# Correlation and Regression Analysis: SPSS

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Correlation and Regression Analysis: SPSS Bivariate Analysis: Cyberloafing Predicted from Personality and Age These days many employees, during work hours, spend time on the Internet doing personal things, things not related to their work. This is called cyberloafing. Research at ECU, by Mike Sage, graduate student in Industrial/Organizational Psychology, has related the frequency of cyberloafing to personality and age. Personality was measured with a Big Five instrument. Cyberloafing was measured with an instrument designed for this research. Age is in years. The cyberloafing instrument consisted of 23 questions about cyberloafing behaviors, such as shop online for personal goods, send non-work-related , and use Facebook. For each item, respondents were asked how often they engage in the specified activity during work hours for personal reasons. The response options were Never, Rarely (about once a month), Sometimes (at least once a week), and Frequently (at least once a day). Higher scores indicate greater frequency of cyberloafing. For this exercise, the only Big Five personality factor we shall use is that for Conscientiousness. Bring the data, Cyberloaf_Consc_Age.sav, into SPSS. Click Analyze, Descriptive Statistics, Frequencies. Scoot all three variables into the pane on the right. Uncheck Display frequency tables. Click on Statistics and select the statistics shown below. Continue. Click on Charts and select the charts shown below. Continue. OK. Copyright 2016, Karl L. Wuensch - All rights reserved. CorrRegr-SPSS.docx

2 2 The output will show that age is positively skewed, but not quite badly enough to require us to transform it to pull in that upper tail. Click Analyze, Correlate, Bivariate. Move all three variables into the Variables box. Ask for Pearson and Spearman coefficients, two-tailed, flagging significant coefficients. Click OK. Look at the output. With both Pearson and Spearman, the correlations between cyberloafing and both age and Conscientiousness are negative, significant, and of considerable magnitude. The correlation between age and Conscientiousness is small and not significant. Click Analyze, Regression, Linear. Scoot the Cyberloafing variable into the Dependent box and Conscientiousness into the Independent(s) box.

3 3 Click Statistics. Select the statistics shown below. Continue. Click Plots. Select the plot shown below. Continue, OK. Look at the output. The Model Summary table reports the same value for Pearson r obtained with the correlation analysis, of course. The r 2 shows that our linear model explains 32% of the variance in cyberloafing. The adjusted R 2, also known as the shrunken R 2, is a relatively unbiased estimator of the population 2. For a bivariate regression it is computed as: 2 2 (1 r )( n 1) r shrunken 1. ( n 2) Model Summary b Model R R Square Adjusted R Square Std. Error of the Estimate a a. Predictors: (Constant), Conscientiousness b. Dependent Variable: Cyberloafing The regression coefficients are shown in a table labeled Coefficients. Coefficients a Model Unstandardized Coefficients Standardized t Sig. Coefficients B Std. Error Beta 1 (Constant) Conscientiousness

4 The general form of a bivariate regression equation is Y = a + bx. SPSS calls the Y variable the dependent variable and the X variable the independent variable. I think this notation is misleading, since regression analysis is frequently used with data collected by nonexperimental means, so there really are not independent and dependent variable. In Y = a + bx, a is the intercept (the predicted value for Y when X = 0) and b is the slope (the number of points that Y changes, on average, for each one point change in X. SPSS calls a the constant. The slope is given in the B column to the right of the name of the X variable. SPSS also gives the standardized slope (aka ), which for a bivariate regression is identical to the Pearson r. For the data at hand, the regression equation is cyberloafing = consciousness. The residuals statistics show that there no cases with a standardized residual beyond three standard deviations from zero. If there were, they would be cases where the predicted value was very far from the actual value and we would want to investigate such cases. The histogram shows that the residuals are approximately normally distributed, which is assumed when we use t or F to get a p value or a confidence interval. Let s now create a scatterplot. Click Graphs, Legacy Dialogs, Scatter/Dot, Simple Scatter, Define. Scoot Cyberloafing into the Y axis box and Conscientiousness into the X axis box. Click OK. 4 Go to the Output window and double click on the chart to open the chart editor. Click Elements, Fit Line at Total, Fit Method = Linear, Close.

5 You can also ask SPSS to draw confidence bands on the plot, for predicting the mean Y given X, or individual Y given X, or both (to get both, you have to apply the one, close the editor, open the editor again, apply the other). 5 You can also edit the shape, density, and color of the markers and the lines. While in the Chart Editor, you can Edit, Copy Chart and then paste the chart into Word. You can even ask SPSS

6 to put in a quadratic (Y = a +b 1 X + b 2 X 2 + error) or cubic (Y = a +b 1 X + b 2 X 2 +b 3 X 3 + error) regression line. 6 Construct a Confidence Interval for. Try the calculator at Vassar. Enter the value of r and sample size and click Calculate. Presenting the Results of a Correlation/Regression Analysis. Employees frequency of cyberloafing (CL) was found to be significantly, negatively correlated with their Conscientiousness (CO), CL = CO, r(n = 51) = -.563, p <.001, 95% CI [-.725, -.341]. Trivariate Analysis: Age as a Second Predictor Click Analyze, Regression, Linear. Scoot the Cyberloafing variable into the Dependent box and both Conscientiousness and Age into the Independents box. Click Statistics and check Part and Partial Correlations, Casewise Diagnostics, and Collinearity Diagnostics (Estimates and Model Fit should already be checked). Click Continue. Click Plots. Scoot *ZRESID into the Y box and *ZPRED into the X box. Check the Histogram box and then click Continue. Click Continue, OK. When you look at the output for this multiple regression, you see that the two predictor model does do significantly better than chance at predicting cyberloafing, F(2, 48) = 20.91, p <.001. The F in the ANOVA table tests the null hypothesis that the multiple correlation coefficient, R, is zero in the population. If that null hypothesis were true, then using the regression equation would be no better than just using the mean for cyberloafing as the predicted cyberloafing score for every person. Clearly we can predict cyberloafing significantly better with the regression equation rather than

7 7 without it, but do we really need the age variable in the model? Is this model significantly better than the model that had only Conscientiousness as a predictor? To answer that question, we need to look at the "Coefficients," which give us measures of the partial effect of each predictor, above and beyond the effect of the other predictor(s). The Regression Coefficients The regression equation gives us two unstandardized slopes, both of which are partial statistics. The amount by which cyberloafing changes for each one point increase in Conscientiousness, above and beyond any change associated with age, is -.779, and the amount by which cyberloafing changes for each one point increase in age, above and beyond any change associated with Conscientiousness, is The intercept, 64.07, is just a reference point, the predicted cyberloafing score for a person whose Conscientiousness and age are both zero (which are not even possible values). The "Standardized Coefficients" (usually called beta, ) are the slopes in standardized units -- that is, how many standard deviations does cyberloafing change for each one standard deviation increase in the predictor, above and beyond the effect of the other predictor(s). The regression equation represents a plane in three dimensional space (the three dimensions being cyberloafing, Conscientiousness, and age). If we plotted our data in three dimensional space, that plane would minimize the sum of squared deviations between the data and the plane. If we had a 3 rd predictor variable, then we would have four dimensions, each perpendicular to each other dimension, and we would be out in hyperspace. Tests of Significance The t testing the null hypothesis that the intercept is zero is of no interest, but those testing the partial slopes are. Conscientiousness does make a significant, unique, contribution towards predicting AR, t(48) = 4.759, p <.001. Likewise, age also makes a significant, unique, contribution, t(48) = 3.653, p =.001 Please note that the values for the partial coefficients that you get in a multiple regression are highly dependent on the context provided by the other variables in a model. If you get a small partial coefficient, that could mean that the predictor is not well associated with the dependent variable, or it could be due to the predictor just being highly redundant with one or more of the other variables in the model. Imagine that we were foolish enough to include, as a third predictor in our model, students score on the Conscientiousness and age variables added together. Assume that we made just a few minor errors when computing this sum. In this case, each of the predictors would be highly redundant with the other predictors, and all would have partial coefficients close to zero. Why did I specify that we made a few minor errors when computing the sum? Well, if we didn t, then there would be total redundancy (at least one of the predictor variables being a perfect linear combination of the other predictor variables), which causes the intercorrelation matrix among the predictors to be singular. Singular intercorrelation matrices cannot be inverted, and inversion of that matrix is necessary to complete the multiple regression analysis. In other words, the computer program would just crash. When predictor variables are highly (but not perfectly) correlated with one another, the program may warn you of multicollinearity. This problem is associated with a lack of stability of the regression coefficients. In this case, were you randomly to obtain another sample from the same population and repeat the analysis, there is a very good chance that the results (the estimated regression coefficients) would be very different. Multicollinearity Multicollinearity is a problem when for any predictor the R 2 between that predictor and the remaining predictors is very high. Upon request, SPSS will give you two transformations of the squared multiple correlation coefficients. One is tolerance, which is simply 1 minus that R 2. The second is VIF, the variance inflation factor, which is simply the reciprocal of the tolerance. Very low values of tolerance (.1 or less) indicate a problem. Very high values of VIF (10 or more, although

8 some would say 5 or even 4) indicate a problem. As you can see in the table below, we have no multicollinearity problem here. 8 Model 1 Coefficients a Collinearity Statistics Tolerance VIF Age Conscientiousness Partial and Semipartial Correlation Coefficients I am going to use a Venn diagram to help explain what squared partial and semipartial correlation coefficients are.. Look at the ballantine below. The top circle represents variance in cyberloafing, the right circle that in age, the left circle that in Conscientiousness. The overlap between circle Age and Cyberloaf, area A + B, represents the r 2 between cyberloafing and age. Area B + C represents the r 2 between cyberloafing and Conscientiousness. Area A + B + C + D represents all the variance in cyberloafing, and we standardize it to 1. Area A + B + C represents the variance in cyberloafing explained by our best weighted linear combination of age and Conscientiousness, 46.6% (R 2 ). The proportion of all of the variance in cyberloafing which is explained by age but not by Conscientiousness is equal to: A A A. A B C D 1 Area A represents the squared semipartial correlation for age (.149). Area C represents the squared semipartial correlation for Conscientiousness (.252). SPSS gives you the unsquared semipartial correlation coefficients, but calls them "part correlations." Although I generally prefer semipartial correlation coefficients, some persons report the partial correlation coefficients, which are provided by SPSS. The partial correlation coefficient will always be at least as large as the semipartial, and almost always larger. To treat it as a proportion, we obtain the squared partial correlation coefficient. In our Venn diagram, the squared partial C correlation coefficient for Conscientiousness is represented by the proportion. That is, of the C D variance in cyberloafing that is not explained by age, what proportion is explained by Conscientiousness? Or, put another way, if we already had age in our prediction model, by what proportion could we reduce the error variance if we added Conscientiousness to the model? If you consider that (C + D) is between 0 and 1, you should understand why the partial coefficient will be larger than the semipartial. If we take age back out of the model, the r 2 drops to.317. That drop, =.149, is the squared semipartial correlation coefficient for age. In other words, we can think of the squared

9 9 semipartial correlation coefficient as the amount by which the R 2 drops if we delete a predictor from the model. If we refer back to our Venn diagram, the R 2 is represented by the area A+B+C, and the redundancy between misanthropy and idealism by area B. The redundant area is counted (once) in the multiple R 2, but not in the partial statistics. Checking the Residuals For each subject, the residual is the subject s actual Y score minus the Y score as predicted from the regression solution. When we use t or F to test hypotheses about regression parameters or to construct confidence intervals, we assume that, in the population, those residuals are normally distributed and constant in variance. The histogram shows the marginal distribution of the residuals. We have assumed that this is normal. The plot of the standardized residuals (standardized difference between actual cyberloafing score and that predicted from the model) versus standardized predicted values allows you to evaluate the normality and homescedasticity assumptions made when testing the significance of the model and its parameters. Open the chart in the editor and click Options, Y-axis reference line to draw a horizontal line at residual = 0. If the normality assumption has been met, then a vertical column of residuals at any point on that line will be normally distributed. In that case, the density of the plotted symbols will be greatest near that line, and drop quickly away from the line, and will be symmetrically distributed on the two sides (upper versus lower) of the line. If the homoscedasticity assumption has been met, then the spread of the dots, in the vertical dimension, will be the same at any one point on that line as it is at any other point on that line. Thus, a residuals plot can be used, by the trained eye, to detect violations of the assumptions of the regression analysis. The trained eye can also detect, from the residual plot, patterns that suggest that the relationship between predictor and criterion is not linear, but rather curvilinear. Residuals can also be used to identify any cases with large residuals that is, cases where the actual Y differs greatly from the predicted Y. Such cases are suspicious and should be investigated. They may represent for which the data were incorrectly entered into the data file or for which there was some problem during data collection. They may represent cases that are not properly considered part of the population to which we wish to generalize our results. One should

10 investigate cases where the standardized residual has an absolute value greater than 3 (some would say 2). 10 Importance of Looking at a Scatterplot Before You Analyze Your Data It is very important to look at a plot of your data prior to conducting a linear correlation/regression analysis. Close the Cyberloaf_Consc_Age.sav file and bring Corr_Regr.sav into SPSS. From the Data Editor, click Data, Split File, Compare Groups, and scoot Set into the "Organize output by groups" box. Click OK. Next, click Analyze, Regression, Linear. Scoot Y into the Dependent box and X into the Independent(s) box. Click Stat and ask for Descriptives (Estimates and Model Fit should already be selected). Click Continue, OK. Next, click Graphs, Scatter, Simple. Identify Y as the Y variable and X as the X variable. Click OK. Look at the output. For each of the data sets, the mean on X is 9, the mean on Y is 7.5, the standard deviation for X is 3.32, the standard deviation for Y is 2.03, the r is.816, and the regression equation is Y = 3 +.5X but now look at the plots. In Set A, we have a plot that looks about like what we would expect for a moderate to large positive correlation. In set B we see that the relationship is really curvilinear, and that the data could be fit much better with a curved line (a polynomial function, quadratic, would fit them well). In Set C we see that, with the exception of one outlier, the relationship is nearly perfect linear. In set D we see that the relationship would be zero if we eliminated the one extreme outlier -- with no variance in X, there can be no covariance with Y. Moderation Analysis Sometimes a third variable moderates (alters) the relationship between two (or more) variables of interest. You are about to learn how to conduct a simple moderation analysis. One day as I sat in the living room, watching the news on TV, there was a story about some demonstration by animal rights activists. I found myself agreeing with them to a greater extent than I normally do. While pondering why I found their position more appealing than usual that evening, I noted that I was also in a rather misanthropic mood that day. That suggested to me that there might be an association between misanthropy and support for animal rights. When evaluating the ethical status of an action that does some harm to a nonhuman animal, I generally do a cost/benefit analysis, weighing the benefit to humankind against the cost of harm done to the nonhuman. When doing such an analysis, if one does not think much of humankind (is misanthropic), e is unlikely to be able to justify harming nonhumans. To the extent that one does not like humans, one will not be likely to think that benefits to humans can justify doing harm to nonhumans. I decided to investigate the relationship between misanthropy and support of animal rights.

12 measures how little scatter there is around the regression line (error in prediction), not how steep the regression line is. 12 On the left, we can see that the slope is the same for the relationship plotted with blue o s and that plotted with red x s, but there is more error in prediction (a smaller Pearson r ) with the blue o s. For the blue data, the effect of extraneous variables on the predicted variable is greater than it is with the red data. On the right, we can see that the slope is clearly higher with the red x s than with the blue o s, but the Pearson r is about the same for both sets of data. We can predict equally well in both groups, but the Y variable increases much more rapidly with the X variable in the red group than in the blue. Placing a Confidence Interval on Multiple R or R 2 Please see my document Putting Confidence Intervals on R 2 or R. Presenting the Results of a Multiple Linear Correlation/Regression Analysis Please read the article at and pay special attention to how the results of the multiple regression analyses were presented, including Tables 3 and 4. This is the style I would expect you to use when presenting the results of a multiple regression were such an analysis to be on the an assignment or examination. Annotated Output for This Lesson Return to my SPSS Lessons page More Lessons on Multiple Regression Multiple Regression With SAS Producing and Interpreting Residuals Plots in SPSS Copyright 2016, Karl L. Wuensch - All rights reserved.

### Chapter 23. Inferences for Regression

Chapter 23. Inferences for Regression Topics covered in this chapter: Simple Linear Regression Simple Linear Regression Example 23.1: Crying and IQ The Problem: Infants who cry easily may be more easily

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### Premaster Statistics Tutorial 4 Full solutions

Premaster Statistics Tutorial 4 Full solutions Regression analysis Q1 (based on Doane & Seward, 4/E, 12.7) a. Interpret the slope of the fitted regression = 125,000 + 150. b. What is the prediction for

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### Chapter 13 Introduction to Linear Regression and Correlation Analysis

Chapter 3 Student Lecture Notes 3- Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing

### Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.

Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.

### Exercise 1.12 (Pg. 22-23)

Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.

### Chapter 7: Simple linear regression Learning Objectives

Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -

### January 26, 2009 The Faculty Center for Teaching and Learning

THE BASICS OF DATA MANAGEMENT AND ANALYSIS A USER GUIDE January 26, 2009 The Faculty Center for Teaching and Learning THE BASICS OF DATA MANAGEMENT AND ANALYSIS Table of Contents Table of Contents... i

### STAT 350 Practice Final Exam Solution (Spring 2015)

PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects

### Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

### Chapter 9 Descriptive Statistics for Bivariate Data

9.1 Introduction 215 Chapter 9 Descriptive Statistics for Bivariate Data 9.1 Introduction We discussed univariate data description (methods used to eplore the distribution of the values of a single variable)

### SPSS TUTORIAL & EXERCISE BOOK

UNIVERSITY OF MISKOLC Faculty of Economics Institute of Business Information and Methods Department of Business Statistics and Economic Forecasting PETRA PETROVICS SPSS TUTORIAL & EXERCISE BOOK FOR BUSINESS

### 2013 MBA Jump Start Program. Statistics Module Part 3

2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just

### Chapter 7: Modeling Relationships of Multiple Variables with Linear Regression

Chapter 7: Modeling Relationships of Multiple Variables with Linear Regression Overview Chapters 5 and 6 examined methods to test relationships between two variables. Many research projects, however, require

### SPSS-Applications (Data Analysis)

CORTEX fellows training course, University of Zurich, October 2006 Slide 1 SPSS-Applications (Data Analysis) Dr. Jürg Schwarz, juerg.schwarz@schwarzpartners.ch Program 19. October 2006: Morning Lessons

### Using R for Linear Regression

Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional

### Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

### SPSS for Exploratory Data Analysis Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav)

Data used in this guide: studentp.sav (http://people.ysu.edu/~gchang/stat/studentp.sav) Organize and Display One Quantitative Variable (Descriptive Statistics, Boxplot & Histogram) 1. Move the mouse pointer

### Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011

Chicago Booth BUSINESS STATISTICS 41000 Final Exam Fall 2011 Name: Section: I pledge my honor that I have not violated the Honor Code Signature: This exam has 34 pages. You have 3 hours to complete this

### An analysis appropriate for a quantitative outcome and a single quantitative explanatory. 9.1 The model behind linear regression

Chapter 9 Simple Linear Regression An analysis appropriate for a quantitative outcome and a single quantitative explanatory variable. 9.1 The model behind linear regression When we are examining the relationship

### The Chi-Square Test. STAT E-50 Introduction to Statistics

STAT -50 Introduction to Statistics The Chi-Square Test The Chi-square test is a nonparametric test that is used to compare experimental results with theoretical models. That is, we will be comparing observed

### Answer: C. The strength of a correlation does not change if units change by a linear transformation such as: Fahrenheit = 32 + (5/9) * Centigrade

Statistics Quiz Correlation and Regression -- ANSWERS 1. Temperature and air pollution are known to be correlated. We collect data from two laboratories, in Boston and Montreal. Boston makes their measurements

### Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

### MINITAB ASSISTANT WHITE PAPER

MINITAB ASSISTANT WHITE PAPER This paper explains the research conducted by Minitab statisticians to develop the methods and data checks used in the Assistant in Minitab 17 Statistical Software. One-Way

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### Factor Analysis. Principal components factor analysis. Use of extracted factors in multivariate dependency models

Factor Analysis Principal components factor analysis Use of extracted factors in multivariate dependency models 2 KEY CONCEPTS ***** Factor Analysis Interdependency technique Assumptions of factor analysis

### Introduction to Principal Component Analysis: Stock Market Values

Chapter 10 Introduction to Principal Component Analysis: Stock Market Values The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from

### Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases:

Profile Analysis Introduction Profile analysis is the multivariate equivalent of repeated measures or mixed ANOVA. Profile analysis is most commonly used in two cases: ) Comparing the same dependent variables

### False. Model 2 is not a special case of Model 1, because Model 2 includes X5, which is not part of Model 1. What she ought to do is estimate

Sociology 59 - Research Statistics I Final Exam Answer Key December 6, 00 Where appropriate, show your work - partial credit may be given. (On the other hand, don't waste a lot of time on excess verbiage.)

### Simple Predictive Analytics Curtis Seare

Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use

### " Y. Notation and Equations for Regression Lecture 11/4. Notation:

Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through

### Summarizing and Displaying Categorical Data

Summarizing and Displaying Categorical Data Categorical data can be summarized in a frequency distribution which counts the number of cases, or frequency, that fall into each category, or a relative frequency

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Introduction to Regression and Data Analysis

Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

### Moderation. Moderation

Stats - Moderation Moderation A moderator is a variable that specifies conditions under which a given predictor is related to an outcome. The moderator explains when a DV and IV are related. Moderation

### An SPSS companion book. Basic Practice of Statistics

An SPSS companion book to Basic Practice of Statistics SPSS is owned by IBM. 6 th Edition. Basic Practice of Statistics 6 th Edition by David S. Moore, William I. Notz, Michael A. Flinger. Published by

### MATH 140 Lab 4: Probability and the Standard Normal Distribution

MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### Introduction to. Hypothesis Testing CHAPTER LEARNING OBJECTIVES. 1 Identify the four steps of hypothesis testing.

Introduction to Hypothesis Testing CHAPTER 8 LEARNING OBJECTIVES After reading this chapter, you should be able to: 1 Identify the four steps of hypothesis testing. 2 Define null hypothesis, alternative

### CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA

We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical

T O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these

### Education & Training Plan. Accounting Math Professional Certificate Program with Externship

Office of Professional & Continuing Education 301 OD Smith Hall Auburn, AL 36849 http://www.auburn.edu/mycaa Contact: Shavon Williams 334-844-3108; szw0063@auburn.edu Auburn University is an equal opportunity

### Descriptive statistics; Correlation and regression

Descriptive statistics; and regression Patrick Breheny September 16 Patrick Breheny STA 580: Biostatistics I 1/59 Tables and figures Descriptive statistics Histograms Numerical summaries Percentiles Human

### South Carolina College- and Career-Ready (SCCCR) Probability and Statistics

South Carolina College- and Career-Ready (SCCCR) Probability and Statistics South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR)

### 5 Correlation and Data Exploration

5 Correlation and Data Exploration Correlation In Unit 3, we did some correlation analyses of data from studies related to the acquisition order and acquisition difficulty of English morphemes by both

### Data analysis process

Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis

### Using SPSS, Chapter 2: Descriptive Statistics

1 Using SPSS, Chapter 2: Descriptive Statistics Chapters 2.1 & 2.2 Descriptive Statistics 2 Mean, Standard Deviation, Variance, Range, Minimum, Maximum 2 Mean, Median, Mode, Standard Deviation, Variance,

### 2. Simple Linear Regression

Research methods - II 3 2. Simple Linear Regression Simple linear regression is a technique in parametric statistics that is commonly used for analyzing mean response of a variable Y which changes according

### Diagrams and Graphs of Statistical Data

Diagrams and Graphs of Statistical Data One of the most effective and interesting alternative way in which a statistical data may be presented is through diagrams and graphs. There are several ways in

### Chapter 7 Section 7.1: Inference for the Mean of a Population

Chapter 7 Section 7.1: Inference for the Mean of a Population Now let s look at a similar situation Take an SRS of size n Normal Population : N(, ). Both and are unknown parameters. Unlike what we used

### Multiple Regression. Page 24

Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)

### Assumptions. Assumptions of linear models. Boxplot. Data exploration. Apply to response variable. Apply to error terms from linear model

Assumptions Assumptions of linear models Apply to response variable within each group if predictor categorical Apply to error terms from linear model check by analysing residuals Normality Homogeneity

### Chapter 2 Statistical Foundations: Descriptive Statistics

Chapter 2 Statistical Foundations: Descriptive Statistics 20 Chapter 2 Statistical Foundations: Descriptive Statistics Presented in this chapter is a discussion of the types of data and the use of frequency

### Mgmt 469. Regression Basics. You have all had some training in statistics and regression analysis. Still, it is useful to review

Mgmt 469 Regression Basics You have all had some training in statistics and regression analysis. Still, it is useful to review some basic stuff. In this note I cover the following material: What is a regression

### Regression and Correlation

Regression and Correlation Topics Covered: Dependent and independent variables. Scatter diagram. Correlation coefficient. Linear Regression line. by Dr.I.Namestnikova 1 Introduction Regression analysis

### Descriptive statistics Statistical inference statistical inference, statistical induction and inferential statistics

Descriptive statistics is the discipline of quantitatively describing the main features of a collection of data. Descriptive statistics are distinguished from inferential statistics (or inductive statistics),

### ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS

DATABASE MARKETING Fall 2015, max 24 credits Dead line 15.10. ASSIGNMENT 4 PREDICTIVE MODELING AND GAINS CHARTS PART A Gains chart with excel Prepare a gains chart from the data in \\work\courses\e\27\e20100\ass4b.xls.

### COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES.

277 CHAPTER VI COMPARISONS OF CUSTOMER LOYALTY: PUBLIC & PRIVATE INSURANCE COMPANIES. This chapter contains a full discussion of customer loyalty comparisons between private and public insurance companies

### LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, AND COMPUTER SCIENCE MAT 119 STATISTICS AND ELEMENTARY ALGEBRA 5 Lecture Hours, 2 Lab Hours, 3 Credits Pre-

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Descriptive Statistics

Descriptive Statistics Descriptive statistics consist of methods for organizing and summarizing data. It includes the construction of graphs, charts and tables, as well various descriptive measures such

### Algebra 1 Course Information

Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

### USING SPSS FOR DESCRIPTIVE ANALYSIS

USING SPSS FOR DESCRIPTIVE ANALYSIS This handout is intended as a quick overview of how you can use SPSS to conduct various simple analyses. You should find SPSS on all college-owned PCs (e.g., library),

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### ITS Training Class Charts and PivotTables Using Excel 2007

When you have a large amount of data and you need to get summary information and graph it, the PivotTable and PivotChart tools in Microsoft Excel will be the answer. The data does not need to be in one

### Data analysis and regression in Stata

Data analysis and regression in Stata This handout shows how the weekly beer sales series might be analyzed with Stata (the software package now used for teaching stats at Kellogg), for purposes of comparing

### CRLS Mathematics Department Algebra I Curriculum Map/Pacing Guide

Curriculum Map/Pacing Guide page 1 of 14 Quarter I start (CP & HN) 170 96 Unit 1: Number Sense and Operations 24 11 Totals Always Include 2 blocks for Review & Test Operating with Real Numbers: How are

### Algebra 1 Course Title

Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

### Illustration (and the use of HLM)

Illustration (and the use of HLM) Chapter 4 1 Measurement Incorporated HLM Workshop The Illustration Data Now we cover the example. In doing so we does the use of the software HLM. In addition, we will

### The importance of graphing the data: Anscombe s regression examples

The importance of graphing the data: Anscombe s regression examples Bruce Weaver Northern Health Research Conference Nipissing University, North Bay May 30-31, 2008 B. Weaver, NHRC 2008 1 The Objective

### DISCRIMINANT FUNCTION ANALYSIS (DA)

DISCRIMINANT FUNCTION ANALYSIS (DA) John Poulsen and Aaron French Key words: assumptions, further reading, computations, standardized coefficents, structure matrix, tests of signficance Introduction Discriminant

### Introduction to Linear Regression

14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

Table of Contents Preface Chapter 1: Introduction 1-1 Opening an SPSS Data File... 2 1-2 Viewing the SPSS Screens... 3 o Data View o Variable View o Output View 1-3 Reading Non-SPSS Files... 6 o Convert

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Mathematics. Probability and Statistics Curriculum Guide. Revised 2010

Mathematics Probability and Statistics Curriculum Guide Revised 2010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning instruction

### TRINITY COLLEGE. Faculty of Engineering, Mathematics and Science. School of Computer Science & Statistics

UNIVERSITY OF DUBLIN TRINITY COLLEGE Faculty of Engineering, Mathematics and Science School of Computer Science & Statistics BA (Mod) Enter Course Title Trinity Term 2013 Junior/Senior Sophister ST7002

### Statgraphics Centurion XVII (Version 17)

Statgraphics Centurion XVII (currently in beta test) is a major upgrade to Statpoint's flagship data analysis and visualization product. It contains 32 new statistical procedures and significant upgrades

### 5. Linear Regression

5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4

### Common Core Unit Summary Grades 6 to 8

Common Core Unit Summary Grades 6 to 8 Grade 8: Unit 1: Congruence and Similarity- 8G1-8G5 rotations reflections and translations,( RRT=congruence) understand congruence of 2 d figures after RRT Dilations

### Analyzing Intervention Effects: Multilevel & Other Approaches. Simplest Intervention Design. Better Design: Have Pretest

Analyzing Intervention Effects: Multilevel & Other Approaches Joop Hox Methodology & Statistics, Utrecht Simplest Intervention Design R X Y E Random assignment Experimental + Control group Analysis: t

### 7 Time series analysis

7 Time series analysis In Chapters 16, 17, 33 36 in Zuur, Ieno and Smith (2007), various time series techniques are discussed. Applying these methods in Brodgar is straightforward, and most choices are

### Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction

Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a

### An analysis method for a quantitative outcome and two categorical explanatory variables.

Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that

### 1/27/2013. PSY 512: Advanced Statistics for Psychological and Behavioral Research 2

PSY 512: Advanced Statistics for Psychological and Behavioral Research 2 Introduce moderated multiple regression Continuous predictor continuous predictor Continuous predictor categorical predictor Understand

### DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9

DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,

: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

### Dimensionality Reduction: Principal Components Analysis

Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely

### Introduction to Linear Regression

14. Regression A. Introduction to Simple Linear Regression B. Partitioning Sums of Squares C. Standard Error of the Estimate D. Inferential Statistics for b and r E. Influential Observations F. Regression

### COMMON CORE STATE STANDARDS FOR

COMMON CORE STATE STANDARDS FOR Mathematics (CCSSM) High School Statistics and Probability Mathematics High School Statistics and Probability Decisions or predictions are often based on data numbers in

### UNIT 1: COLLECTING DATA

Core Probability and Statistics Probability and Statistics provides a curriculum focused on understanding key data analysis and probabilistic concepts, calculations, and relevance to real-world applications.

### What is the purpose of this document? What is in the document? How do I send Feedback?

This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Statistics

### Using Excel for Statistical Analysis

Using Excel for Statistical Analysis You don t have to have a fancy pants statistics package to do many statistical functions. Excel can perform several statistical tests and analyses. First, make sure