Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions


 Shanna Glenn
 2 years ago
 Views:
Transcription
1 Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero. Represent integer addition on a number line. Evaluate integer sums. Understand subtraction of a number as adding the additive inverse. Show that the distance between two integers is the absolute value of their difference in realworld contexts. Evaluate integer products. Understand quotients of integers with nonzero divisors. Apply properties of operations to integers. Solve realworld problems involving the four operations with integers. Essential Questions How do addition and subtraction of integers compare? When will the sum of two integers be positive? Negative? Or zero? When multiplying and dividing integers, how do you determine the sign? Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Read and analyze givens. Plan a solution. Evaluate progress. Change course if necessary. Model with mathematics. Identify important quantities. Use tools such as diagrams (number lines, integer chips). Analyze to draw conclusions. Interpret results, determining if they make sense. Attend to precision. Calculate accurately and efficiently. Specify units/labels. Communicate precisely. How can you use properties to simplify your calculations with integers? In what reallife situations would you need to compute with integers? 1
2 Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations (15 days) Written Curriculum Common Core State Standards for Mathematical Content The Number System 7.NS Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS.1 7.NS.2 7.NS.1 7.NS.2 7.NS.3 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld contexts. c. Understand subtraction of rational numbers as adding the additive inverse, p q = p + ( q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as ( 1)( 1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing realworld contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with nonzero divisor) is a rational number. If p and q are integers, then (p/q) = ( p)/q = p/( q). Interpret quotients of rational numbers by describing realworld contexts. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. d. Apply properties of operations as strategies to add and subtract rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. c. Apply properties of operations as strategies to multiply and divide rational numbers. Solve realworld and mathematical problems involving the four operations with rational numbers. 1 1 Computations with rational numbers extend the rules for manipulating fractions to complex fractions. 2
3 Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations (15 days) Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. 3
4 Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations (15 days) Clarifying the Standards Prior Learning Previously, students learned to compute fluently with multidigit numbers in four operations using standard algorithms. They found and positioned integers on a number line. Students recognized opposites and absolute value as a number s distance from zero. Students assigned and ordered integers to solve realworld problems. They also applied properties of operations. Current Learning Operations with rational numbers are a critical area and a major cluster in grade 7. This unit reinforces the concepts of opposites and absolute value. Students learn integer operations at the developmental level and continue to reinforce these concepts throughout the year to achieve fluency. The unit extends the application of properties of operations to include integers. Units 1.2 and 1.3 will extend the application of the four operations and properties to all rational numbers. Application of rational numbers will continue through all units to achieve fluency by the end of this year. Future Learning In eighth grade, students will apply their knowledge of integers when reasoning about expressions and equations, solving linear equations and systems of equations, grasping the concept of functions, and evaluating integer exponents. Additional Findings According to Principles and Standards of School Mathematics, In grades 6 8, students should deepen their understanding of fractions, decimals, percents, and integers, and they should become proficient in using them to solve problems (p. 215). According to Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics, Students extend understandings of addition, subtraction, multiplication, and division, together with their properties, to all rational numbers, including negative integers. By applying properties of arithmetic and considering negative numbers in everyday contexts, students explain why the rules for adding, subtracting, multiplying, and dividing with negative numbers makes sense (p. 19). According to the PARCC Model Content Frameworks, Because there are no specific standards for rational number arithmetic in later grades and because so much other work in grade 7 depends on rational number arithmetic, fluency with rational number arithmetic should be the goal in grade 7 (p. 31). 4
5 Grade 7 Mathematics, Quarter 1, Unit 1.2 Addition and Subtraction of Rational Numbers Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Convert between different forms of rational numbers (decimals and fractions). Understand that rational numbers in decimal form either terminate or repeat. Show that a rational number and its opposite have a sum of zero (additive inverses). Evaluate rational sums. Understand subtraction of rational numbers as adding the additive inverse. Show that the distance between two rational numbers is the absolute value of their difference in realworld contexts. Interpret sums and differences of rational numbers in realworld contexts. Solve realworld problems involving addition and subtraction of rational numbers. Essential Questions What is a rational number? How can rational numbers be represented? How do you convert between fractions and decimals? When will the sum of two rational numbers be positive? Negative? Or zero? Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Read and analyze the givens. Plan a solution. Evaluate progress. Change course if necessary. Model with mathematics. Identify important quantities. Use tools such as diagrams (number lines, 10 x 10 grids). Analyze to draw conclusions. Interpret results, determining if they make sense. Attend to precision. Calculate accurately and efficiently. Specify units/labels. Communicate precisely. How do you add and subtract rational numbers in the same format? How do you add and subtract rational numbers in different formats (i.e., fraction and decimal)? Where would you use operations with rational numbers in reallife situations? 5
6 Grade 7 Mathematics, Quarter 1, Unit 1.2 Addition and Subtraction of Rational Numbers (15 days) Written Curriculum Common Core State Standards for Mathematical Content The Number System 7.NS Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS.2 7.NS.1 7.NS.3 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. b. Understand p + q as the number located a distance q from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing realworld contexts. c. Understand subtraction of rational numbers as adding the additive inverse, p q = p + ( q). Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in realworld contexts. Solve realworld and mathematical problems involving the four operations with rational numbers. 1 1 Computations with rational numbers extend the rules for manipulating fractions to complex fractions. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 6
7 Grade 7 Mathematics, Quarter 1, Unit 1.2 Addition and Subtraction of Rational Numbers (15 days) 4 Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, twoway tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. 6 Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. Clarifying the Standards Prior Learning In grades 5 and 6, students learned to compute fluently with positive rational numbers. They found and positioned rational numbers on a number line, identified opposites, and defined absolute value as a number s distance from zero. Current Learning Operations with rational numbers are a critical area and a major cluster in grade 7. This unit reinforces the concepts of opposites, absolute value, and integer operations. Students understand a rational number as a number expressible in the form a/b or a/b for some fraction a/b. Students identify fractions and repeating or terminating decimals as different representations of rational numbers. Students learn rational number addition and subtraction at the developmental level and continue to reinforce these concepts throughout the year to achieve fluency. The next unit will introduce multiplication and division of rational numbers, and reinforce the four operations and properties of rational numbers. Application of rational numbers will continue through all units to achieve fluency by the end of this year. 7
8 Grade 7 Mathematics, Quarter 1, Unit 1.2 Addition and Subtraction of Rational Numbers (15 days) Future Learning In eighth grade, students will apply their knowledge of rational numbers when reasoning about expressions and equations, solving linear equations and systems of equations, grasping the concept of functions, and evaluating integer exponents. Students will expand their concept of number beyond the system of rationals to include irrational numbers. They will represent these numbers with radical expressions and approximate these numbers with rationals. Additional Findings According to Principles and Standards of School Mathematics, In grades 6 8, students should deepen their understanding of fractions, decimals, percents, and integers, and they should become proficient in using them to solve problems (p. 215). According to Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics, Students extend understandings of addition, subtraction, multiplication, and division, together with their properties, to all rational numbers, including negative integers. By applying properties of arithmetic and considering negative numbers in everyday contexts, students explain why the rules for adding, subtracting, multiplying, and dividing with negative numbers makes sense (p. 19). According to the PARCC Model Content Frameworks, Because there are no specific standards for rational number arithmetic in later grades and because so much other work in grade 7 depends on rational number arithmetic, fluency with rational number arithmetic should be the goal in grade 7 (p. 31). According to the CCSS, students must develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers (p. 46). 8
9 Grade 7 Mathematics, Quarter 1, Unit 1.3 Multiplication and Division of Rational Numbers Overview Number of Instructional Days: 10 (1 day = 45 minutes) Content to Be Learned Evaluate rational products. Evaluate rational quotients. Understand why the denominator cannot equal zero. Apply properties (including distributive property) when performing operations with rational numbers. Interpret products and quotients of rational numbers in realworld contexts. Solve realworld problems using the four operations with rational numbers. Essential Questions How can you use properties to simplify your calculations with rational numbers? In what situations do you get a smaller product when multiplying two rational numbers? Mathematical Practices to Be Integrated Make sense of problems and persevere in solving them. Read and analyze the givens. Plan a solution. Evaluate progress. Change course if necessary. Construct viable arguments and critique the reasoning of others. Use properties to justify the simplification of calculations. Make conjectures and justify conclusions regarding the magnitude of a solution. Communicate findings and respond to others arguments. Distinguish correct logic or reasoning from that which is flawed. Ask useful questions to clarify, refine, and improve arguments. Look for and make use of structure. Look for a solution, pattern, or structure. Reflect and shift perspectives. Understand structures. See complex tasks as a collection of several simpler objects. In what situations do you get a larger quotient when dividing two rational numbers? Where would you use multiplication and division of rational numbers in reallife situations? 9
10 Grade 7 Mathematics, Quarter 1, Unit 1.3 Multiplication and Division of Rational Numbers (10 days) Written Curriculum Common Core State Standards for Mathematical Content The Number System 7.NS Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS.2 7.NS.1 7.NS.2 7.NS.3 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as ( 1)( 1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing realworld contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with nonzero divisor) is a rational number. If p and q are integers, then (p/q) = ( p)/q = p/( q). Interpret quotients of rational numbers by describing realworld contexts. Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. d. Apply properties of operations as strategies to add and subtract rational numbers. Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. c. Apply properties of operations as strategies to multiply and divide rational numbers. Solve realworld and mathematical problems involving the four operations with rational numbers. 1 1 Computations with rational numbers extend the rules for manipulating fractions to complex fractions. Common Core Standards for Mathematical Practice 1 Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using 10
11 Grade 7 Mathematics, Quarter 1, Unit 1.3 Multiplication and Division of Rational Numbers (10 days) concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, Does this make sense? They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. 3 Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and if there is a flaw in an argument explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. 7 Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7 8 equals the well remembered , in preparation for learning about the distributive property. In the expression x 2 + 9x + 14, older students can see the 14 as 2 7 and the 9 as They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see 5 3(x y) 2 as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. Clarifying the Standards Prior Learning In grades 5 and 6, students learned to compute fluently with positive rational numbers. Students were also introduced to properties of operations, including the distributive property in sixth grade. Current Learning Operations with rational numbers are a critical area and a major cluster in grade 7. This unit reinforces the concepts of opposites, absolute value, and integer operations. Students add, subtract, multiply, and divide within the system of rational numbers. Application of rational numbers will continue through all units to achieve fluency by the end of this year. Students will apply the four operations and properties to solve realworld problems involving rational numbers. 11
12 Grade 7 Mathematics, Quarter 1, Unit 1.3 Multiplication and Division of Rational Numbers (10 days) Future Learning In eighth grade, students will apply their knowledge of rational numbers when reasoning about expressions and equations, solving linear equations and systems of equations, grasping the concept of functions, and evaluating rational number exponents. Students will enlarge their concept of number beyond the system of rationals to include irrational numbers. They represent these numbers with radical expressions and approximate these numbers with rationals. Additional Findings According to Principles and Standards of School Mathematics, In grades 6 8, students should deepen their understanding of fractions, decimals, percents, and integers, and they should become proficient in using them to solve problems (p. 215). According to Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics 2006 edition, Students extend understandings of addition, subtraction, multiplication, and division, together with their properties, to all rational numbers, including negative integers. By applying properties of arithmetic and considering negative numbers in everyday contexts, students explain why the rules for adding, subtracting, multiplying, and dividing with negative numbers makes sense (p. 19). According to the PARCC Model Content Frameworks, Because there are no specific standards for rational number arithmetic in later grades and because so much other work in grade 7 depends on rational number arithmetic, fluency with rational number arithmetic should be the goal in grade 7 (p. 31). 12
Pythagorean Theorem. Overview. Grade 8 Mathematics, Quarter 3, Unit 3.1. Number of instructional days: 15 (1 day = minutes) Essential questions
Grade 8 Mathematics, Quarter 3, Unit 3.1 Pythagorean Theorem Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Prove the Pythagorean Theorem. Given three side lengths,
More informationUnderstanding Place Value of Whole Numbers and Decimals Including Rounding
Grade 5 Mathematics, Quarter 1, Unit 1.1 Understanding Place Value of Whole Numbers and Decimals Including Rounding Overview Number of instructional days: 14 (1 day = 45 60 minutes) Content to be learned
More informationDivision with Whole Numbers and Decimals
Grade 5 Mathematics, Quarter 2, Unit 2.1 Division with Whole Numbers and Decimals Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Divide multidigit whole numbers
More informationCommon Core State Standards. Standards for Mathematical Practices Progression through Grade Levels
Standard for Mathematical Practice 1: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for
More informationSolving Equations with One Variable
Grade 8 Mathematics, Quarter 1, Unit 1.1 Solving Equations with One Variable Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Solve linear equations in one variable
More informationPA Common Core Standards Standards for Mathematical Practice Grade Level Emphasis*
Habits of Mind of a Productive Thinker Make sense of problems and persevere in solving them. Attend to precision. PA Common Core Standards The Pennsylvania Common Core Standards cannot be viewed and addressed
More informationOverview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.2 Multiplying and Dividing With Decimals
Multiplying and Dividing With Decimals Overview Number of instruction days: 9 11 (1 day = 90 minutes) Content to Be Learned Multiply decimals to hundredths. Divide decimals to hundredths. Use models, drawings,
More informationMeasurement with Ratios
Grade 6 Mathematics, Quarter 2, Unit 2.1 Measurement with Ratios Overview Number of instructional days: 15 (1 day = 45 minutes) Content to be learned Use ratio reasoning to solve realworld and mathematical
More informationUnit 1: Place value and operations with whole numbers and decimals
Unit 1: Place value and operations with whole numbers and decimals Content Area: Mathematics Course(s): Generic Course Time Period: 1st Marking Period Length: 10 Weeks Status: Published Unit Overview Students
More informationCCSS: Mathematics. Operations & Algebraic Thinking. CCSS: Grade 5. 5.OA.A. Write and interpret numerical expressions.
CCSS: Mathematics Operations & Algebraic Thinking CCSS: Grade 5 5.OA.A. Write and interpret numerical expressions. 5.OA.A.1. Use parentheses, brackets, or braces in numerical expressions, and evaluate
More informationStandards for Mathematical Practice: Commentary and Elaborations for 6 8
Standards for Mathematical Practice: Commentary and Elaborations for 6 8 c Illustrative Mathematics 6 May 2014 Suggested citation: Illustrative Mathematics. (2014, May 6). Standards for Mathematical Practice:
More informationOverview. Essential Questions. Precalculus, Quarter 3, Unit 3.4 Arithmetic Operations With Matrices
Arithmetic Operations With Matrices Overview Number of instruction days: 6 8 (1 day = 53 minutes) Content to Be Learned Use matrices to represent and manipulate data. Perform arithmetic operations with
More informationMultiplying Fractions by a Whole Number
Grade 4 Mathematics, Quarter 3, Unit 3.1 Multiplying Fractions by a Whole Number Overview Number of Instructional Days: 15 (1 day = 45 60 minutes) Content to be Learned Apply understanding of operations
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 3, Unit 3.3 Multiplying Fractions by a Whole Number
Multiplying Fractions by a Whole Number Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Understand that a fraction can be written as a multiple of unit fractions with
More informationGeorgia Department of Education. Calculus
K12 Mathematics Introduction Calculus The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety
More informationFor example, estimate the population of the United States as 3 times 10⁸ and the
CCSS: Mathematics The Number System CCSS: Grade 8 8.NS.A. Know that there are numbers that are not rational, and approximate them by rational numbers. 8.NS.A.1. Understand informally that every number
More informationProblem of the Month: Perfect Pair
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationGrade 4 Mathematics, Quarter 4, Unit 4.3 Using Place Value to Add and Subtract Whole Numbers to the Millions. Overview
Whole Numbers to the Millions Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Round multidigit whole numbers using understanding of place value. Recognize that the
More informationGrade 7 Math The Number System Grade 7 Math Grade 7 Math Start Date: August 30, 2012 End Date : September 28, 2012
Unit Overview Students will be able to: describe real life situations for quantities that combine to make zero understand the distance between two on a number line show how opposites have a sum of zero
More informationOverview. Essential Questions. Precalculus, Quarter 2, Unit 2.5 Proving Trigonometric Identities. Number of instruction days: 5 7 (1 day = 53 minutes)
Precalculus, Quarter, Unit.5 Proving Trigonometric Identities Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Verify proofs of Pythagorean identities. Apply Pythagorean,
More informationCreating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities
Algebra 1, Quarter 2, Unit 2.1 Creating, Solving, and Graphing Systems of Linear Equations and Linear Inequalities Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned
More informationPolynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
More informationDescribing and Solving for Area and Perimeter
Grade 3 Mathematics, Quarter 2,Unit 2.2 Describing and Solving for Area and Perimeter Overview Number of instruction days: 810 (1 day = 90 minutes) Content to Be Learned Distinguish between linear and
More informationEvaluation Tool for Assessment Instrument Quality
REPRODUCIBLE Figure 4.4: Evaluation Tool for Assessment Instrument Quality Assessment indicators Description of Level 1 of the Indicator Are Not Present Limited of This Indicator Are Present Substantially
More informationConceptual Understanding of Operations of Integers
Grade 7 Mathematics, Quarter 2, Unit 2.1 Conceptual Understanding of Operations of Integers Overview Number of instructional days: 10 (1 day = 45 60 minutes) Content to be learned Demonstrate conceptual
More informationProblem of the Month: William s Polygons
Problem of the Month: William s Polygons The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common
More informationUnderstand the Concepts of Ratios and Unit Rates to Solve RealWorld Problems
Grade 6 Mathematics, Quarter 2, Unit 2.1 Understand the Concepts of Ratios and Unit Rates to Solve RealWorld Problems Overview Number of instructional days: 10 (1 day = 45 60 minutes) Content to be learned
More informationPearson Algebra 1 Common Core 2015
A Correlation of Pearson Algebra 1 Common Core 2015 To the Common Core State Standards for Mathematics Traditional Pathways, Algebra 1 High School Copyright 2015 Pearson Education, Inc. or its affiliate(s).
More informationProblem of the Month: On Balance
Problem of the Month: On Balance The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationOverview. Essential Questions. Grade 7 Mathematics, Quarter 4, Unit 4.2 Probability of Compound Events. Number of instruction days: 8 10
Probability of Compound Events Number of instruction days: 8 10 Overview Content to Be Learned Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. Understand
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 1, Unit 1.1 Applying Place Value Up to the 100,000s Place
to the 100,000s Place Overview Number of instruction days: 8 10 (1 day = 90 minutes) Content to Be Learned Compare whole numbers within 1,000,000 using >,
More informationProblem of the Month: Game Show
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationOverview. Essential Questions. Precalculus, Quarter 4, Unit 4.5 Build Arithmetic and Geometric Sequences and Series
Sequences and Series Overview Number of instruction days: 4 6 (1 day = 53 minutes) Content to Be Learned Write arithmetic and geometric sequences both recursively and with an explicit formula, use them
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 2, Unit 2.1 Multiplying MultiDigit Whole Numbers
Multiplying MultiDigit Whole Numbers Overview Number of instruction days: 5 7 (1 day = 90 minutes) Content to Be Learned Use strategies based on place value and properties of operations to multiply a
More informationGrades K6. Correlated to the Common Core State Standards
Grades K6 Correlated to the Common Core State Standards Kindergarten Standards for Mathematical Practice Common Core State Standards Standards for Mathematical Practice Kindergarten The Standards for
More informationLinear Systems of Inequalities
Mathematical Models with Applications, Quarter 2, Unit 2.2 Linear Systems of Inequalities Overview Number of instruction days: 57 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be
More informationProblem of the Month: Fair Games
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationQuadratic Functions: Complex Numbers
Algebra II, Quarter 1, Unit 1.3 Quadratic Functions: Complex Numbers Overview Number of instruction days: 1214 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be Integrated Develop
More informationGary School Community Corporation Mathematics Department Unit Document. Unit Number: 8 Grade: 2
Gary School Community Corporation Mathematics Department Unit Document Unit Number: 8 Grade: 2 Unit Name: YOU SEE IT!!! (2D & 3D Shapes) Duration of Unit: 18 days UNIT FOCUS Students describe and analyze
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders
Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for wholenumber quotients with remainders of up to fourdigit dividends
More informationMathematics Connecticut Preschool Standards to Common Core State Standards Continuum. Preschool  Kindergarten
Mathematics Connecticut Preschool Standards to Common Core State Standards Continuum Preschool  Kindergarten Connecticut PreschoolKindergarten Standards Continuum for Mathematics On July 7, 2010, with
More informationCORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title TShirts Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve reallife and mathematical problems using
More informationPreAlgebra Curriculum Map 8 th Grade Unit 1 Integers, Equations, and Inequalities
Key Skills and Concepts Common Core Math Standards Unit 1 Integers, Equations, and Inequalities Chapter 1 Variables, Expressions, and Integers 12 days Add, subtract, multiply, and divide integers. Make
More informationQuadratic and Linear Systems
Mathematical Models with Applications, Quarter 3, Unit 3.1 Quadratic and Linear Systems Overview Number of instruction days: 57 (1 day = 53 minutes) Content to Be Learned Mathematical Practices to Be
More informationOperations and Algebraic Thinking Represent and solve problems involving addition and subtraction. Add and subtract within 20. MP.
Performance Assessment Task Incredible Equations Grade 2 The task challenges a student to demonstrate understanding of concepts involved in addition and subtraction. A student must be able to understand
More informationOverview. Essential Questions. Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs
Grade 2 Mathematics, Quarter 4, Unit 4.4 Representing and Interpreting Data Using Picture and Bar Graphs Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Draw a picture
More informationDomain Essential Question Common Core Standards Resources
Middle School Math 20162017 Domain Essential Question Common Core Standards First Ratios and Proportional Relationships How can you use mathematics to describe change and model real world solutions? How
More informationINDIANA ACADEMIC STANDARDS. Mathematics: Grade 6 Draft for release: May 1, 2014
INDIANA ACADEMIC STANDARDS Mathematics: Grade 6 Draft for release: May 1, 2014 I. Introduction The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate,
More information2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1
2013 Texas Education Agency. All Rights Reserved 2013 Introduction to the Revised Mathematics TEKS: Vertical Alignment Chart Kindergarten Algebra I 1 The materials are copyrighted (c) and trademarked (tm)
More informationOverview. Essential Questions. Grade 8 Mathematics, Quarter 4, Unit 4.3 Finding Volume of Cones, Cylinders, and Spheres
Cylinders, and Spheres Number of instruction days: 6 8 Overview Content to Be Learned Evaluate the cube root of small perfect cubes. Simplify problems using the formulas for the volumes of cones, cylinders,
More informationCommon Core Standards Mission Statement
Common Core Standards Mission Statement http://www.corestandards.org/thestandards/mathematics/introduction/howtoreadthegradelevelstandards/ The Common Core State Standards provide a consistent, clear
More informationFranklin Public Schools. Curriculum Map for Mathematics. Kindergarten
Curriculum Map for Mathematics Kindergarten June 2013 1 The Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all
More informationProblem of the Month: Double Down
Problem of the Month: Double Down The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More information5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
More information#1 Make sense of problems and persevere in solving them.
#1 Make sense of problems and persevere in solving them. 1. Make sense of problems and persevere in solving them. Interpret and make meaning of the problem looking for starting points. Analyze what is
More informationOverview. Essential Questions. Grade 5 Mathematics, Quarter 3, Unit 3.1 Adding and Subtracting Decimals
Adding and Subtracting Decimals Overview Number of instruction days: 12 14 (1 day = 90 minutes) Content to Be Learned Add and subtract decimals to the hundredths. Use concrete models, drawings, and strategies
More informationProblem of the Month The Wheel Shop
Problem of the Month The Wheel Shop The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core
More informationOverview. Essential Questions. Precalculus, Quarter 1, Unit 1.4 Analyzing Exponential and Logarithmic Functions
Analyzing Exponential and Logarithmic Functions Overview Number of instruction days: 5 7 (1 day = 53 minutes) Content to Be Learned Rewrite radical expressions using the properties of exponents. Rewrite
More informationPerformance Assessment Task Gym Grade 6. Common Core State Standards Math  Content Standards
Performance Assessment Task Gym Grade 6 This task challenges a student to use rules to calculate and compare the costs of memberships. Students must be able to work with the idea of breakeven point to
More informationCampbellsport School District Understanding by Design (UbD) Template
Campbellsport School District Understanding by Design (UbD) Template Class Curriculum/Content Area: Math Course Length: 1 year Course Title: 6 th Grade Math Date last reviewed: April 24, 2015 Prerequisites:
More informationMathematics Interim Assessment Blocks Blueprint V
67 Blueprint V.5.7.6 The Smarter Balanced Interim Assessment Blocks (IABs) are one of two distinct types of interim assessments being made available by the Consortium; the other type is the Interim Comprehensive
More informationCCGPS Curriculum Map. Mathematics. 7 th Grade
CCGPS Curriculum Map Mathematics 7 th Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement. Unit 1 Operations with Rational Numbers a b
More informationProblem of the Month Through the Grapevine
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationProblem of the Month. Squirreling it Away
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationIndiana Academic Standards Mathematics: Algebra I
Indiana Academic Standards Mathematics: Algebra I 1 I. Introduction The college and career ready Indiana Academic Standards for Mathematics: Algebra I are the result of a process designed to identify,
More informationCORE Assessment Module Module Overview
CORE Assessment Module Module Overview Content Area Mathematics Title Speedy Texting Grade Level Grade 7 Problem Type Performance Task Learning Goal Students will solve reallife and mathematical problems
More informationMathematics. Mathematical Practices
Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with
More informationGrade 6 Mathematics Assessment. Eligible Texas Essential Knowledge and Skills
Grade 6 Mathematics Assessment Eligible Texas Essential Knowledge and Skills STAAR Grade 6 Mathematics Assessment Mathematical Process Standards These student expectations will not be listed under a separate
More informationPerformance Assessment Task Fair Game? Grade 7. Common Core State Standards Math  Content Standards
Performance Assessment Task Fair Game? Grade 7 This task challenges a student to use understanding of probabilities to represent the sample space for simple and compound events. A student must use information
More information7th Grade Common Core State Standards. Flip Book
7th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices and the content standards and to get detailed information at
More informationCommon Core State Standards for Mathematics Accelerated 7th Grade
A Correlation of 2013 To the to the Introduction This document demonstrates how Mathematics Accelerated Grade 7, 2013, meets the. Correlation references are to the pages within the Student Edition. Meeting
More informationCORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREERREADY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
More informationStatistics and Probability Investigate patterns of association in bivariate data.
Performance Assessment Task Scatter Diagram Grade 9 task aligns in part to CCSSM grade 8 This task challenges a student to select and use appropriate statistical methods to analyze data. A student must
More information6 th Grade Math Curriculum Course Information: Course 1 of Prentice Hall Common Core
6 th Grade Math Curriculum Course Information: Course: Length: Description: Course 1 of Prentice Hall Common Core 1 period/day Mathematics at the 6 th grade level will cover a variety of fundamental math
More information7th Grade Mathematics Unit 1 Curriculum Map: September 9th October 25th
7th Grade Mathematics Unit 1 Curriculum Map: September 9th October 25th ORANGE PUBLIC SCHOOLS OFFICE OF CURRICULUM AND INSTRUCTION OFFICE OF MATHEMATICS Common Core Standards 6.NS.5 6.NS.6a 6.NS.7c REVIEW
More informationG C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
Performance Assessment Task Circle and Squares Grade 10 This task challenges a student to analyze characteristics of 2 dimensional shapes to develop mathematical arguments about geometric relationships.
More informationThis unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
More informationProblem of the Month: Fractured Numbers
Problem of the Month: The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationSouth Carolina College and CareerReady (SCCCR) Algebra 1
South Carolina College and CareerReady (SCCCR) Algebra 1 South Carolina College and CareerReady Mathematical Process Standards The South Carolina College and CareerReady (SCCCR) Mathematical Process
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationMath at a Glance for April
Audience: School Leaders, Regional Teams Math at a Glance for April The Math at a Glance tool has been developed to support school leaders and region teams as they look for evidence of alignment to Common
More informationGeorgia Standards of Excellence Mathematics
Georgia Standards of Excellence Mathematics Standards GSE Algebra I K12 Mathematics Introduction Georgia Mathematics focuses on actively engaging the student in the development of mathematical understanding
More informationOverview. Essential Questions. Precalculus, Quarter 2, Unit 2.4 Interpret, Solve, and Graph Inverse Trigonometric Functions
Trigonometric Functions Overview Number of instruction days: 3 5 (1 day = 53 minutes) Content to Be Learned Use restricted domains in order to construct inverse Use inverse trigonometric functions to solve
More information1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH
1 ST GRADE COMMON CORE STANDARDS FOR SAXON MATH Calendar The following tables show the CCSS focus of The Meeting activities, which appear at the beginning of each numbered lesson and are taught daily,
More informationInfinite Algebra 1 supports the teaching of the Common Core State Standards listed below.
Infinite Algebra 1 Kuta Software LLC Common Core Alignment Software version 2.05 Last revised July 2015 Infinite Algebra 1 supports the teaching of the Common Core State Standards listed below. High School
More informationPerformance Level Descriptors Grade 6 Mathematics
Performance Level Descriptors Grade 6 Mathematics Multiplying and Dividing with Fractions 6.NS.12 Grade 6 Math : SubClaim A The student solves problems involving the Major Content for grade/course with
More informationYearataGlance: 5 th Grade
September: UNIT 1 Place Value Whole Numbers Fluently multiply multidigit numbers using the standard algorithm Model long division up to 2 digit divisors Solve real world word problems involving measurement
More informationOverview. Essential Questions. Grade 7 Mathematics, Quarter 3, Unit 3.3 Area and Circumference of Circles. Number of instruction days: 3 5
Area and Circumference of Circles Number of instruction days: 3 5 Overview Content to Be Learned Develop an understanding of the formulas for the area and circumference of a circle. Explore the relationship
More informationProblem of the Month The Shape of Things
Problem of the Month The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards:
More informationWentzville School District Curriculum Development Template Stage 1 Desired Results
Wentzville School District Curriculum Development Template Stage 1 Desired Results Unit Title: Radicals and Radical Expressions Course: Middle School Algebra 1 Unit 10 Radicals and Radical Expressions
More informationAERO/Common Core Alignment 35
AERO/Common Core Alignment 35 Note: In yellow are the AERO Standards and inconsistencies between AERO and Common Core are noted by the strikethrough ( eeeeee) notation. AERO Common Core Mapping 1 Table
More informationGRADE 7 SKILL VOCABULARY MATHEMATICAL PRACTICES Add linear expressions with rational coefficients. 7.EE.1
Common Core Math Curriculum Grade 7 ESSENTIAL QUESTIONS DOMAINS AND CLUSTERS Expressions & Equations What are the 7.EE properties of Use properties of operations? operations to generate equivalent expressions.
More informationProblem of the Month Pick a Pocket
The Problems of the Month (POM) are used in a variety of ways to promote problem solving and to foster the first standard of mathematical practice from the Common Core State Standards: Make sense of problems
More informationGrade 6 Mathematics Performance Level Descriptors
Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this
More informationCourse Title: Honors Algebra Course Level: Honors Textbook: Algebra 1 Publisher: McDougall Littell
Course Title: Honors Algebra Course Level: Honors Textbook: Algebra Publisher: McDougall Littell The following is a list of key topics studied in Honors Algebra. Identify and use the properties of operations
More informationPowerTeaching i3: Algebra I Mathematics
PowerTeaching i3: Algebra I Mathematics Alignment to the Common Core State Standards for Mathematics Standards for Mathematical Practice and Standards for Mathematical Content for Algebra I Key Ideas and
More informationGary School Community Corporation Mathematics Department Unit Document. Unit Number: 3 Grade: 4
Gary School Community Corporation Mathematics Department Unit Document Unit Number: 3 Grade: 4 Unit Name: Measurement with Angles and Rectangles Duration of Unit: 20 Days UNIT FOCUS In this unit, students
More informationScholastic Fraction Nation
Scholastic correlated to the ematics: Grades 48 2010 TM & Scholastic Inc. All rights reserved. SCHOLASTIC,, and associated logos are trademarks and/or registered trademarks of Scholastic Inc. Scholastic
More informationNEW JERSEY STUDENT LEARNING STANDARDS FOR Mathematics Kindergarten
NEW JERSEY STUDENT LEARNING STANDARDS FOR Mathematics Kindergarten Mathematics Kindergarten In Kindergarten, instructional time should focus on two critical areas: (1) representing and comparing whole
More informationTYPES OF NUMBERS. Example 2. Example 1. Problems. Answers
TYPES OF NUMBERS When two or more integers are multiplied together, each number is a factor of the product. Nonnegative integers that have exactly two factors, namely, one and itself, are called prime
More information