# 2.6 Exponents and Order of Operations

Size: px
Start display at page:

Transcription

1 2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated multiplication), thus and (!3) 2 = (!3)(!3) = 9 (!4) 3 = (!4)(!4)(!4) =!64 What happens if the parentheses are removed from the number? To compute!4 2, the best way to understand its meaning is to note that!4 2 = 0! 4 2 Since order of operations must apply to this expression, the multiplication needs to be computed before the subtraction. Thus!4 2 = 0! 4 2 = 0! 16 =!16 Commonly we read!4 2 as the opposite of 4 2, rather than negative 4 2, which instead would be written as(!4) 2. As long as you keep this distinction in mind, exponents on negative numbers are computed exactly as on positive numbers. 107

2 Example 1 Compute each exponent. a. (!9) 2 b. (!3) 4 c.!2 4 d. (!5) 3 Solution a. Computing the exponent: (!9) 2 = (!9)(!9) = 81 b. Computing the exponent: (!3) 4 = (!3)(!3)(!3)(!3) = 81 c. Remembering this refers to the opposite:!2 4 =! ( ) =!16 d. Computing the exponent: (!5) 3 = (!5)(!5)(!5) =!125 We are now ready to tackle order of operations. Recall the order of operations as: Order of Operations 1. First compute all parentheses. 2. Compute all exponents next. 3. Compute all multiplications and divisions (working left to right). 4. Compute all additions and subtractions (working left to right). These are identical to the last chapter, except integers will now be used instead of whole numbers. The following examples should help to clarify the use of order of operations for computation with integers. 108

3 Example 2 Compute the following expressions. a.!5! 4( 3 + 2) b.!12! 8 2 c. ( 3! 7) 11! 4 2 d. (!4) 2! (!6) 2 ( ) Solution a. First compute within the parentheses first, then compute the multiplication, then finally the subtraction:!5! ( ) =!5! 4 5 =!5! 20 =!5 + (!20) =!25 b. First compute the division, then the subtraction:!12! 8 2 =!12! 4 =!12 + (!4) =!16 c. First compute within the parentheses (remember to do the exponent first in the second parentheses), then compute the multiplication: 3! 7 ( ) = 3! 7 ( ) 11! 4 2 ( )( 11! 16) ( )( 11 + (!16)) = 3 + (!7) = (!4)(!5) = 20 d. First compute the exponents, then compute the subtraction: (!4) 2! (!6) 2 = (!4)(!4)! (!6)(!6) = 16! 36 = 16 + (!36) =!20 Note how we still rewrite subtraction as an addition problem. 109

4 Example 3 Compute the following expressions. ( )! 3 2 a. 4! 2 3 ( ) 2! ( 5! 8) 3 b. 4! 9 ( ) 2 ( ) 2! 48 (!4) 2 c. 4! (!3) 2 d.! Solution a. Compute within the parentheses first (remember to compute the exponent first, then compute the multiplication, then finally the subtraction (rewriting as an addition): 4! 2 3 ( )! 3 2 = 4! 8 ( )! 3 2 ( )! 3 2 = 4 + (!8) =!4! 3 2 =!4! 6 =!4 + (!6) =!10 b. Compute within each parentheses first, then compute the exponents, and finally the subtraction (rewriting as an addition): 4! 9 ( ) 2! ( 5! 8) 3 = ( 4 + (!9)) 2! ( 5 + (!8)) 3 = (!5) 2! (!3) 3 = 25! (!27) = = 52 c. Compute within the parenthesis first (remember to compute the exponent first, then the subtraction), then finally compute the outside exponent: ( 4! (!3) 2 ) 2 = ( 4! 9) 2 = ( 4 + (!9)) 2 = (!5) 2 =

5 d. Compute within the parenthesis first (exponent first, then the division), then compute the exponents outside of the exponents, then the division, and finally the subtraction (rewriting as an addition): ( ) 2! 48 (!4) 2 =! 36 4! ( ) 2! 48 (!4) 2 =!(9) 2! 48 (!4) 2 =!81! =!81! 3 =!81 + (!3) =!84 Armed with order of operations, we are now able to check if integers are solutions to more complicated equations. For example, to determine if x = 3 is a solution to the equation 2x! 1 =!7, we substitute into the equation and determine if a true statement exists: 2(!3)! 1 =!7!6! 1 =!7!6 + (!1) =!7!7 =!7 Since this statement ( 7 = 7) is true, x = 3 is a solution to the equation 2x! 1 =!7. Note that there are more steps to the check, especially if the variable appears on both sides of the equation. 111

6 Example 4 Determine whether or not the given integer value is a solution to the equation. a. 3x + 5 =!2; x =!1 b.!2y! 3 = 1; y =!2 c.!4a! 3 =!11; a =!2 d. 2x + 1 = 4x! 5; x = 3 Solution a. Substitute x = 1 into the equation and determine whether the statement is true: 3(!1) + 5 =!2!3 + 5 = 2 2 = 2 Since this last statement (2 = 2) is true, x = 1 is a solution to the equation 3x + 5 =!2. b. Substitute y = 2 into the equation and determine whether the statement is true:!2(!2)! 3 = 1 4! 3 = 1 1 = 1 Since this last statement (1 = 1) is true, y = 2 is a solution to the equation!2y! 3 = 1. c. Substitute a = 2 into the equation and determine whether the statement is true:!4(!2)! 3 =!11 8! 3 =!11 5 =!11 Since this last statement (5 = 11) is false, a = 2 is not a solution to the equation!4a! 3 =!11. d. Substitute x = 3 into both sides of the equation, computing each side independently, and determine whether the statement is true: 2(3) + 1 = 4(3)! = 12! 5 7 = 7 Since this last statement (7 = 7) is true, x = 3 is a solution to the equation 2x + 1 = 4x!

7 Terminology order of operations Exercise Set 2.6 Compute each exponent. 1. (!6) 2 2.!6 2 3.! (!10) 2 5. (!3) 3 6.!3 3 7.! (!2) 5 9.!(!2) 4 10.!(!2) 6 Compute the following expressions. Remember to use order of operations in computing the values ! 5( 8! 2) ! 7( 10! 3) ! ! ! 4 4! !8 19.!5 ( ) ! 5( 3! 4 3) ( )(!3)! 4 (!6) 18. (!9)(!3)! 5 (!7) ( ) 2! (!6) (!8) 2! (!9) 2 ( ) 2! 5 (!3) 3 22.!8(!2)! 6 (!4) 2 ( ) 24. 6! 15( 6! 11) ( ) ! 7( 12! 6) 21.!12! ! 12 5! ! 8 9! ! 13 9! !6 ( ) ! 7( 15! 3 2 ) ( ) 2! 8( 3! 9) 30. (!5) 2! 11( 2! 7) 31.! 5 2! 4 3!! 9 33.!6!4! 7 35.! 9! ! 8 ( ) 32.! 6 2! 8( 7!! 12 ) ( ) + 5( 3! 9) 34.!5(!5! 4) + 4( 2! 11) ( ) 2 36.!( 14! 5 2 ) 2 ( ) 2! ( 4! 7) 38. ( 4! 9)! (!3! 2) ( ) 2! (!4 + 2) 40. (!3! 2)! (!5 + 2) 39.!6! 2 113

8 ( ) ( 5! (!4) 2 ) 2 ( )! ( 42! 4 3 )! 6 8 ( ) 2! 54 (!3) 2 46.!( ) 2! 72 (!6) ! (!3) ! ! (!4) 2! 3 2 5! 3 4!3(13! 15)! 8(5! 3) 4(!2)! 2! (!5) ! (!3) 2 4! 2 4!4 4! 6 ( )! 4( 2! 3)!4! 2(!5) Determine whether or not the given integer value is a solution to the equation x! 3 = 7 ; x = x! 3 = 7 ; x = a + 1 =!15 ; a = a + 1 =!15 ; a = 4 55.!3x + 2 =!16 ; x = 6 56.!3x + 2 =!16 ; x = 6 57.!8x + 1 = 17 ; x = 2 58.!8x + 1 = 17 ; x = y + 3 = 4y! 1 ; y = y + 3 = 4y! 1 ; y = x! 5 = 4x! 11 ; x = x! 5 = 4x! 11 ; x = t 2! 4 = t 3! 3; t = t 2! 4 = t! 3; t = s!3! 6 = s 4 + 1; s = s!3! 6 = s + 1; s = x 2 = 4x ; x = x 2 = 4x ; x = w 2! 5w = w! 8 ; w = w 2! 5w = w! 8 ; w = 2 Answer the following questions. 71. What number must be subtracted from 8 to yield 23? 72. What number must be subtracted from 4 to yield 12? 73. What number must be divided by 4 to yield 9? 74. What number must be divided by 6 to yield 25? 75. If the sum of 8 and 4 is divided by the sum of 8 and 10, what is the result? 76. If the sum of 12 and 13 is divided by the sum of 2 and 7, what is the result? 77. If the sum of 9 and 12 is divided by the difference of 7 and 10, what is the result? 78. If the difference of 8 and 20 is divided by the difference of 2 and 5, what is the result? 79. If the sum of 8 and 5 is multiplied by the difference of of 5 and 14, what is the result? 80. If the sum of 4 and 9 is multiplied by the difference of 6 and 13, what is the result? 114

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.

Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### Click on the links below to jump directly to the relevant section

Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### 2.3. Finding polynomial functions. An Introduction:

2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned

### Accentuate the Negative: Homework Examples from ACE

Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),

### Negative Integer Exponents

7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### Fractions and Linear Equations

Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### 1.6 The Order of Operations

1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

### Chapter 9. Systems of Linear Equations

Chapter 9. Systems of Linear Equations 9.1. Solve Systems of Linear Equations by Graphing KYOTE Standards: CR 21; CA 13 In this section we discuss how to solve systems of two linear equations in two variables

### Sample Problems. Practice Problems

Lecture Notes Quadratic Word Problems page 1 Sample Problems 1. The sum of two numbers is 31, their di erence is 41. Find these numbers.. The product of two numbers is 640. Their di erence is 1. Find these

### Algebra Cheat Sheets

Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

### Adding and Subtracting Positive and Negative Numbers

Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number

### 5.1 Radical Notation and Rational Exponents

Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

### 6.1 The Greatest Common Factor; Factoring by Grouping

386 CHAPTER 6 Factoring and Applications 6.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Solving Linear Equations - General Equations

1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them

### Pre-Algebra - Integers

0.1 Pre-Algebra - Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this

### Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have

8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents

### ( ) FACTORING. x In this polynomial the only variable in common to all is x.

FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

### Using Patterns of Integer Exponents

8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. How can you develop and use the properties of integer exponents? The table below shows powers of

### 3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

### Solutions of Linear Equations in One Variable

2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

### HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences

### HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers

HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.

### Pre-Algebra - Order of Operations

0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them

### 26 Integers: Multiplication, Division, and Order

26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue

### 23. RATIONAL EXPONENTS

23. RATIONAL EXPONENTS renaming radicals rational numbers writing radicals with rational exponents When serious work needs to be done with radicals, they are usually changed to a name that uses exponents,

### 6-3 Solving Systems by Elimination

Warm Up Simplify each expression. 1. 2y 4x 2(4y 2x) 2. 5(x y) + 2x + 5y Write the least common multiple. 3. 3 and 6 4. 4 and 10 5. 6 and 8 Objectives Solve systems of linear equations in two variables

### Chapter 7 - Roots, Radicals, and Complex Numbers

Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

### Order of Operations More Essential Practice

Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

### PREPARATION FOR MATH TESTING at CityLab Academy

PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Partial Fractions. (x 1)(x 2 + 1)

Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +

### 0.8 Rational Expressions and Equations

96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

### Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera

Using Algebra Tiles for Adding/Subtracting Integers and to Solve 2-step Equations Grade 7 By Rich Butera 1 Overall Unit Objective I am currently student teaching Seventh grade at Springville Griffith Middle

### COLLEGE ALGEBRA 10 TH EDITION LIAL HORNSBY SCHNEIDER 1.1-1

10 TH EDITION COLLEGE ALGEBRA LIAL HORNSBY SCHNEIDER 1.1-1 1.1 Linear Equations Basic Terminology of Equations Solving Linear Equations Identities 1.1-2 Equations An equation is a statement that two expressions

### EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

### Zeros of Polynomial Functions

Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of

### Section 4.1 Rules of Exponents

Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells

### Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving

### The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,

1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition

### SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

### Properties of Real Numbers

16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should

### MATH-0910 Review Concepts (Haugen)

Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,

### Solving Exponential Equations

Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is

### This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0).

This is Factoring and Solving by Factoring, chapter 6 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

### Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

### Opposites are all around us. If you move forward two spaces in a board game

Two-Color Counters Adding Integers, Part II Learning Goals In this lesson, you will: Key Term additive inverses Model the addition of integers using two-color counters. Develop a rule for adding integers.

Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Section 1.1 Linear Equations: Slope and Equations of Lines

Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

### Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

### MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.

1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with

### Solving systems by elimination

December 1, 2008 Solving systems by elimination page 1 Solving systems by elimination Here is another method for solving a system of two equations. Sometimes this method is easier than either the graphing

### Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.

2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added

### Polynomial Expression

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### Lesson Plan -- Rational Number Operations

Lesson Plan -- Rational Number Operations Chapter Resources - Lesson 3-12 Rational Number Operations - Lesson 3-12 Rational Number Operations Answers - Lesson 3-13 Take Rational Numbers to Whole-Number

### Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:

Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules

### Chapter R.4 Factoring Polynomials

Chapter R.4 Factoring Polynomials Introduction to Factoring To factor an expression means to write the expression as a product of two or more factors. Sample Problem: Factor each expression. a. 15 b. x

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Exponents, Radicals, and Scientific Notation

General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### Factoring and Applications

Factoring and Applications What is a factor? The Greatest Common Factor (GCF) To factor a number means to write it as a product (multiplication). Therefore, in the problem 48 3, 4 and 8 are called the

### Week 13 Trigonometric Form of Complex Numbers

Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working

### Common Core Standards for Fantasy Sports Worksheets. Page 1

Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting

### 1.4 Compound Inequalities

Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

### Figure 1.1 Vector A and Vector F

CHAPTER I VECTOR QUANTITIES Quantities are anything which can be measured, and stated with number. Quantities in physics are divided into two types; scalar and vector quantities. Scalar quantities have

### Preliminary Mathematics

Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and

### SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

### MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

### 3. Solve the equation containing only one variable for that variable.

Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

### Zero and Negative Exponents. Section 7-1

Zero and Negative Exponents Section 7-1 Goals Goal To simplify expressions involving zero and negative exponents. Rubric Level 1 Know the goals. Level 2 Fully understand the goals. Level 3 Use the goals

### Finding Solutions of Polynomial Equations

DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

### No Solution Equations Let s look at the following equation: 2 +3=2 +7

5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

### Addition and Subtraction of Integers

Addition and Subtraction of Integers Integers are the negative numbers, zero, and positive numbers Addition of integers An integer can be represented or graphed on a number line by an arrow. An arrow pointing

### Base Conversion written by Cathy Saxton

Base Conversion written by Cathy Saxton 1. Base 10 In base 10, the digits, from right to left, specify the 1 s, 10 s, 100 s, 1000 s, etc. These are powers of 10 (10 x ): 10 0 = 1, 10 1 = 10, 10 2 = 100,

8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens

### Fractions to decimals

Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of

### 7. Solving Linear Inequalities and Compound Inequalities

7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing

### The Greatest Common Factor; Factoring by Grouping

296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

### Determinants can be used to solve a linear system of equations using Cramer s Rule.

2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

### Activity 1: Using base ten blocks to model operations on decimals

Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division

### Answers to Basic Algebra Review

Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

### SAT Math Facts & Formulas Review Quiz

Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions

### To Evaluate an Algebraic Expression

1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

### Lesson 9: Radicals and Conjugates

Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

### POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

### Factoring Methods. Example 1: 2x + 2 2 * x + 2 * 1 2(x + 1)

Factoring Methods When you are trying to factor a polynomial, there are three general steps you want to follow: 1. See if there is a Greatest Common Factor 2. See if you can Factor by Grouping 3. See if

9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation

### A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated

Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means

### 3.1 Solving Systems Using Tables and Graphs

Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system

### Using the ac Method to Factor

4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error

### The Method of Partial Fractions Math 121 Calculus II Spring 2015

Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

### Chapter 8 Integers 8.1 Addition and Subtraction

Chapter 8 Integers 8.1 Addition and Subtraction Negative numbers Negative numbers are helpful in: Describing temperature below zero Elevation below sea level Losses in the stock market Overdrawn checking

### Absolute Value Equations and Inequalities

. Absolute Value Equations and Inequalities. OBJECTIVES 1. Solve an absolute value equation in one variable. Solve an absolute value inequality in one variable NOTE Technically we mean the distance between