# Using the ac Method to Factor

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error method to factor trinomials. We also learned that not all trinomials can be factored. In this section we will look at the same kinds of trinomials, but in a slightly different context. We first determine whether a trinomial is factorable. We then use the results of that analysis to factor the trinomial. Some students prefer the trial-and-error method for factoring because it is generally faster and more intuitive. Other students prefer the method of this section (called the ac method) because it yields the answer in a systematic way. We will let you determine which method you prefer. We will begin by looking at some factored trinomials. Example 1 Matching Trinomials and Their Factors Determine which of the following are true statements. (a) x 2 2x 8 (x 4)(x 2) This is a true statement. Using the FOIL method, we see that (x 4)(x 2) x 2 2x 4x 8 x 2 2x 8 (b) x 2 6x 5 (x 2)(x 3) This is not a true statement. (x 2)(x 3) x 2 3x 2x 6 x 2 5x 6 (c) x 2 5x 14 (x 2)(x 7) This is true: (x 2)(x 7) x 2 7x 2x 14 x 2 5x 14 (d) x 2 8x 15 (x 5)(x 3) This is false: (x 5)(x 3) x 2 3x 5x 15 x 2 8x 15 CHECK YOURSELF 1 Determine which of the following are true statements. (a) 2x 2 2x 3 (2x 3)(x 1) (b) 3x 2 11x 4 (3x 1)(x 4) (c) 2x 2 7x 3 (x 3)(2x 1) 363

2 364 CHAPTER 4 FACTORING The first step in learning to factor a trinomial is to identify its coefficients. So that we are consistent, we first write the trinomial in standard ax 2 bx c form, then label the three coefficients as a, b, and c. Example 2 Identifying the Coefficients of ax 2 bx c First, when necessary, rewrite the trinomial in ax 2 bx c form. Then give the values for a, b, and c, in which a is the coefficient of the x 2 term, b is the coefficient of the x term, and c is the constant. (a) x 2 3x 18 a 1 b 3 c 18 NOTE Notice that the negative sign is attached to the coefficients. (b) x 2 24x 23 a 1 b 24 c 23 (c) x x First rewrite the trinomial in descending order: x 2 11x 8 a 1 b 11 c 8 CHECK YOURSELF 2 First, when necessary, rewrite the trinomials in ax 2 bx c form. Then label a, b, and c, in which a is the coefficient of the x 2 term, b is the coefficient of the x term, and c is the constant. (a) x 2 5x 14 (b) x 2 18x 17 (c) x 6 2x 2 Not all trinomials can be factored. To discover if a trinomial is factorable, we try the ac test. Definitions: The ac Test A trinomial of the form ax 2 bx c is factorable if (and only if) there are two integers, m and n, such that ac mn and b m n In Example 3 we will look for m and n to determine whether each trinomial is factorable.

3 USING THE ac METHOD TO FACTOR SECTION Example 3 Using the ac Test Use the ac test to determine which of the following trinomials can be factored. Find the values of m and n for each trinomial that can be factored. (a) x 2 3x 18 First, we find the values of a, b, and c, so that we can find ac. a 1 b 3 c 18 ac 1( 18) 18 and b 3 Then, we look for two numbers, m and n, such that mn ac, and m n b. In this case, that means mn 18 and m n 3 We now look at all pairs of integers with a product of 18. We then look at the sum of each pair of integers, looking for a sum of 3. mn 1( 18) 18 2( 9) 18 3( 6) 18 6( 3) 18 9( 2) 18 18( 1) 18 m n 1 ( 18) 17 2 ( 9) 7 3 ( 6) 3 We need look no further than 3 and 6. NOTE We could have chosen m 6 and n 3 as well. 3 and 6 are the two integers with a product of ac and a sum of b. We can say that m 3 and n 6 Because we found values for m and n, we know that x 2 3x 18 is factorable. (b) x 2 24x 23 We find that a 1 b 24 c 23 ac 1(23) 23 and b 24 So mn 23 and m n 24 We now calculate integer pairs, looking for two numbers with a product of 23 and a sum of 24. mn m n 1(23) ( 23) 23 1 ( 23) 24 m 1 and n 23 So, x 2 24x 23 is factorable.

4 366 CHAPTER 4 FACTORING (c) x 2 11x 8 We find that a 1, b 11, and c 8. Therefore, ac 8 and b 11. Thus mn 8 and m n 11. We calculate integer pairs: mn m n 1(8) (4) ( 8) 8 1 ( 8) 9 2( 4) 8 2 ( 4) 6 There are no other pairs of integers with a product of 8, and none of these pairs has a sum of 11. The trinomial x 2 11x 8 is not factorable. (d) 2x 2 7x 15 We find that a 2, b 7, and c 15. Therefore, ac 2( 15) 30 and b 7. Thus mn 30 and m n 7. We calculate integer pairs: mn m n 1( 30) 30 1 ( 30) 29 2( 15) 30 2 ( 15) 13 3( 10) 30 3 ( 10) 7 5( 6) 30 5 ( 6) 1 6( 5) 30 6 ( 5) 1 10( 3) ( 3) 7 There is no need to go any further. We see that 10 and 3 have a product of 30 and a sum of 7, so m 10 and n 3 Therefore, 2x 2 7x 15 is factorable. It is not always necessary to evaluate all the products and sums to determine whether a trinomial is factorable. You may have noticed patterns and shortcuts that make it easier to find m and n. By all means, use them to help you find m and n. This is essential in mathematical thinking. You are taught a mathematical process that will always work for solving a problem. Such a process is called an algorithm. It is very easy to teach a computer to use an algorithm. It is very difficult (some would say impossible) for a computer to have insight. Shortcuts that you discover are insights. They may be the most important part of your mathematical education. CHECK YOURSELF 3 Use the ac test to determine which of the following trinomials can be factored. Find the values of m and n for each trinomial that can be factored. (a) x 2 7x 12 (b) x 2 5x 14 (c) 3x 2 6x 7 (d) 2x 2 x 6

5 USING THE ac METHOD TO FACTOR SECTION So far we have used the results of the ac test only to determine whether a trinomial is factorable. The results can also be used to help factor the trinomial. Example 4 Using the Results of the ac Test to Factor Rewrite the middle term as the sum of two terms, then factor by grouping. (a) x 2 3x 18 We find that a 1, b 3, and c 18, so ac 18 and b 3. We are looking for two numbers, m and n, where mn 18 and m n 3. In Example 3, part a, we looked at every pair of integers whose product (mn) was 18, to find a pair that had a sum (m n) of 3. We found the two integers to be 3 and 6, because 3( 6) 18 and 3 ( 6) 3, so m 3 and n 6. We now use that result to rewrite the middle term as the sum of 3x and 6x. x 2 3x 6x 18 We then factor by grouping: x 2 3x 6x 18 x(x 3) 6(x 3) (x 3)(x 6) (b) x 2 24x 23 We use the results from Example 3, part b, in which we found m 1 and n 23, to rewrite the middle term of the equation. x 2 24x 23 x 2 x 23x 23 Then we factor by grouping: x 2 x 23x 23 (x 2 x) (23x 23) x(x 1) 23(x 1) (x 1)(x 23) (c) 2x 2 7x 15 From Example 3, part d, we know that this trinomial is factorable, and m 10 and n 3. We use that result to rewrite the middle term of the trinomial. 2x 2 7x 15 2x 2 10x 3x 15 (2x 2 10x) (3x 15) 2x(x 5) 3(x 5) (x 5)(2x 3) Careful readers will note that we did not ask you to factor Example 3, part c, x 2 11x 8. Recall that, by the ac method, we determined that this trinomial was not factorable. CHECK YOURSELF 4 Use the results of Check Yourself 3 to rewrite the middle term as the sum of two terms, then factor by grouping. (a) x 2 7x 12 (b) x 2 5x 14 (c) 2x 2 x 6

6 368 CHAPTER 4 FACTORING Let s look at some examples that require us to first find m and n, then factor the trinomial. Example 5 Rewriting Middle Terms to Factor Rewrite the middle term as the sum of two terms, then factor by grouping. (a) 2x 2 13x 7 We find that a 2, b 13, and c 7, so mn ac 14 and m n b 13. Therefore, mn 1( 14) 14 m n 1 ( 14) 13 So, m 1 and n 14. We rewrite the middle term of the trinomial as follows: 2x 2 13x 7 2x 2 x 14x 7 (2x 2 x) (14x 7) x(2x 1) 7(2x 1) (2x 1)(x 7) (b) 6x 2 5x 6 We find that a 6, b 5, and c 6, so mn ac 36 and m n b 5. mn 1( 36) 36 2( 18) 36 3( 12) 36 4( 9) 36 m n 1 ( 36) 35 2 ( 18) 16 3 ( 12) 9 4 ( 9) 5 So, m 4 and n 9. We rewrite the middle term of the trinomial: 6x 2 5x 6 6x 2 4x 9x 6 (6x 2 4x) (9x 6) 2x(3x 2) 3(3x 2) (3x 2)(2x 3) CHECK YOURSELF 5 Rewrite the middle term as the sum of two terms, then factor by grouping. (a) 2x 2 7x 15 (b) 6x 2 5x 4

7 USING THE ac METHOD TO FACTOR SECTION Be certain to check trinomials and binomial factors for any common monomial factor. (There is no common factor in the binomial unless it is also a common factor in the original trinomial.) Example 6 shows the removal of monomial factors. Example 6 Removing Common Factors Completely factor the trinomial. 3x 2 12x 15 We could first remove the common factor of 3: 3x 2 12x 15 3(x 2 4x 5) Finding m and n for the trinomial x 2 4x 5 yields mn 5 and m n 4. mn m n 1( 5) 5 1 ( 5) 4 5( 1) 5 1 (5) 4 So, m 5 and n 1. This gives us 3x 2 12x 15 3(x 2 4x 5) 3(x 2 5x x 5) 3[(x 2 5x) (x 5)] 3[x(x 5) (x 5)] 3[(x 5)(x 1)] 3(x 5)(x 1) CHECK YOURSELF 6 Completely factor the trinomial. 6x 3 3x 2 18x CHECK YOURSELF ANSWERS 1. (a) False; (b) true; (c) true 2. (a) a 1, b 5, c 14; (b) a 1, b 18, c 17; (c) a 2, b 1, c 6 3. (a) Factorable, m 3, n 4; (b) factorable, m 7, n 2; (c) not factorable; (d) factorable, m 4, n 3 4. (a) x 2 3x 4x 12 (x 3)(x 4); (b) x 2 7x 2x 14 (x 7)(x 2); (c) 2x 2 4x 3x 6 (2x 3)(x 2) 5. (a) 2x 2 10x 3x 15 (2x 3)(x 5); (b) 6x 2 8x 3x 4 (3x 4)(2x 1) 6. 3x(2x 3)(x 2)

8 370 CHAPTER 4 FACTORING Not all possible product pairs need to be tried to find m and n. A look at the sign pattern of the trinomial will eliminate many of the possibilities. Assuming the leading coefficient is positive, there are four possible sign patterns. Pattern Example Conclusion 1. b and c are both positive. 2x 2 13x 15 m and n must both be positive. 2. b is negative and c is positive. x 2 7x 12 m and n must both be negative. 3. b is positive and c is negative. x 2 3x 10 m and n are of opposite signs. (The value with the larger absolute value is positive.) 4. b is negative and c is negative. x 2 3x 10 m and n are of opposite signs. (The value with the larger absolute value is negative.)

9 Name 4.6 Exercises Section Date State whether each of the following is true or false. 1. x 2 2x 3 (x 3)(x 1) 2. y 2 3y 18 ( y 6)( y 3) ANSWERS x 2 10x 24 (x 6)(x 4) 4. a 2 9a 36 (a 12)(a 4) x 2 16x 64 (x 8)(x 8) 6. w 2 12w 45 (w 9)(w 5) y 2 10y 1 (5y 1)(5y 1) x 2 5xy 4y 2 (6x 2y)(x 2y) p 2 pq 3q 2 (5p 3q)(2p q) a 2 13a 6 (2a 3)(3a 2) For each of the following trinomials, label a, b, and c. 11. x 2 4x x 2 5x x 2 3x x 2 7x x 2 5x x 2 7x x 2 8x x 2 7x x 2 5x x 2 9x

10 ANSWERS Use the ac test to determine which of the following trinomials can be factored. Find the values of m and n for each trinomial that can be factored. 21. x 2 x x 2 2x x 2 x x 2 3x x 2 5x x 2 x x 2 5x x 2 14x x 2 19x x 2 5x Rewrite the middle term as the sum of two terms and then factor by grouping. 31. x 2 6x x 2 3x x 2 9x x 2 8x x 2 2x x 2 6x 55 Rewrite the middle term as the sum of two terms and then factor completely. 37. x 2 8x x 2 11x x 2 11x y 2 y s 2 13s b 2 14b a 2 2a x 2 17x

11 ANSWERS 45. x 2 8x x 2 7x x 2 6x x 2 11x x 2 14x s 2 4s p 2 10p x 2 11x x 2 5x a 2 2a c 2 19c t 2 4t n 2 5n x 2 16x x 2 7xy 10y x 2 8xy 12y a 2 ab 42b m 2 8mn 16n x 2 13xy 40y r 2 9rs 36s x 2 19x x 2 7x x 2 x w 2 19w m 2 25m x 2 6x x 2 12x x 2 23x

12 ANSWERS x 2 8x a 2 40a y 2 7y x 2 11x x 2 27x v 2 5v x 2 3xy y x 2 5xy 2y a 2 8ab 4b x 2 7xy 6y x 2 4xy 5y x 2 32xy 15y m 2 17mn 12n x 2 xy 6y a 2 3ab 5b q 2 17qr 6r x 2 4xy 4y b 2 80bc 64c x 2 20x x 2 18x m 2 12m x 2 20x 6 374

13 ANSWERS r 2 21rs 6s x 2 5xy 30y x 3 2x 2 4x 98. 2y 3 y 2 3y y 4 5y 3 3y z 3 18z 2 10z a 3 66a 2 18a n 4 22n 3 12n p 2 30pq 21q x 2 2xy 24y 2 Find a positive value for k for which each of the following can be factored x 2 kx x 2 kx x 2 kx x 2 kx x 2 kx x 2 kx x 2 3x k 112. x 2 5x k a x 2 2x k 114. x 2 x k Solve. Getting Ready for Section 4.7 [Section 2.3] (a) x 5 0 (b) 2x 1 0 (c) 3x 2 0 (d) x 4 0 (e) 7 x 0 (f) 9 4x 0 b. c. d. e. f. 375

14 Answers 1. True 3. False 5. True 7. False 9. True 11. a 1, b 4, c a 1, b 3, c a 3, b 5, c a 4, b 8, c a 3, b 5, c Factorable; 3, Not factorable 25. Factorable; 3, Factorable; 6, Factorable; 15, x 2 2x 4x 8; (x 2)(x 4) 33. x 2 5x 4x 20; (x 5)(x 4) 35. x 2 9x 7x 63; (x 9)(x 7) 37. (x 3)(x 5) 39. (x 4)(x 7) 41. (s 10)(s 3) 43. (a 8)(a 6) 45. (x 1)(x 7) 47. (x 10)(x 4) 49. (x 7)(x 7) 51. (p 12)(p 2) 53. (x 11)(x 6) 55. (c 4)(c 15) 57. (n 10)(n 5) 59. (x 2y)(x 5y) 61. (a 7b)(a 6b) 63. (x 5y)(x 8y) 65. (3x 2)(2x 5) 67. (5x 3)(3x 2) 69. (6m 5)(m 5) 71. (3x 2)(3x 2) 73. (6x 5)(2x 3) 75. (3y 2)(y 3) 77. (8x 5)(x 4) 79. (2x y)(x y) 81. (5a 2b)(a 2b) 83. (9x 5y)(x y) 85. (3m 4n)(2m 3n) 87. (12a 5b)(3a b) 89. (x 2y) (2x 3)(2x 1) 93. 4(2m 1)(m 1) 95. 3(5r 2s)(r s) 97. 2x(x 2)(x 1) 99. y 2 (2y 3)(y 1) a(3a 1)(2a 3) (p q)(3p 7q) or or 10 or , 8, 15, 24,... a. x 5 b. x 1 c. x 2 d. x 4 e. x 7 f. x

### Factoring Trinomials: The ac Method

6.7 Factoring Trinomials: The ac Method 6.7 OBJECTIVES 1. Use the ac test to determine whether a trinomial is factorable over the integers 2. Use the results of the ac test to factor a trinomial 3. For

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1

5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### Factoring Trinomials of the Form x 2 bx c

4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

### Factoring. Factoring Monomials Monomials can often be factored in more than one way.

Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Factoring Special Polynomials

6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

### FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c

Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".

### Difference of Squares and Perfect Square Trinomials

4.4 Difference of Squares and Perfect Square Trinomials 4.4 OBJECTIVES 1. Factor a binomial that is the difference of two squares 2. Factor a perfect square trinomial In Section 3.5, we introduced some

### 1.3 Polynomials and Factoring

1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.

SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

### NSM100 Introduction to Algebra Chapter 5 Notes Factoring

Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

### Mth 95 Module 2 Spring 2014

Mth 95 Module Spring 014 Section 5.3 Polynomials and Polynomial Functions Vocabulary of Polynomials A term is a number, a variable, or a product of numbers and variables raised to powers. Terms in an expression

### The Greatest Common Factor; Factoring by Grouping

296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder).

Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### 7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content

7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between

### 6.3 FACTORING ax 2 bx c WITH a 1

290 (6 14) Chapter 6 Factoring e) What is the approximate maximum revenue? f) Use the accompanying graph to estimate the price at which the revenue is zero. y Revenue (thousands of dollars) 300 200 100

### expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials

Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting

### This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

### Name Intro to Algebra 2. Unit 1: Polynomials and Factoring

Name Intro to Algebra 2 Unit 1: Polynomials and Factoring Date Page Topic Homework 9/3 2 Polynomial Vocabulary No Homework 9/4 x In Class assignment None 9/5 3 Adding and Subtracting Polynomials Pg. 332

### Unit 3 Polynomials Study Guide

Unit Polynomials Study Guide 7-5 Polynomials Part 1: Classifying Polynomials by Terms Some polynomials have specific names based upon the number of terms they have: # of Terms Name 1 Monomial Binomial

### Operations with Algebraic Expressions: Multiplication of Polynomials

Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### Math 25 Activity 6: Factoring Advanced

Instructor! Math 25 Activity 6: Factoring Advanced Last week we looked at greatest common factors and the basics of factoring out the GCF. In this second activity, we will discuss factoring more difficult

### FACTORING POLYNOMIALS

296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### Factoring, Solving. Equations, and Problem Solving REVISED PAGES

05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### Factoring - Trinomials where a = 1

6.3 Factoring - Trinomials where a = 1 Objective: Factor trinomials where the coefficient of x 2 is one. Factoring with three terms, or trinomials, is the most important type of factoring to be able to

### SPECIAL PRODUCTS AND FACTORS

CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF

Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### Math PreCalc 20 Chapter 4 Review of Factoring. Questions to try. 2. x 2 6xy x x x x 2 y + 8xy

Math PreCalc 20 Chapter 4 Review of Factoring Multiplying (Expanding) Type 1: Monomial x Binomial Monomial x Trinomial Ex: 3(x + 4) = 3x + 12-2(x 2 + 2x 1) = -2x 2 4x + 2 Multiply the following: 1. 5(x

### Factoring a Difference of Two Squares. Factoring a Difference of Two Squares

284 (6 8) Chapter 6 Factoring 87. Tomato soup. The amount of metal S (in square inches) that it takes to make a can for tomato soup is a function of the radius r and height h: S 2 r 2 2 rh a) Rewrite this

### A. Factoring out the Greatest Common Factor.

DETAILED SOLUTIONS AND CONCEPTS - FACTORING POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

### Polynomials and Factoring

7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

### Factoring Polynomials

UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can

### 15.1 Factoring Polynomials

LESSON 15.1 Factoring Polynomials Use the structure of an expression to identify ways to rewrite it. Also A.SSE.3? ESSENTIAL QUESTION How can you use the greatest common factor to factor polynomials? EXPLORE

### Factoring Polynomials

Factoring Polynomials Factoring Factoring is the process of writing a polynomial as the product of two or more polynomials. The factors of 6x 2 x 2 are 2x + 1 and 3x 2. In this section, we will be factoring

### x n = 1 x n In other words, taking a negative expoenent is the same is taking the reciprocal of the positive expoenent.

Rules of Exponents: If n > 0, m > 0 are positive integers and x, y are any real numbers, then: x m x n = x m+n x m x n = xm n, if m n (x m ) n = x mn (xy) n = x n y n ( x y ) n = xn y n 1 Can we make sense

### Multiplying polynomials - Decimals - Simplify product of monomials and trinomials

-1- MATHX.NET Multiplying polynomials - Decimals - Simplify product of monomials and trinomials Simplify decimal product with two variables: 1) 0.4(2.4x 2 6.87xy 4.27y 2 ) 2) 4.8a 4 (6.1a 2 + 2.9ab 5.8b

### POLYNOMIALS and FACTORING

POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### 6.4 Special Factoring Rules

6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication

### 6.1 Add & Subtract Polynomial Expression & Functions

6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic

### MATH 65 NOTEBOOK CERTIFICATIONS

MATH 65 NOTEBOOK CERTIFICATIONS Review Material from Math 60 2.5 4.3 4.4a Chapter #8: Systems of Linear Equations 8.1 8.2 8.3 Chapter #5: Exponents and Polynomials 5.1 5.2a 5.2b 5.3 5.4 5.5 5.6a 5.7a 1

### Section 6.1 Factoring Expressions

Section 6.1 Factoring Expressions The first method we will discuss, in solving polynomial equations, is the method of FACTORING. Before we jump into this process, you need to have some concept of what

### Factoring Guidelines. Greatest Common Factor Two Terms Three Terms Four Terms. 2008 Shirley Radai

Factoring Guidelines Greatest Common Factor Two Terms Three Terms Four Terms 008 Shirley Radai Greatest Common Factor 008 Shirley Radai Factoring by Finding the Greatest Common Factor Always check for

### Factoring - Grouping

6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Tool 1. Greatest Common Factor (GCF)

Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### Polynomials. 4-4 to 4-8

Polynomials 4-4 to 4-8 Learning Objectives 4-4 Polynomials Monomials, binomials, and trinomials Degree of a polynomials Evaluating polynomials functions Polynomials Polynomials are sums of these "variables

250) 960-6367 Factoring Polynomials Sometimes when we try to solve or simplify an equation or expression involving polynomials the way that it looks can hinder our progress in finding a solution. Factorization

### BEGINNING ALGEBRA ACKNOWLEDMENTS

BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### Factor Polynomials Completely

9.8 Factor Polynomials Completely Before You factored polynomials. Now You will factor polynomials completely. Why? So you can model the height of a projectile, as in Ex. 71. Key Vocabulary factor by grouping

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style

Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Algebra 2 PreAP. Name Period

Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### 1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style

Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

### FACTORING ax 2 bx c WITH a 1

296 (6 20) Chapter 6 Factoring 6.4 FACTORING a 2 b c WITH a 1 In this section The ac Method Trial and Error Factoring Completely In Section 6.3 we factored trinomials with a leading coefficient of 1. In

### Algebra Tiles Activity 1: Adding Integers

Algebra Tiles Activity 1: Adding Integers NY Standards: 7/8.PS.6,7; 7/8.CN.1; 7/8.R.1; 7.N.13 We are going to use positive (yellow) and negative (red) tiles to discover the rules for adding and subtracting

### SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014))

SOLVING QUADRATIC EQUATIONS BY THE NEW TRANSFORMING METHOD (By Nghi H Nguyen Updated Oct 28, 2014)) There are so far 8 most common methods to solve quadratic equations in standard form ax² + bx + c = 0.

### Factoring Algebra- Chapter 8B Assignment Sheet

Name: Factoring Algebra- Chapter 8B Assignment Sheet Date Section Learning Targets Assignment Tues 2/17 Find the prime factorization of an integer Find the greatest common factor (GCF) for a set of monomials.

### Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials

Quarter I: Special Products and Factors and Quadratic Equations Topic: Special Products and Factors Subtopic: Rules on finding factors of polynomials Time Frame: 20 days Time Frame: 3 days Content Standard:

### Factoring Flow Chart

Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b

### Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

### Factoring Polynomials

Factoring a Polynomial Expression Factoring a polynomial is expressing the polynomial as a product of two or more factors. Simply stated, it is somewhat the reverse process of multiplying. To factor polynomials,

### Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

### Algebra I Vocabulary Cards

Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression

### Polynomial Equations and Factoring

7 Polynomial Equations and Factoring 7.1 Adding and Subtracting Polynomials 7.2 Multiplying Polynomials 7.3 Special Products of Polynomials 7.4 Dividing Polynomials 7.5 Solving Polynomial Equations in

### Factoring Polynomials

Factoring Polynomials 4-1-2014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall

### AIP Factoring Practice/Help

The following pages include many problems to practice factoring skills. There are also several activities with examples to help you with factoring if you feel like you are not proficient with it. There

### Chapter 4. Polynomials

4.1. Add and Subtract Polynomials KYOTE Standards: CR 8; CA 2 Chapter 4. Polynomials Polynomials in one variable are algebraic expressions such as 3x 2 7x 4. In this example, the polynomial consists of

### 5 means to write it as a product something times something instead of a sum something plus something plus something.

Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding

### SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING AC METHOD AND THE NEW TRANSFORMING METHOD (By Nghi H. Nguyen - Jan 18, 2015)

SOLVING QUADRATIC EQUATIONS - COMPARE THE FACTORING AC METHOD AND THE NEW TRANSFORMING METHOD (By Nghi H. Nguyen - Jan 18, 2015) GENERALITIES. When a given quadratic equation can be factored, there are

### Factoring ax 2 + bx + c - Teacher Notes

Southern Nevada Regional Professi onal D evel opment Program VOLUME 1, ISSUE 8 MAY 009 A N ewsletter from the Sec ondary Mathematic s Team Factoring ax + bx + c - Teacher Notes Here we look at sample teacher

### A Systematic Approach to Factoring

A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### The majority of college students hold credit cards. According to the Nellie May

CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials

### FACTORING OUT COMMON FACTORS

278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### ~ EQUIVALENT FORMS ~

~ EQUIVALENT FORMS ~ Critical to understanding mathematics is the concept of equivalent forms. Equivalent forms are used throughout this course. Throughout mathematics one encounters equivalent forms of

### Unit: Polynomials and Factoring

Name Unit: Polynomials: Multiplying and Factoring Specific Outcome 10I.A.1 Demonstrate an understanding of factors of whole numbers by determining: Prime factors Greatest common factor Least common multiple

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation

CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### Mathematics Placement

Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Polynomials. Solving Equations by Using the Zero Product Rule

mil23264_ch05_303-396 9:21:05 06:16 PM Page 303 Polynomials 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials 5.4 Greatest

### 7-2 Factoring by GCF. Warm Up Lesson Presentation Lesson Quiz. Holt McDougal Algebra 1

7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

### MATH 90 CHAPTER 6 Name:.

MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a

### 1.3 Algebraic Expressions

1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Algebra 1 Chapter 08 review

Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project

9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### MATH 10034 Fundamental Mathematics IV

MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### 5.1 FACTORING OUT COMMON FACTORS

C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

### LESSON 6.2 POLYNOMIAL OPERATIONS I

LESSON 6.2 POLYNOMIAL OPERATIONS I Overview In business, people use algebra everyday to find unknown quantities. For example, a manufacturer may use algebra to determine a product s selling price in order

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

### Monomials with the same variables to the same powers are called like terms, If monomials are like terms only their coefficients can differ.

Chapter 7.1 Introduction to Polynomials A monomial is an expression that is a number, a variable or the product of a number and one or more variables with nonnegative exponents. Monomials that are real