). If A is outside C and T is a point of contact of a tangent

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents

Geometry Unit 5: Circles Part 1 Chords, Secants, and Tangents Name Chords and Circles: A chord is a segment that joins two points of the circle. A diameter is a chord that contains the center of the circle.

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

### Algebraic Properties and Proofs

Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Reasoning and Proof Review Questions

www.ck12.org 1 Reasoning and Proof Review Questions Inductive Reasoning from Patterns 1. What is the next term in the pattern: 1, 4, 9, 16, 25, 36, 49...? (a) 81 (b) 64 (c) 121 (d) 56 2. What is the next

### Geometry EOC Practice Test #2

Class: Date: Geometry EOC Practice Test #2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rebecca is loading medical supply boxes into a crate. Each supply

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1

47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not

### MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry. Figure 1: Lines in the Poincaré Disk Model

MA 408 Computer Lab Two The Poincaré Disk Model of Hyperbolic Geometry Put your name here: Score: Instructions: For this lab you will be using the applet, NonEuclid, created by Castellanos, Austin, Darnell,

### Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester

Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon

### alternate interior angles

alternate interior angles two non-adjacent angles that lie on the opposite sides of a transversal between two lines that the transversal intersects (a description of the location of the angles); alternate

### Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will

Performance Based Learning and Assessment Task Triangles in Parallelograms I. ASSESSSMENT TASK OVERVIEW & PURPOSE: In this task, students will discover and prove the relationship between the triangles

### Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

### Notes on Congruence 1

ongruence-1 Notes on ongruence 1 xiom 1 (-1). If and are distinct points and if is any point, then for each ray r emanating from there is a unique point on r such that =. xiom 2 (-2). If = and = F, then

### Geometry First Semester Final Exam Review

Name: Class: Date: ID: A Geometry First Semester Final Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find m 1 in the figure below. PQ parallel.

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### Geometry Handout 2 ~ Page 1

1. Given: a b, b c a c Guidance: Draw a line which intersects with all three lines. 2. Given: a b, c a a. c b b. Given: d b d c 3. Given: a c, b d a. α = β b. Given: e and f bisect angles α and β respectively.

### Determining Angle Measure with Parallel Lines Examples

Determining Angle Measure with Parallel Lines Examples 1. Using the figure at the right, review with students the following angles: corresponding, alternate interior, alternate exterior and consecutive

### Class-10 th (X) Mathematics Chapter: Tangents to Circles

Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches

### Mathematics Notes for Class 12 chapter 10. Vector Algebra

1 P a g e Mathematics Notes for Class 12 chapter 10. Vector Algebra A vector has direction and magnitude both but scalar has only magnitude. Magnitude of a vector a is denoted by a or a. It is non-negative