# Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

Save this PDF as:

Size: px
Start display at page:

Download "Ch 8 Potential energy and Conservation of Energy. Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63"

## Transcription

1 Ch 8 Potential energ and Conservation of Energ Question: 2, 3, 8, 9 Problems: 3, 9, 15, 21, 24, 25, 31, 32, 35, 41, 43, 47, 49, 53, 55, 63

2 Potential energ Kinetic energ energ due to motion Potential energ energ due to the arrangement of the objects in a sstem (U) Potential energ is due to an objects location. gravitational potential energ due to the separation between two objects elastic potential energ energ associated with the compression or stretching of an elastic object Potential energ is a form of energ so the units are Joules.

3 Potential energ is energ that can be stored and later released to produce motion. Examples: Shove a ball into a spring loaded gun. The elastic potential energ is stored and when ou shoot the ball the potential energ is converted to kinetic energ. After climbing a tree ou have gravitational potential energ stored up. Fall out of the tree that potential energ is converted to kinetic energ as ou fall down.

4 Work and potential energ Throw ball verticall upward. As the ball rises, gravit does negative work on the ball. The ball slowed down (lost kinetic energ). The kinetic energ is transferred to the gravitational potential energ of the ball-earth sstem. As the ball is falling, gravit does positive work on the ball. The ball speeds up (gains kinetic energ). The kinetic energ comes from the gravitational potential energ of the ball-earth sstem.

5 As ball rises: K < 0 When the gravitational force did negative work, the GPE increased, U > 0. As ball falls: K > 0 When the gravitational force did positive work, the GPE decreased, U < 0. From chapter 7: W = K W = - U

6 Block hitting spring Replace throwing a ball upward with a block sliding into a spring that is fixed to a wall. When the block hits the spring the block has kinetic energ. As the block compresses the spring, it loses kinetic energ and spring gets elastic potential energ. When block comes to rest, all the kinetic energ has been turned into potential energ. As the spring expands the transfer of energ is reversed from potential energ to kinetic energ.

7 Conservative forces Assume a force acts between a sstem of 2 objects. As the force changes the configuration of the sstem, the force does work, W 1, energ is transferred from kinetic energ to some other form of energ. When the change in configuration is reversed, the force does work, W 2, and the transfer of energ is reversed. If W 1 = -W 2 is true the other tpe of energ was potential energ. The force is a conservative force. examples: of conservative forces: gravit, springs, electric force

8 If W 1 = -W 2 is not alwas true, the force is nonconservative. Examples of nonconservative forces: friction, drag Nonconservative forces convert kinetic energ to thermal energ. Transfers to thermal energ cannot be reversed. Example: Kinetic energ can be lost to friction, but friction cannot be used to produce kinetic energ.

9 Conservative forces are path independent. The work done b a conservative force onl depends on the endpoint. How ou get from the initial configuration to the final configuration does not matter. The net work done b a conservative force around a closed loop is zero. Example: Throw a ball up and let it fall back down. The total work done b gravit is zero. Since conservative forces are path independent, we usuall onl care about the endpoints. This can make a complicated problem easier to solve.

10 Nonconservative forces are path dependent. When dealing with nonconservative forces, such as friction, we need to consider the path the object takes. W f = F f d where d is the path length. A 2 1 B Drag a box over a rough surface from point 1 to point 2. Friction will do more work when using path A than path B. If ou dragged the box along A from 1 to 2 then dragged it back using path B the total work done b friction is not zero.

11 How to calculate values of potential energ. In general, the work done b a force is: W x x F( x) dx Since U = -W U i f x x i f F( x) dx Gravitational Potential Energ (picking up to be positive) U U mg i f ( mg) d mg i f d mg( f i )

12 Gravitational Potential Energ Change in GPE from one point to another is: U i f ( mg) d mg mg( U mg Onl changes in GPE are phsicall meaningful. U U i = mg( i ) i f We will often compare GPE to the GPE at a reference point. Usuall we use: U i = 0 at i = 0. So: U() = mg d You can set an height to be the zero of GPE. This will be a big convenience in solving problems. f i )

13 Elastic potential energ (EPE) x f x f U ( kx) dx k xdx kx f kx i xi xi 2 2 When spring is relaxed, x i = 0, the U i = 0 U 0 = ½ kx 2 0 U(x) = ½ kx 2 2 Remember from last chapter W s = - ½ kx 2 So this fits U = -W

14 Conservation of mechanical energ Mechanical energ: E mech = K + U If ou onl have conservative forces, the total mechanical energ never changes. K 2 + U 2 = K 1 + U 1 and E mech = K + U = 0

15 E mech = K + U = 0 This is definitel one of the most important and most useful rules in phsics. If there are onl conservative forces involved, and there are multiple steps, ou can ignore the intermediate configurations of the sstem. Will see a good example of this later.

16 Potential Energ Curves Graph of potential energ vs. position See fig. 8-9 For a particle moving in the x-direction U(x) = -W = -F(x) x F U( x) x du( x) dx The derivative (slope) of the potential energ curve is related to the force.

17 The force doing the work, is the negative of the slope in the potential energ curve. Example: spring U(x) ½ kx 2 du( x) d 1 2 F ( x) ( kx ) dx dx 2 kx U(x) x

18 U(x) + K(x) = E mech K(x) = E mech U(x) Where U(x) = E mech the kinetic energ will be zero. This is a turning point. Think of the potential energ curve as a rollercoaster track. The height of the track is U(x). When the cart reach a point where its total energ is U(x), the cart stops and turns around. In Newtonian (classical phsics), particles are confined between turning points.

19 Equilibrium points. Points on the potential energ curve are said to be either unstable or stable. A point is unstable is a small displacement in either direction will lead to a greater displacement. (relative maxima) A point is stable is after a small displacement in either direction, the particle will return to its original position. (relative minima)

20 Work done b an external force. If positive work is done b an external force on a sstem, energ is transferred to the sstem. Negative work done on a sstem results in energ transferred from the sstem. W = U + E = E mech

21 Friction Look at case where a force, F, dragged a box across a floor. Newton s 2 nd law gives: F f k = ma F a is constant so: v a 2 Fd Fd ma v 2 o f 2 ( v v 2d 1 mv 2 K k 2ad ) f k 1 mv 2 d 2 o f k d

22 The friction between the two surfaces causes their temperatures to rise. The sliding increases the thermal energ b an amount equal in magnitude to the work done b friction: E th = f k d Fd = E mech + f k d = E mech + E th Work done on a sstem when there is friction: W = E mech + E th

23 Conservation of Energ The total energ of a sstem can change onl b amounts of energ that are transferred to or from the sstem. Energies to be considered are mechanic, thermal, and internal When work is done, the work is equal to the sum of the changes in these tpes of energies. W = E = E mech + E th + E int

24 Conservation of energ for an isolated sstem: E mech + E th + e int = 0 For an isolated sstem, the total energ cannot change.

25 Power: Average power is the average rate that a force transfers energ from, one tpe to another. P ave E t Instantaneous power: P de dt Problems: 18, 26, 34, 44, 46, 58

### Chapter 8: Potential Energy and Conservation of Energy. Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Consider a vertical spring oscillating with mass m attached to one end. At the extreme ends of travel

### 8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential

8. Potential Energy and Conservation of Energy Potential Energy: When an object has potential to have work done on it, it is said to have potential energy, e.g. a ball in your hand has more potential energy

### Chapter 6 Work and Energy

Chapter 6 WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system

### WORK DONE BY A CONSTANT FORCE

WORK DONE BY A CONSTANT FORCE The definition of work, W, when a constant force (F) is in the direction of displacement (d) is W = Fd SI unit is the Newton-meter (Nm) = Joule, J If you exert a force of

### Potential Energy and Equilibrium in 1D

Potential Energy and Equilibrium in 1D Figures 6-27, 6-28 and 6-29 of Tipler-Mosca. du = F x dx A particle is in equilibrium if the net force acting on it is zero: F x = du dx = 0. In stable equilibrium

### Work, Energy, Conservation of Energy

This test covers Work, echanical energy, kinetic energy, potential energy (gravitational and elastic), Hooke s Law, Conservation of Energy, heat energy, conservative and non-conservative forces, with soe

### 7. Kinetic Energy and Work

Kinetic Energy: 7. Kinetic Energy and Work The kinetic energy of a moving object: k = 1 2 mv 2 Kinetic energy is proportional to the square of the velocity. If the velocity of an object doubles, the kinetic

### Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power

Chapter 7 WORK, ENERGY, AND Power Work Done by a Constant Force Kinetic Energy and the Work-Energy Theorem Work Done by a Variable Force Power Examples of work. (a) The work done by the force F on this

### Conservative forces and the potential energy function. Non-conservative forces and the work-energy theorem

Non-conservative forces and the work-energy theorem Consider an object falling with air-resistance. There are two forces to consider; the gravitational force (conservative) and the drag force (non-conservative).

### Problem Set #8 Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01L: Physics I November 7, 2015 Prof. Alan Guth Problem Set #8 Solutions Due by 11:00 am on Friday, November 6 in the bins at the intersection

### Review D: Potential Energy and the Conservation of Mechanical Energy

MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Fall 2005 Review D: Potential Energy and the Conservation of Mechanical Energy D.1 Conservative and Non-conservative Force... 2 D.1.1 Introduction...

### KE = ½mv 2 PE = mgh W = Fdcosθ THINK ENERGY! (KE F + PE F ) = (KE 0 + PE 0 ) + W NC. Tues Oct 6 Assign 7 Fri Pre-class Thursday

Tues Oct 6 Assign 7 Fri Pre-class Thursday Conservation of Energy Work, KE, PE, Mech Energy Power To conserve total energy means that the total energy is constant or stays the same. With Work, we now have

### Gravitational Potential Energy

Gravitational Potential Energy Consider a ball falling from a height of y 0 =h to the floor at height y=0. A net force of gravity has been acting on the ball as it drops. So the total work done on the

### Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER

1 P a g e Work Physics Notes Class 11 CHAPTER 6 WORK, ENERGY AND POWER When a force acts on an object and the object actually moves in the direction of force, then the work is said to be done by the force.

### www.mathsbox.org.uk Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx Acceleration Velocity (v) Displacement x

Mechanics 2 : Revision Notes 1. Kinematics and variable acceleration Displacement (x) Velocity (v) Acceleration (a) x = f(t) differentiate v = dx differentiate a = dv = d2 x dt dt dt 2 Acceleration Velocity

### Springs. Spring can be used to apply forces. Springs can store energy. These can be done by either compression, stretching, or torsion.

Work-Energy Part 2 Springs Spring can be used to apply forces Springs can store energy These can be done by either compression, stretching, or torsion. Springs Ideal, or linear springs follow a rule called:

### KE =? v o. Page 1 of 12

Page 1 of 12 CTEnergy-1. A mass m is at the end of light (massless) rod of length R, the other end of which has a frictionless pivot so the rod can swing in a vertical plane. The rod is initially horizontal

### Ch 7 Kinetic Energy and Work. Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43

Ch 7 Kinetic Energy and Work Question: 7 Problems: 3, 7, 11, 17, 23, 27, 35, 37, 41, 43 Technical definition of energy a scalar quantity that is associated with that state of one or more objects The state

### Chapter 8: Conservation of Energy

Chapter 8: Conservation of Energy This chapter actually completes the argument established in the previous chapter and outlines the standing concepts of energy and conservative rules of total energy. I

### charge is detonated, causing the smaller glider with mass M, to move off to the right at 5 m/s. What is the

This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring

### AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

### Work, Kinetic Energy and Potential Energy

Chapter 6 Work, Kinetic Energy and Potential Energy 6.1 The Important Stuff 6.1.1 Kinetic Energy For an object with mass m and speed v, the kinetic energy is defined as K = 1 2 mv2 (6.1) Kinetic energy

### Work and Kinetic Energy

Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 6 To understand and calculate

### Weight The weight of an object is defined as the gravitational force acting on the object. Unit: Newton (N)

Gravitational Field A gravitational field as a region in which an object experiences a force due to gravitational attraction Gravitational Field Strength The gravitational field strength at a point in

### 2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration.

2.1 Force and Motion Kinematics looks at velocity and acceleration without reference to the cause of the acceleration. Dynamics looks at the cause of acceleration: an unbalanced force. Isaac Newton was

### Lesson 39: Kinetic Energy & Potential Energy

Lesson 39: Kinetic Energy & Potential Energy Total Mechanical Energy We sometimes call the total energy of an object (potential and kinetic) the total mechanical energy of an object. Mechanical energy

### How to calculate work done by a varying force along a curved path. The meaning and calculation of power in a physical situation

Chapter 6: Work and Kinetic Energy What is work done by a force What is kinetic energy work-energy theorem How to calculate work done by a varying force along a curved path The meaning and calculation

### CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS. REASONING AND SOLUTION The work done by F in moving the box through a displacement s is W = ( F cos 0 ) s= Fs. The work done by F is W = ( F cos θ). s From

### Chapter 6. Work and Energy

Chapter 6 Work and Energy ENERGY IS THE ABILITY TO DO WORK = TO APPLY A FORCE OVER A DISTANCE= Example: push over a distance, pull over a distance. Mechanical energy comes into 2 forms: Kinetic energy

### Physics 201 Homework 5

Physics 201 Homework 5 Feb 6, 2013 1. The (non-conservative) force propelling a 1500-kilogram car up a mountain -1.21 10 6 joules road does 4.70 10 6 joules of work on the car. The car starts from rest

### 9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

1. If the kinetic energy of an object is 16 joules when its speed is 4.0 meters per second, then the mass of the objects is (1) 0.5 kg (3) 8.0 kg (2) 2.0 kg (4) 19.6 kg Base your answers to questions 9

### Work, Energy and Power

Name: KEY Work, Energy and Power Objectives: 1. To understand work and its relation to energy. 2. To understand how energy can be transformed from one form into another. 3. To compute the power from the

### C B A T 3 T 2 T 1. 1. What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Three boxes are connected by massless strings and are resting on a frictionless table. Each box has a mass of 15 kg, and the tension T 1 in the right string is accelerating the boxes to the right at a

### Work and Direction. Work and Direction. Work and Direction. Work and Direction

Calculate the net gravitational force on the shaded ball. Be sure to include the magnitude and direction. Each ball has a mass of 20,000 kg. (0.79N, 22.5 o N of E) Chapter Six Work = Force X distance W

### PHYSICS 149: Lecture 15

PHYSICS 149: Lecture 15 Chapter 6: Conservation of Energy 6.3 Kinetic Energy 6.4 Gravitational Potential Energy Lecture 15 Purdue University, Physics 149 1 ILQ 1 Mimas orbits Saturn at a distance D. Enceladus

### VELOCITY, ACCELERATION, FORCE

VELOCITY, ACCELERATION, FORCE velocity Velocity v is a vector, with units of meters per second ( m s ). Velocity indicates the rate of change of the object s position ( r ); i.e., velocity tells you how

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued Clicker Question 4.3 A mass at rest on a ramp. How does the friction between the mass and the table know how much force will EXACTLY balance the gravity

### Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Work, Power, Energy Multiple Choice PSI Physics Name Multiple Choice Questions 1. A block of mass m is pulled over a distance d by an applied force F which is directed in parallel to the displacement.

### Physics 101 Prof. Ekey. Chapter 5 Force and motion (Newton, vectors and causing commotion)

Physics 101 Prof. Ekey Chapter 5 Force and motion (Newton, vectors and causing commotion) Goal of chapter 5 is to establish a connection between force and motion This should feel like chapter 1 Questions

### physics 111N work & energy

physics 111N work & energy conservation of energy entirely gravitational potential energy kinetic energy turning into gravitational potential energy gravitational potential energy turning into kinetic

### Conservation of Energy Workshop. Academic Resource Center

Conservation of Energy Workshop Academic Resource Center Presentation Outline Understanding Concepts Kinetic Energy Gravitational Potential Energy Elastic Potential Energy Example Conceptual Situations

### Conservative vs. Non-conservative forces Gravitational Potential Energy. Work done by non-conservative forces and changes in mechanical energy

Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

### Work Energy & Power. September 2000 Number 05. 1. Work If a force acts on a body and causes it to move, then the force is doing work.

PhysicsFactsheet September 2000 Number 05 Work Energy & Power 1. Work If a force acts on a body and causes it to move, then the force is doing work. W = Fs W = work done (J) F = force applied (N) s = distance

### University Physics 226N/231N Old Dominion University. Newton s Laws and Forces Examples

University Physics 226N/231N Old Dominion University Newton s Laws and Forces Examples Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2012-odu Wednesday, September

### 1) 0.33 m/s 2. 2) 2 m/s 2. 3) 6 m/s 2. 4) 18 m/s 2 1) 120 J 2) 40 J 3) 30 J 4) 12 J. 1) unchanged. 2) halved. 3) doubled.

Base your answers to questions 1 through 5 on the diagram below which represents a 3.0-kilogram mass being moved at a constant speed by a force of 6.0 Newtons. 4. If the surface were frictionless, the

### Day 18 ENERGY CONSERVATION. 1 Introduction: More Kinds of Energy

Day 18 ENERGY CONSERVATION 1 Introduction: More Kinds of Energy Suppose I move an object between two points in space. Also suppose that a force acts on the object as it moves. If the work done by the force

### Unit 3 Practice Test: Dynamics

Unit 3 Practice Test: Dynamics Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the common formula for work? a. W = F x c. W = Fd

### Bounce! Name. Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure.

Bounce 1 Name Bounce! Be very careful with the balls. Do not throw them DROP the balls as instructed in the procedure. Background information: Energy causes things to happen. During the day, the sun gives

### Objective: Work Done by a Variable Force Work Done by a Spring. Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout)

Double Date: Objective: Work Done by a Variable Force Work Done by a Spring Homework: Assignment (1-25) Do PROBS # (64, 65) Ch. 6, + Do AP 1986 # 2 (handout) AP Physics B Mr. Mirro Work Done by a Variable

### MCAT Physics Review. Grant Hart

MCAT Physics Review Grant Hart grant_hart@byu.edu Historical areas of emphasis -- probably similar in the future Mechanics 25% Fluid Mechanics 20% Waves, Optics, Sound 20% Electricity & Magnetism 10% Nuclear

### SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 1) A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s.

### Chapter 11 Work. Chapter Goal: To develop a deeper understanding of energy and its conservation Pearson Education, Inc.

Chapter 11 Work Chapter Goal: To develop a deeper understanding of energy and its conservation. Motivation * * There are also ways to gain or lose energy that are thermal, but we will not study these in

### Midterm Solutions. mvr = ω f (I wheel + I bullet ) = ω f 2 MR2 + mr 2 ) ω f = v R. 1 + M 2m

Midterm Solutions I) A bullet of mass m moving at horizontal velocity v strikes and sticks to the rim of a wheel a solid disc) of mass M, radius R, anchored at its center but free to rotate i) Which of

### At the skate park on the ramp

At the skate park on the ramp 1 On the ramp When a cart rolls down a ramp, it begins at rest, but starts moving downward upon release covers more distance each second When a cart rolls up a ramp, it rises

### Review D: Potential Energy and the Conservation of Mechanical Energy

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction... D.1.

### Curso2012-2013 Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

1. A body of mass m slides a distance d along a horizontal surface. How much work is done by gravity? A) mgd B) zero C) mgd D) One cannot tell from the given information. E) None of these is correct. 2.

### 1 of 9 10/27/2009 7:46 PM

1 of 9 10/27/2009 7:46 PM Chapter 11 Homework Due: 9:00am on Tuesday, October 27, 2009 Note: To understand how points are awarded, read your instructor's Grading Policy [Return to Standard Assignment View]

### POTENTIAL ENERGY AND CONSERVATION OF ENERGY

Chapter 8: POTENTIAL ENERGY AND CONSERVATION OF ENERGY 1 A good eample of kinetic energy is provided by: A a wound clock spring B the raised weights of a grandfather's clock C a tornado D a gallon of gasoline

### Phys 111 Fall P111 Syllabus

Phys 111 Fall 2012 Course structure Five sections lecture time 150 minutes per week Textbook Physics by James S. Walker fourth edition (Pearson) Clickers recommended Coursework Complete assignments from

### PS-6.2 Explain the factors that determine potential and kinetic energy and the transformation of one to the other.

PS-6.1 Explain how the law of conservation of energy applies to the transformation of various forms of energy (including mechanical energy, electrical energy, chemical energy, light energy, sound energy,

### Summary Notes. to avoid confusion it is better to write this formula in words. time

National 4/5 Physics Dynamics and Space Summary Notes The coloured boxes contain National 5 material. Section 1 Mechanics Average Speed Average speed is the distance travelled per unit time. distance (m)

### Review Assessment: Lec 02 Quiz

COURSES > PHYSICS GUEST SITE > CONTROL PANEL > 1ST SEM. QUIZZES > REVIEW ASSESSMENT: LEC 02 QUIZ Review Assessment: Lec 02 Quiz Name: Status : Score: Instructions: Lec 02 Quiz Completed 20 out of 100 points

### LAB 6: GRAVITATIONAL AND PASSIVE FORCES

55 Name Date Partners LAB 6: GRAVITATIONAL AND PASSIVE FORCES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies by the attraction

### The Ballistic Pendulum

1 The Ballistic Pendulum Introduction: By this time, you have probably become familiar with the concepts of work, energy, and potential energy, in the lecture part of the course. In this lab, we will be

### ENERGY CONSERVATION The First Law of Thermodynamics and the Work/Kinetic-Energy Theorem

PH-211 A. La Rosa ENERGY CONSERVATION The irst Law of Thermodynamics and the Work/Kinetic-Energy Theorem ENERGY TRANSER of ENERGY Heat-transfer Q Macroscopic external Work W done on a system ENERGY CONSERVATION

### Center of Mass/Momentum

Center of Mass/Momentum 1. 2. An L-shaped piece, represented by the shaded area on the figure, is cut from a metal plate of uniform thickness. The point that corresponds to the center of mass of the L-shaped

### Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel Name: Lab Day: 1. A concrete block is pulled 7.0 m across a frictionless surface by means of a rope. The tension in the rope is 40 N; and the

### B) 40.8 m C) 19.6 m D) None of the other choices is correct. Answer: B

Practice Test 1 1) Abby throws a ball straight up and times it. She sees that the ball goes by the top of a flagpole after 0.60 s and reaches the level of the top of the pole after a total elapsed time

### Chapter 9. particle is increased.

Chapter 9 9. Figure 9-36 shows a three particle system. What are (a) the x coordinate and (b) the y coordinate of the center of mass of the three particle system. (c) What happens to the center of mass

### Slide 10.1. Basic system Models

Slide 10.1 Basic system Models Objectives: Devise Models from basic building blocks of mechanical, electrical, fluid and thermal systems Recognize analogies between mechanical, electrical, fluid and thermal

### Physics 53. Oscillations. You've got to be very careful if you don't know where you're going, because you might not get there.

Physics 53 Oscillations You've got to be very careful if you don't know where you're going, because you might not get there. Yogi Berra Overview Many natural phenomena exhibit motion in which particles

### Work and Energy. Physics 1425 Lecture 12. Michael Fowler, UVa

Work and Energy Physics 1425 Lecture 12 Michael Fowler, UVa What is Work and What Isn t? In physics, work has a very restricted meaning! Doing homework isn t work. Carrying somebody a mile on a level road

### Physics Midterm Review. Multiple-Choice Questions

Physics Midterm Review Multiple-Choice Questions 1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B. 22.5 km C. 25 km D. 45 km E. 50 km 2. A bicyclist moves

### PHYSICS MIDTERM REVIEW

1. The acceleration due to gravity on the surface of planet X is 19.6 m/s 2. If an object on the surface of this planet weighs 980. newtons, the mass of the object is 50.0 kg 490. N 100. kg 908 N 2. If

### 1 of 10 11/23/2009 6:37 PM

hapter 14 Homework Due: 9:00am on Thursday November 19 2009 Note: To understand how points are awarded read your instructor's Grading Policy. [Return to Standard Assignment View] Good Vibes: Introduction

### Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Assignment Work (Physics) Class :Xi Chapter :04: Motion In PLANE State law of parallelogram of vector addition and derive expression for resultant of two vectors

### AP1 Oscillations. 1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false?

1. Which of the following statements about a spring-block oscillator in simple harmonic motion about its equilibrium point is false? (A) The displacement is directly related to the acceleration. (B) The

### PHYS 211 FINAL FALL 2004 Form A

1. Two boys with masses of 40 kg and 60 kg are holding onto either end of a 10 m long massless pole which is initially at rest and floating in still water. They pull themselves along the pole toward each

### Section 15.1 Energy and Its Forms (pages 446 452)

Section 15.1 and Its Forms (pages 446 452) This section describes how energy and work are related. It defines kinetic energy and potential energy, and gives examples for calculating these forms of energy.

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### ENERGY Types of Energy and Energy Transfers

ENERGY Types of Energy and Energy Transfers Energy is the ability to make something useful happen. These types Light Kinetic an object has due to its motion. Chemical can be released when chemical reactions

### Lecture 36 (Walker 18.8,18.5-6,)

Lecture 36 (Walker 18.8,18.5-6,) Entropy 2 nd Law of Thermodynamics Dec. 11, 2009 Help Session: Today, 3:10-4:00, TH230 Review Session: Monday, 3:10-4:00, TH230 Solutions to practice Lecture 36 final on

### Problem Set 5 Work and Kinetic Energy Solutions

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics Physics 8.1 Fall 1 Problem Set 5 Work and Kinetic Energy Solutions Problem 1: Work Done by Forces a) Two people push in opposite directions on

### ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

### PHYS 101 Lecture 10 - Work and kinetic energy 10-1

PHYS 101 Lecture 10 - Work and kinetic energy 10-1 Lecture 10 - Work and Kinetic Energy What s important: impulse, work, kinetic energy, potential energy Demonstrations: block on plane balloon with propellor

### LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

L06-1 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly Bodies

### COMPONENTS OF VECTORS

COMPONENTS OF VECTORS To describe motion in two dimensions we need a coordinate sstem with two perpendicular aes, and. In such a coordinate sstem, an vector A can be uniquel decomposed into a sum of two

### Kinematic Physics for Simulation and Game Programming

Kinematic Phsics for Simulation and Game Programming Mike Baile mjb@cs.oregonstate.edu phsics-kinematic.ppt mjb October, 05 SI Phsics Units (International Sstem of Units) Quantit Units Linear position

### FRICTION, WORK, AND THE INCLINED PLANE

FRICTION, WORK, AND THE INCLINED PLANE Objective: To measure the coefficient of static and inetic friction between a bloc and an inclined plane and to examine the relationship between the plane s angle

### AP Physics B Free Response Solutions

AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible

### Work, Energy and Power Practice Test 1

Name: ate: 1. How much work is required to lift a 2-kilogram mass to a height of 10 meters?. 5 joules. 20 joules. 100 joules. 200 joules 5. ar and car of equal mass travel up a hill. ar moves up the hill

### Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION

1 P a g e Inertia Physics Notes Class 11 CHAPTER 5 LAWS OF MOTION The property of an object by virtue of which it cannot change its state of rest or of uniform motion along a straight line its own, is

### EDUH 1017 - SPORTS MECHANICS

4277(a) Semester 2, 2011 Page 1 of 9 THE UNIVERSITY OF SYDNEY EDUH 1017 - SPORTS MECHANICS NOVEMBER 2011 Time allowed: TWO Hours Total marks: 90 MARKS INSTRUCTIONS All questions are to be answered. Use

### Energy - Key Vocabulary

Energy - Key Vocabulary Term Potential Energy Kinetic Energy Joules Gravity Definition The energy an object possesses due to its position. PE = mgh The energy an object possesses when it is in motion.

### 10.1 Quantitative. Answer: A Var: 50+

Chapter 10 Energy and Work 10.1 Quantitative 1) A child does 350 J of work while pulling a box from the ground up to his tree house with a rope. The tree house is 4.8 m above the ground. What is the mass

### Notes: Mechanics. The Nature of Force, Motion & Energy

Notes: Mechanics The Nature of Force, Motion & Energy I. Force A push or pull. a) A force is needed to change an object s state of motion. b) Net force- The sum (addition) of all the forces acting on an

### Physics 2AB Notes - 2012. Heating and Cooling. The kinetic energy of a substance defines its temperature.

Physics 2AB Notes - 2012 Heating and Cooling Kinetic Theory All matter is made up of tiny, minute particles. These particles are in constant motion. The kinetic energy of a substance defines its temperature.