Applied Regression Analysis and Other Multivariable Methods


 Carmel Weaver
 1 years ago
 Views:
Transcription
1 THIRD EDITION Applied Regression Analysis and Other Multivariable Methods David G. Kleinbaum Emory University Lawrence L. Kupper University of North Carolina, Chapel Hill Keith E. Muller University of North Carolina, Chapel Hill Azhar Nizam Emory University An Alexander Kugushev Book ^P> Duxbury Press An Imprint of Brooks/Cole Publishing Company l P An International Thomson Publishing Company Pacific Grove Albany Belmont Bonn Boston Cincinnati Detroit Johannesburg London Madrid Melbourne Mexico City New York Paris Singapore Tokyo Toronto Washington
2 Contents 1 CONCEPTS AND EXAMPLES OF RESEARCH 11 Concepts Examples Concluding Remarks References 6 2 CLASSIFICATION OF VARIABLES AND THE CHOICE OF ANALYSIS 21 Classification of Variables Overlapping of Classification Schemes Choice of Analysis 11 References 13 3 BASIC STATISTICS: A REVIEW Preview Descriptive Statistics Random Variables and Distributions Sampling Distributions of /, # 2, and F Statistical Inference: Estimation Statistical Inference: Hypothesis Testing 24 xi
3 xii Contents 37 Error Rates, Power, and Sample Size 28 Problems 30 References 33 4 INTRODUCTIONTO REGRESSION ANALYSIS Preview Association versus Causality Statistical versus Deterministic Models Concluding Remarks 38 References 38 5 STRAIGHTLINE REGRESSION ANALYSIS Preview Regression with a Single Independent Variable Mathematical Properties of a Straight Line Statistical Assumptions for a Straightline Model Determining the Bestfitting Straight Line Measure of the Quality of the Straightline Fit and Estimate of a Inferences About the Slope and Intercept Interpretations of Tests for Slope and Intercept Inferences About the Regression Line JU Y \X = ßo + ßi% Prediction of a New Value of FatX Assessing the Appropriateness of the Straightline Model 60 Problems 60 References 87 THE CORRELATION COEFFICIENT AND STRAIGHTLINE REGRESSION ANALYSIS Definition of r ras a Measure of Association The Bivariate Normal Distribution r and the Strength of the Straightline Relationship What r Does Not Measure Tests of Hypotheses and Confidence Intervals for the Correlation Coefficient Testing for the Equality of Two Correlations 99 Problems 101 References 103
4 Contents xiii 7 THE ANALYSISOFVARIANCE TABLE Preview The ANOVA Table for Straightline Regression 104 Problems 108 ß ö MULTIPLE REGRESSION ANALYSIS: GENERAL CONSIDERATIONS Preview Multiple Regression Models Graphical Look at the Problem Assumptions of Multiple Regression Determining the Best Estimate of the Multiple Regression Equation The ANOVA Table for Multiple Regression Numerical Examples 121 Problems 123 References TESTING HYPOTHESES IN MULTIPLE REGRESSION Preview Test for Significant Overall Regression PartialFTest Multiple PartialFTest Strategies for Using Partial F Tests Tests Involving the Intercept 150 Problems 151 References 159 CORRELATIONS: MULTIPLE, PARTIAL, AND MULTIPLE PARTIAL Preview Correlation Matrix Multiple Correlation Coefficient Relationship of Ry\x h x 2,...,x k to the Multivariate Normal Distribution Partial Correlation Coefficient Alternative Representation of the Regression Model 172
5 xiv Contents 107 Multiple Partial Correlation Concluding Remarks 174 Problems 174 Reference CONFOUNDING AND INTERACTION IN REGRESSION 111 Preview Overview Interaction in Regression Confounding in Regression Summary and Conclusions 199 Problems 199 Reference REGRESSION DIAGNOSTICS Preview Simple Approaches to Diagnosing Problems in Data Residual Analysis Treating Outliers Collinearity Scaling Problems Treating Collinearity and Scaling Problems Alternate Strategies of Analysis An Important Caution 252 Problems 253 References POLYNOMIAL REGRESSION Preview Polynomial Models Leastsquares Procedure for Fitting a Parabola ANOVA Table for Secondorder Polynomial Regression Inferences Associated with Secondorder Polynomial Regression 136 Example Requiring a Secondorder Model Fitting and Testing Higherorder Models Lackoffit Tests Orthogonal Polynomials 292
6 Contents xv Strategies for Choosing a Polynomial Model 301 Problems DUMMY VARIABLES IN REGRESSION Preview Definitions Rule for Defming Dummy Variables Comparing Two Straightline Regression Equations: An Example Questions for Comparing Two Straight Lines Methods of Comparing Two Straight Lines Method I: Using Separate Regression Fits to Compare Two Straight Lines Method II: Using a Single Regression Equation to Compare Two Straight Lines Comparison of Methods I and II Testing Strategies and Interpretation: Comparing Two Straight Lines Other Dummy Variable Models Comparing Four Regression Equations Comparing Several Regression Equations Involving Two Nominal Variables 336 Problems 338 References 360 , c ANALYSIS OF COVARIANCE AND OTHER 1 ^ METHODS FOR ADJUSTING CONTINUOUS DATA Preview Adjustment Problem Analysis of Covariance Assumption of Parallelism: A Potential Drawback Analysis of Covariance: Several Groups and Several Covariates Comments and Cautions Summary 371 Problems 371 Reference SELECTING THE BEST REGRESSION EQUATION Preview Steps in Selecting the Best Regression Equation Step 1: Specifying the Maximum Model Step 2: Specifying a Criterion for Selecting a Model Step 3: Specifying a Strategy for Selecting Variables 392
7 xvi Contents 166 Step 4: Conducting the Analysis Step 5: Evaluating Reliability with Split Samples Example Analysis ofactual Data Issues in Selecting the Most Valid Model 409 Problems 409 References ONEWAY ANALYSIS OFVARIANCE Preview Oneway ANOVA: The Problem, Assumptions, and Data Configuration Methodology for Oneway Fixedeffects ANOVA Regression Model for Fixedeffects Oneway ANOVA Fixedeffects Model for Oneway ANOVA Randomeffects Model for Oneway ANOVA Multiplecomparison Procedures for Fixedeffects Oneway ANOVA Choosing a Multiplecomparison Technique Orthogonal Contrasts and Partitioning an ANOVA Sum of Squares 457 Problems 463 References RANDOMIZED BLOCKS: SPECIAL CASE OF TWOWAY ANOVA 181 Preview Equivalent Analysis of a Matched Pairs Experiment PrincipleofBlocking Analysis of a Randomizedblocks Experiment ANOVA Table for a Randomizedblocks Experiment Regression Models for a Randomizedblocks Experiment Fixedeffects ANOVA Model for a Randomizedblocks Experiment 502 Problems 503 References TWOWAY ANOVA WITH EQUAL CELL NUMBERS Preview Usinga Table of Cell Means General Methodology F Tests for Twoway ANOVA Regression Model for Fixedeffects Twoway ANOVA Interactions in Twoway ANOVA Random and Mixedeffects Twoway ANOVA Models 541 Problems 544 References 560
8 Contents xvii 20 TWOWAY ANOVA WITH UNEQUAL CELL NUMBERS Preview Problems with Unequal Cell Numbers: Nonorthogonality Regression Approach for Unequal Cell Sample Sizes Higherway ANOVA 571 Problems 572 References ANALYSIS OF REPEATED MEASURES DATA Preview Examples General Approach for Repeated Measures ANOVA Overview of Selected Repeated Measures Designs and ANOVAbased Analyses Repeated Measures ANOVA for Unbalanced Data Other Approaches to Analyzing Repeated Measures Data 612 Appendix 21A Examples of SAS's GLM and MIXED Procedures 613 Problems 616 References THE METHOD OF MAXIMUM LIKELIHOOD Preview The Principle of Maximum Likelihood Statistical Inference via Maximum Likelihood Summary 652 Problems 653 References LOGISTIC REGRESSION ANALYSIS Preview The Logistic Model Estimating the Odds Ratio Using Logistic Regression A Numerical Example of Logistic Regression Theoretical Considerations An Example of Conditional ML Estimation Involving Pairmatched Data with Unmatched Covariates Summary 681 Problems 682 References 686
9 xviii Contents 24 POISSON REGRESSION ANALYSIS Preview The Poisson Distribution An Example of Poisson Regression Poisson Regression: General Considerations Measures of Goodness of Fit Continuation of Skin Cancer Data Example A Second Illustration of Poisson Regression Analysis Summary 704 Problems 705 References 709 A APPENDIX A TABLES 711 Al Standard Normal Cumulative Probabilities 712 A2 Percentiles of the t Distribution 715 A3 Percentiles of the Chisquare Distribution 716 A4 Percentiles of the F Distribution 717 A5 Values off In 1 +r 1 r 724 A6 Upper a Point of Studentized Range 726 A7 Orthogonal Polynomial Coefficients 728 A8 Bonferroni Corrected Jackknife and Studentized Residual Critical Values 729 A9 Critical Values for Leverages 730 A10 Critical Values for the Maximum of N Values of Cook's d(i) times (nk\) 731 B APPENDIX B MATRICES AND THEIR RELATIONSHIP TO REGRESSION ANALYSIS 732 APPENDIX C ANOVA INFORMATION FOR FOUR COMMON BALANCED REPEATED MEASURES DESIGNS 744 C1 Balanced Repeated Measures Design with One Crossover Factor (Treatments) 744 C2 Balanced Repeated Measures Design with Two Crossover Factors 746 C3 Balanced Repeated Measures Design with One Nest Factor (Treatments) 750 C4 Balanced Repeated Measures Design with One Crossover Factor and One Nest Factor 752 C5 Balanced Twogroup Pre/Posttest Design 755 References 757 ) SOLUTIONS TO EXERCISES 758 INDEX 787
Introduction to Statistics with SPSS for Social Science
New Introduction to Statistics with SPSS for Social Science Gareth Norris Faiza Qureshi Dennis Howitt Duncan Cramer Aberystwyth University City University London University of Loughborough University of
More informationMULTIVARIATE DATA ANALYSIS i.*.'.. ' 4
SEVENTH EDITION MULTIVARIATE DATA ANALYSIS i.*.'.. ' 4 A Global Perspective Joseph F. Hair, Jr. Kennesaw State University William C. Black Louisiana State University Barry J. Babin University of Southern
More informationUnivariate and Multivariate Methods PEARSON. Addison Wesley
Time Series Analysis Univariate and Multivariate Methods SECOND EDITION William W. S. Wei Department of Statistics The Fox School of Business and Management Temple University PEARSON Addison Wesley Boston
More informationApplied Multiple Regression/Correlation Analysis for the Behavioral Sciences
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Third Edition Jacob Cohen (deceased) New York University Patricia Cohen New York State Psychiatric Institute and Columbia University
More informationApplied Multivariate Analysis
Neil H. Timm Applied Multivariate Analysis With 42 Figures Springer Contents Preface Acknowledgments List of Tables List of Figures vii ix xix xxiii 1 Introduction 1 1.1 Overview 1 1.2 Multivariate Models
More informationMultivariate Statistical Inference and Applications
Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A WileyInterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim
More informationInstitute of Actuaries of India Subject CT3 Probability and Mathematical Statistics
Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2015 Examinations Aim The aim of the Probability and Mathematical Statistics subject is to provide a grounding in
More informationINTRODUCTORY STATISTICS
INTRODUCTORY STATISTICS FIFTH EDITION Thomas H. Wonnacott University of Western Ontario Ronald J. Wonnacott University of Western Ontario WILEY JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore
More informationQUANTITATIVE METHODS. for Decision Makers. Mik Wisniewski. Fifth Edition. FT Prentice Hall
Fifth Edition QUANTITATIVE METHODS for Decision Makers Mik Wisniewski Senior Research Fellow, Department of Management Science, University of Strathclyde Business School FT Prentice Hall FINANCIAL TIMES
More informationPOLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression
More informationMATHEMATICAL METHODS OF STATISTICS
MATHEMATICAL METHODS OF STATISTICS By HARALD CRAMER TROFESSOK IN THE UNIVERSITY OF STOCKHOLM Princeton PRINCETON UNIVERSITY PRESS 1946 TABLE OF CONTENTS. First Part. MATHEMATICAL INTRODUCTION. CHAPTERS
More informationTechnology StepbyStep Using StatCrunch
Technology StepbyStep Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
More informationUNDERSTANDING MULTIPLE REGRESSION
UNDERSTANDING Multiple regression analysis (MRA) is any of several related statistical methods for evaluating the effects of more than one independent (or predictor) variable on a dependent (or outcome)
More informationBusiness Analytics. Methods, Models, and Decisions. James R. Evans : University of Cincinnati PEARSON
Business Analytics Methods, Models, and Decisions James R. Evans : University of Cincinnati PEARSON Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London
More informationRegression Modeling Strategies
Frank E. Harrell, Jr. Regression Modeling Strategies With Applications to Linear Models, Logistic Regression, and Survival Analysis With 141 Figures Springer Contents Preface Typographical Conventions
More information(and sex and drugs and rock 'n' roll) ANDY FIELD
DISCOVERING USING SPSS STATISTICS THIRD EDITION (and sex and drugs and rock 'n' roll) ANDY FIELD CONTENTS Preface How to use this book Acknowledgements Dedication Symbols used in this book Some maths revision
More informationChapter 14: Analyzing Relationships Between Variables
Chapter Outlines for: Frey, L., Botan, C., & Kreps, G. (1999). Investigating communication: An introduction to research methods. (2nd ed.) Boston: Allyn & Bacon. Chapter 14: Analyzing Relationships Between
More informationLecture  32 Regression Modelling Using SPSS
Applied Multivariate Statistical Modelling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture  32 Regression Modelling Using SPSS (Refer
More informationRegression in SPSS. Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology
Regression in SPSS Workshop offered by the Mississippi Center for Supercomputing Research and the UM Office of Information Technology John P. Bentley Department of Pharmacy Administration University of
More informationMethods for Metaanalysis in Medical Research
Methods for Metaanalysis in Medical Research Alex J. Sutton University of Leicester, UK Keith R. Abrams University of Leicester, UK David R. Jones University of Leicester, UK Trevor A. Sheldon University
More informationElements of statistics (MATH04871)
Elements of statistics (MATH04871) Prof. Dr. Dr. K. Van Steen University of Liège, Belgium December 10, 2012 Introduction to Statistics Basic Probability Revisited Sampling Exploratory Data Analysis 
More informationChapter 5 Analysis of variance SPSS Analysis of variance
Chapter 5 Analysis of variance SPSS Analysis of variance Data file used: gss.sav How to get there: Analyze Compare Means Oneway ANOVA To test the null hypothesis that several population means are equal,
More informationSPSS Multivariable Linear Models and Logistic Regression
1 SPSS Multivariable Linear Models and Logistic Regression Multivariable Models Single continuous outcome (dependent variable), one main exposure (independent) variable, and one or more potential confounders
More informationStatistics Graduate Courses
Statistics Graduate Courses STAT 7002Topics in StatisticsBiological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.
More informationRegression, least squares
Regression, least squares Joe Felsenstein Department of Genome Sciences and Department of Biology Regression, least squares p.1/24 Fitting a straight line X Two distinct cases: The X values are chosen
More information11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.
Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection
More information, then the form of the model is given by: which comprises a deterministic component involving the three regression coefficients (
Multiple regression Introduction Multiple regression is a logical extension of the principles of simple linear regression to situations in which there are several predictor variables. For instance if we
More informationTechnical report. in SPSS AN INTRODUCTION TO THE MIXED PROCEDURE
Linear mixedeffects modeling in SPSS AN INTRODUCTION TO THE MIXED PROCEDURE Table of contents Introduction................................................................3 Data preparation for MIXED...................................................3
More informationDesign of Experiments and Experimental Data Processing
Design of Experiments and Experimental Data Processing Course plan October 9, 2008 Fall 2008 Prof. Ivan Kalaykov Room: T1224, Tel. 019303625, ivan.kalaykov@oru.se 1 Course objectives In order to discover
More informationClass 6: Chapter 12. Key Ideas. Explanatory Design. Correlational Designs
Class 6: Chapter 12 Correlational Designs l 1 Key Ideas Explanatory and predictor designs Characteristics of correlational research Scatterplots and calculating associations Steps in conducting a correlational
More informationEconometric Analysis of Cross Section and Panel Data Second Edition. Jeffrey M. Wooldridge. The MIT Press Cambridge, Massachusetts London, England
Econometric Analysis of Cross Section and Panel Data Second Edition Jeffrey M. Wooldridge The MIT Press Cambridge, Massachusetts London, England Preface Acknowledgments xxi xxix I INTRODUCTION AND BACKGROUND
More informationfifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson
fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example
More informationLinear MixedEffects Modeling in SPSS: An Introduction to the MIXED Procedure
Technical report Linear MixedEffects Modeling in SPSS: An Introduction to the MIXED Procedure Table of contents Introduction................................................................ 1 Data preparation
More informationStatistical Rules of Thumb
Statistical Rules of Thumb Second Edition Gerald van Belle University of Washington Department of Biostatistics and Department of Environmental and Occupational Health Sciences Seattle, WA WILEY AJOHN
More informationCOURSE PLAN BDA: Biomedical Data Analysis Master in Bioinformatics for Health Sciences. 20152016 Academic Year Qualification.
COURSE PLAN BDA: Biomedical Data Analysis Master in Bioinformatics for Health Sciences 20152016 Academic Year Qualification. Master's Degree 1. Description of the subject Subject name: Biomedical Data
More information12/31/2016. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2
PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Understand when to use multiple Understand the multiple equation and what the coefficients represent Understand different methods
More informationSAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
More informationChapter 11: Two Variable Regression Analysis
Department of Mathematics Izmir University of Economics Week 1415 20142015 In this chapter, we will focus on linear models and extend our analysis to relationships between variables, the definitions
More informationEconomic Order Quantity and Economic Production Quantity Models for Inventory Management
Economic Order Quantity and Economic Production Quantity Models for Inventory Management Inventory control is concerned with minimizing the total cost of inventory. In the U.K. the term often used is stock
More informationCorrectly Compute Complex Samples Statistics
SPSS Complex Samples 16.0 Specifications Correctly Compute Complex Samples Statistics When you conduct sample surveys, use a statistics package dedicated to producing correct estimates for complex sample
More informationSimple Linear Regression Chapter 11
Simple Linear Regression Chapter 11 Rationale Frequently decisionmaking situations require modeling of relationships among business variables. For instance, the amount of sale of a product may be related
More informationSTATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 SigmaRestricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationMultiple Regression YX1 YX2 X1X2 YX1.X2
Multiple Regression Simple or total correlation: relationship between one dependent and one independent variable, Y versus X Coefficient of simple determination: r (or r, r ) YX YX XX Partial correlation:
More informationMTH 140 Statistics Videos
MTH 140 Statistics Videos Chapter 1 Picturing Distributions with Graphs Individuals and Variables Categorical Variables: Pie Charts and Bar Graphs Categorical Variables: Pie Charts and Bar Graphs Quantitative
More information11. Analysis of Casecontrol Studies Logistic Regression
Research methods II 113 11. Analysis of Casecontrol Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
More informationThe Basics of Regression Analysis. for TIPPS. Lehana Thabane. What does correlation measure? Correlation is a measure of strength, not causation!
The Purpose of Regression Modeling The Basics of Regression Analysis for TIPPS Lehana Thabane To verify the association or relationship between a single variable and one or more explanatory One explanatory
More informationCategorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant
Interpretation and Implementation 1 Categorical Variables in Regression: Implementation and Interpretation By Dr. Jon Starkweather, Research and Statistical Support consultant Use of categorical variables
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationThe aspect of the data that we want to describe/measure is the degree of linear relationship between and The statistic r describes/measures the degree
PS 511: Advanced Statistics for Psychological and Behavioral Research 1 Both examine linear (straight line) relationships Correlation works with a pair of scores One score on each of two variables ( and
More informationSPSS Advanced Statistics 17.0
i SPSS Advanced Statistics 17.0 For more information about SPSS Inc. software products, please visit our Web site at http://www.spss.com or contact SPSS Inc. 233 South Wacker Drive, 11th Floor Chicago,
More information1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F.
Final Exam 1. Complete the sentence with the correct word or phrase. 2. Fill in blanks in a source table with the correct formuli for df, MS, and F. 3. Identify the graphic form and nature of the source
More informationGLM I An Introduction to Generalized Linear Models
GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial
More informationPractical. I conometrics. data collection, analysis, and application. Christiana E. Hilmer. Michael J. Hilmer San Diego State University
Practical I conometrics data collection, analysis, and application Christiana E. Hilmer Michael J. Hilmer San Diego State University Mi Table of Contents PART ONE THE BASICS 1 Chapter 1 An Introduction
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationRegression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationContrast Coding in Multiple Regression Analysis: Strengths, Weaknesses, and Utility of Popular Coding Structures
Journal of Data Science 8(2010), 6173 Contrast Coding in Multiple Regression Analysis: Strengths, Weaknesses, and Utility of Popular Coding Structures Matthew J. Davis Texas A&M University Abstract: The
More informationFor example, enter the following data in three COLUMNS in a new View window.
Statistics with Statview  18 Paired ttest A paired ttest compares two groups of measurements when the data in the two groups are in some way paired between the groups (e.g., before and after on the
More informationIBM SPSS Advanced Statistics 20
IBM SPSS Advanced Statistics 20 Note: Before using this information and the product it supports, read the general information under Notices on p. 166. This edition applies to IBM SPSS Statistics 20 and
More informationDATA ANALYTICS USING R
DATA ANALYTICS USING R Duration: 90 Hours Intended audience and scope: The course is targeted at fresh engineers, practicing engineers and scientists who are interested in learning and understanding data
More informationStatistics and research
Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationFactor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models
Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis
More informationAnalysing Ecological Data
Alain F. Zuur Elena N. Ieno Graham M. Smith Analysing Ecological Data University una Landesbibliothe;< Darmstadt Eibliothek Biologie tov.nr. 4y Springer Contents Contributors xix 1 Introduction 1 1.1
More informationModule 3: Correlation and Covariance
Using Statistical Data to Make Decisions Module 3: Correlation and Covariance Tom Ilvento Dr. Mugdim Pašiƒ University of Delaware Sarajevo Graduate School of Business O ften our interest in data analysis
More informationEmpirical ModelBuilding and Response Surfaces
Empirical ModelBuilding and Response Surfaces GEORGE E. P. BOX NORMAN R. DRAPER Technische Universitat Darmstadt FACHBEREICH INFORMATIK BIBLIOTHEK InvortarNf.. Sachgsbiete: Standort: New York John Wiley
More informationOverview Classes. 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7)
Overview Classes 123 Logistic regression (5) 193 Building and applying logistic regression (6) 263 Generalizations of logistic regression (7) 24 Loglinear models (8) 54 1517 hrs; 5B02 Building and
More informationSome Critical Information about SOME Statistical Tests and Measures of Correlation/Association
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and
More information1 Theory: The General Linear Model
QMIN GLM Theory  1.1 1 Theory: The General Linear Model 1.1 Introduction Before digital computers, statistics textbooks spoke of three procedures regression, the analysis of variance (ANOVA), and the
More informationStatistical Modeling Using SAS
Statistical Modeling Using SAS Xiangming Fang Department of Biostatistics East Carolina University SAS Code Workshop Series 2012 Xiangming Fang (Department of Biostatistics) Statistical Modeling Using
More informationData Analysis in Management with SPSS Software
Data Analysis in Management with SPSS Software J.P. Verma Data Analysis in Management with SPSS Software J.P. Verma Research and Advanced Studies Lakshmibai National University of Physical Education Gwalior,
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationModule 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationThe GraphPad guide to comparing doseresponse or kinetic curves.
The GraphPad guide to comparing doseresponse or kinetic curves. Dr. Harvey Motulsky President, GraphPad Software Inc. hmotulsky@graphpad.com www.graphpad.com Copyright 1998 by GraphPad Software, Inc.
More informationPart 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
More informationBivariate Analysis. Correlation. Correlation. Pearson's Correlation Coefficient. Variable 1. Variable 2
Bivariate Analysis Variable 2 LEVELS >2 LEVELS COTIUOUS Correlation Used when you measure two continuous variables. Variable 2 2 LEVELS X 2 >2 LEVELS X 2 COTIUOUS ttest X 2 X 2 AOVA (Ftest) ttest AOVA
More informationMultivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
More informationEssentials of Marketing Research
Essentials of Marketing Second Edition Joseph F. Hair, Jr. Kennesaw State University Mary F. Wolfinbarger California State UniversityLong Beach David J. Ortinau University of South Florida Robert P. Bush
More informationAMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015
AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This
More informationINCOME AND HAPPINESS 1. Income and Happiness
INCOME AND HAPPINESS 1 Income and Happiness Abstract Are wealthier people happier? The research study employed simple linear regression analysis to confirm the positive relationship between income and
More informationCHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression
Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the
More informationSUGI 29 Statistics and Data Analysis
Paper 19429 Head of the CLASS: Impress your colleagues with a superior understanding of the CLASS statement in PROC LOGISTIC Michelle L. Pritchard and David J. Pasta Ovation Research Group, San Francisco,
More informationUsing R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
More informationThe importance of graphing the data: Anscombe s regression examples
The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 3031, 2008 B. Weaver, NHRC 2008 1 The Objective
More informationA Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution
A Primer on Mathematical Statistics and Univariate Distributions; The Normal Distribution; The GLM with the Normal Distribution PSYC 943 (930): Fundamentals of Multivariate Modeling Lecture 4: September
More informationSTAT 200: Course Aims and Objectives
STAT 200: Course Aims and Objectives Attitudinal aims In addition to specific learning outcomes, the course aims to shape the attitudes of learners regarding the field of Statistics. Specifically, the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Module 7 Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. You are given information about a straight line. Use two points to graph the equation.
More information0.1 Multiple Regression Models
0.1 Multiple Regression Models We will introduce the multiple Regression model as a mean of relating one numerical response variable y to two or more independent (or predictor variables. We will see different
More informationCorrelation and Regression
Dublin Institute of Technology ARROW@DIT Books/Book Chapters School of Management 201210 Correlation and Regression Donal O'Brien Dublin Institute of Technology, donal.obrien@dit.ie Pamela Sharkey Scott
More informationDirections for using SPSS
Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...
More informationStatistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
More informationIndices of Model Fit STRUCTURAL EQUATION MODELING 2013
Indices of Model Fit STRUCTURAL EQUATION MODELING 2013 Indices of Model Fit A recommended minimal set of fit indices that should be reported and interpreted when reporting the results of SEM analyses:
More informationThe Six Sigma Handbook
The Six Sigma Handbook A Complete Guide for Green Belts, Black Belts, and Managers at All Levels Thomas Pyzdek Paul A. Keller Third Edition Me Graw Hill New York Chicago San Francisco Lisbon London Madrid
More informationService courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.
Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are
More informationSPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a stepbystep guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
More informationWhy Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization. Learning Goals. GENOME 560, Spring 2012
Why Taking This Course? Course Introduction, Descriptive Statistics and Data Visualization GENOME 560, Spring 2012 Data are interesting because they help us understand the world Genomics: Massive Amounts
More information