# Section 1. Finding Common Terms

Size: px
Start display at page: Transcription

1 Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor of ab. In a similar way we can look at the factors of an algebraic expression. So, for instance, 3uv has factors 1, 3, u, v and combinations of these like 3u, 3v, uv and of course 3uv. Other examples:- 1. 2ab = 2 a b has factors 1, 2, a, b, 2a, 2b, ab and 2ab. 2. uvz has factors u, v, z, uv, uz, vz, 1, uvz. 3. xy has factors 1, x, y and xy. In simplifying algebraic expressions we need to find common factors. Given two terms in an algebraic expression the common factors are those things which divide both of them. Example 1 : (a) 3uv and 6u have common factors 1, 3, u and 3u. (b) 2xy and 4xyz have common factors 1, 2, x, y, 2x, 2y, 2xy and xy. The highest common factor is, as was the case with numbers, the biggest or largest factor that divides two expressions. So the highest common factor of 3uv and 6u (from example 1(a)) is 3u; the highest common factor of 2xy and 4xyz (from example 1(b)) is 2xy. As with whole numbers we can also find the smallest algebraic expression that is a multiple of two expressions. This is called the lowest common multiple. Example 2 : 3uv and 6u have as their lowest common multiple 6uv since both 3uv and 6u divide into 6uv and do not both divide into a smaller expression.

2 To find the lowest common multiple we take the highest common factor and then multiply it by whatever is missing from each expression. From the example above 3uv and 6u have highest common factor 3u. Now 3uv = 3u v and 6u = 3u 2 so the lowest common multiple is 3u v 2 = 6uv. Example 3 : 9xy and 15xz have highest common factor 3x. 9xy = 3x 3y and 15xz = 3x 5z so the lowest common multiple is 3x 3y 5z = 45xyz. Example 4 : 6a and 5b have highest common factor 1. So their lowest common multiple is 1 6a 5b = 30ab. Exercises: 1. Find the highest common factor for each of the following: (a) 6x, 18y (b) 12mn, 8m (c) 3uv, 4uw (d) 18mp, 9mn (e) 27xyz, 45xz 2. Find the lowest common multiple for each of the following: (a) 6x, 4xy (b) 12xy, 8xy (c) 16mn, 12np (d) 24xyz, 16yz (e) 3m, 45n Section 2 Simple Factoring Sometimes in simplifying algebraic expressions or equations we would like to factorize them. This is a process which turns a sum into a product by removing common factors and placing them outside brackets. You have already seen an example of this. Page 2

3 When working out the perimeter of a paddock in the last worksheet we wanted two times the length plus two times the width. We wrote this as P = 2l + 2w By factorizing we can make a slightly tidier sum: P = 2(l + w) As 2 is a common factor to both terms it is placed outside of the brackets and the rest is left as a sum. When factorizing algebraic expressions we look for the common factors in the terms and take these outside of the brackets to form a product as in the above example. Example 1 : 9x + 24y = 3(3x + 8y) Example 2 : 9x 2 + 3x + 15x 3 = 3(3x 2 + x + 5x 3 ) But the terms inside the brackets still have x as a common factor: 9x 2 + 3x + 15x 3 = 3x(3x x 2 ) This is where we would stop since the terms inside the brackets have no further common factors. Example 3 : 2ab 2 + ab 2 c + 3ab = ab(2b + bc + 3) Example 4 : 2xy 2 4x 2 y = 2xy(y + 2x) Note that, by the laws mentioned in the last worksheet, the negative sign in front of the brackets will carry through the brackets, changing the sign of everything inside the brackets. Sometimes the common factor is not a simple multiple of numbers and letters but may in itself be a sum. Example 5 : Simplify 5(x + 2) + y(x + 2) = (5 + y)(x + 2). We note that (x + 2) is a common factor, so we put (x + 2) out the front: 5(x + 2) + y(x + 2) = (x + 2)(5 + y) Example 6 : 7(y + 1) x(y + 1) = (y + 1)(7 x) Page 3

4 Exercises: 1. Factorize the following expressions: (a) 7x + 4 (b) 20x 10 (c) 18xy 3yz (d) 12mn + 18mp (e) 16m 2 4m (f) 3x 2 + 6x 18 (g) 6x 24 (h) 2xy 8x (i) 24mn 16m 2 n (j) x 2 y y 2 x (k) 12m 2 n + 24m 2 n 2 (l) 72y 2 p 18y 3 p 2 2. Factorize the following expressions: (a) 4(x + 3) + m(x + 3) (b) x(x 1) + 5(x 1) (c) y(y + 4) 6(y + 4) (d) x 2 (x + 7) + x(x + 7) (e) 3x(x 4) 7(x 4) Section 3 Algebraic Fractions One use of the factorization of algebraic expressions or of being able to find common algebraic factors is to simplify algebraic fractions. Using the same method as with ordinary fractions we can cancel out common factors in algebraic fractions to make a simpler equivalent fraction. Example 1 : x 2x = 1 x 2 x = 1 2 by cancelling out the common x in the numerator and denominator. Example 2 : noting that 5xy is a common factor. 5x 2 y 15xy = 5xy x 5xy 3 = x 3 Page 4

5 Example 3 : 4a + 2ab 2a(2 + b) = = 2 + b 2a 2a noting that 2a is a factor in common for the two terms in the sum and then cancelling. Example 4 : 7x 2 5y 15yz x = x 7x 5y 3z 5y x x 7x 5y 3z = 5y x = 7x 3z = 21xz Note that, when either the numerator or denominator are completely cancelled, they become 1, not 0. Example 5 : x 3 2x2 3 = x 3 3 2x 2 = 1 2x Example 6 : 6x x (x + 3) = 20 = 6 15 = (x + 3) = 3 2 = Page 5

6 Exercises: 1. Simplify the following: (a) 3x 15 (b) 2x+10 4 (c) 5x+20 x+4 (d) x2 4x x 4 (e) 3x2 9x 2x 6 (f) 9x+27 9x+18 (g) 6ab+2a 2b (h) 16m2 n 8mn 12m 6 (i) 4mnp 8mp 12mn 2. Simplify the following: (a) 3x+9 7x x+3 (b) x2 5x 3x+15 2x+10 4x (c) 3mp+4p 8p 12p2 3m+4 16 (d) 6m2 +8m 2mp+4m 12 (e) 24x 8 9x (f) x2 +2x 2x (g) p2 +pq 7p (h) 5xy 15y 4x 12 8p+8q 21q 6y2 x+y Page 6

7 Exercises 2.1 Factors of Algebraic Expressions 1. What are the factors of 18? 2. What are the common factors of: (a) 16 and 24 (b) 6tm and 14t 2 3. What is the highest common factor of (a) 12 and 32 (b) 24 and 40 (c) 5 and Factorize the following algebraic expressions (a) 3x + 21 (b) 6x 2 + 3x (c) 18x xy (d) 6tm 24m 2 (e) 8x + 12y + 10x + 15y (f) x 2 7x + 3x Simplify the following (a) 3x+12 3 (b) 6xy+18x 12 (c) 7mn 8 24 m (d) 4x+20 8x (e) 6xy2 21x2 32xy2 7 y 91 (f) 12p2 q pq 3 Page 7

8 Answers 2.1 Section 1 1. (a) 6 (b) 4m (c) u (d) 9m (e) 9xz 2. (a) 12xy (b) 24xy (c) 48mnp (d) 48xyz (e) 45mn Section 2 1. (a) 7x + 4 (b) 10(2x 1) (c) 3y(6x z) (d) 6m(2n + 3p) 2. (a) (x + 3)(4 + m) (b) (x 1)(x + 5) (e) 4m(4m 1) (f) 3(x 2 + 2x 9) (g) 6(x + 4) (h) 2x(y + 4) (c) (y + 4)(y 6) (d) x(x + 7)(x + 1) (i) 8mn(3 2m) (j) xy(x + y) (k) 12m 2 n(1 + 2n) (l) 18y 2 p(4 p) (e) (x 4)(3x 7) Section 3 1. (a) x 5 (b) x+5 2 (c) 5 (d) x (e) 3x 2 (f) x+3 x+2 (g) a(3b+1) b (h) 4mn 3 (i) p(n 2) 3n 2. (a) 3(x+3) 2 (c) 3p2 2 (e) 4 3 (g) 3q 8 (b) 3(x 5) 8 (d) 4(3m+4) 3(p+2) (f) 2x (h) 5(x+y) 24y Exercises , 2, 3, 6, 9, (a) 1, 2, 4, 8 (b) 1, 2, t, 2t 3. (a) 4 (b) 8 (c) 1 Page 8

9 4. (a) 3(x 7) (b) 3x(2x + 1) (c) 6x(3x + 2y) 5. (a) x + 4 (b) x(y+3) 2 (c) 7n 3 (d) 6m(t 4m) (e) 9(2x + 3y) (f) (x + 3)(x 7) (d) 2 (e) 819x2 16y (f) 3pq Page 9

### 1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.

### Chapter 5. Rational Expressions 5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where

### Sect 6.1 - Greatest Common Factor and Factoring by Grouping Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,

### Adding and Subtracting Fractions. 1. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into. Tallahassee Community College Adding and Subtracting Fractions Important Ideas:. The denominator of a fraction names the fraction. It tells you how many equal parts something is divided into.. The numerator

### Factoring - Greatest Common Factor 6.1 Factoring - Greatest Common Factor Objective: Find the greatest common factor of a polynomial and factor it out of the expression. The opposite of multiplying polynomials together is factoring polynomials. Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the

### Simplifying Algebraic Fractions 5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions

### Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions. Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear

### Fractions and Linear Equations Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps

### BEGINNING ALGEBRA ACKNOWLEDMENTS BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science

### 1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with

### Factoring (pp. 1 of 4) Factoring (pp. 1 of 4) Algebra Review Try these items from middle school math. A) What numbers are the factors of 4? B) Write down the prime factorization of 7. C) 6 Simplify 48 using the greatest common

### FINDING THE LEAST COMMON DENOMINATOR 0 (7 18) Chapter 7 Rational Expressions GETTING MORE INVOLVED 7. Discussion. Evaluate each expression. a) One-half of 1 b) One-third of c) One-half of x d) One-half of x 7. Exploration. Let R 6 x x 0 x

### Factoring - Grouping 6.2 Factoring - Grouping Objective: Factor polynomials with four terms using grouping. The first thing we will always do when factoring is try to factor out a GCF. This GCF is often a monomial like in

### Negative Integer Exponents 7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions

### 6.5 Factoring Special Forms 440 CHAPTER 6. FACTORING 6.5 Factoring Special Forms In this section we revisit two special product forms that we learned in Chapter 5, the first of which was squaring a binomial. Squaring a binomial.

### 1.4. Removing Brackets. Introduction. Prerequisites. Learning Outcomes. Learning Style Removing Brackets 1. Introduction In order to simplify an expression which contains brackets it is often necessary to rewrite the expression in an equivalent form but without any brackets. This process

### Factoring Polynomials UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can 8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify

### CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation CM2202: Scientific Computing and Multimedia Applications General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of

### Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

### Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials

### Operations with Algebraic Expressions: Multiplication of Polynomials Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the

### The Greatest Common Factor; Factoring by Grouping 296 CHAPTER 5 Factoring and Applications 5.1 The Greatest Common Factor; Factoring by Grouping OBJECTIVES 1 Find the greatest common factor of a list of terms. 2 Factor out the greatest common factor.

### Factoring Polynomials Factoring Polynomials 4-1-2014 The opposite of multiplying polynomials is factoring. Why would you want to factor a polynomial? Let p(x) be a polynomial. p(c) = 0 is equivalent to x c dividing p(x). Recall

### MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

### Math 53 Worksheet Solutions- Minmax and Lagrange Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

### Click on the links below to jump directly to the relevant section Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is

### Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

### Unit 3 Boolean Algebra (Continued) Unit 3 Boolean Algebra (Continued) 1. Exclusive-OR Operation 2. Consensus Theorem Department of Communication Engineering, NCTU 1 3.1 Multiplying Out and Factoring Expressions Department of Communication

### This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

### How To Factor By Gcf In Algebra 1.5 7-2 Factoring by GCF Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up Simplify. 1. 2(w + 1) 2. 3x(x 2 4) 2w + 2 3x 3 12x Find the GCF of each pair of monomials. 3. 4h 2 and 6h 2h 4. 13p and 26p

### CH3 Boolean Algebra (cont d) CH3 Boolean Algebra (cont d) Lecturer: 吳 安 宇 Date:2005/10/7 ACCESS IC LAB v Today, you ll know: Introduction 1. Guidelines for multiplying out/factoring expressions 2. Exclusive-OR and Equivalence operations

### Exponents, Radicals, and Scientific Notation General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =

### 1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable. 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

### #6 Opener Solutions. Move one more spot to your right. Introduce yourself if needed. 1. Sit anywhere in the concentric circles. Do not move the desks. 2. Take out chapter 6, HW/notes #1-#5, a pencil, a red pen, and your calculator. 3. Work on opener #6 with the person sitting across from

### Factoring Flow Chart Factoring Flow Chart greatest common factor? YES NO factor out GCF leaving GCF(quotient) how many terms? 4+ factor by grouping 2 3 difference of squares? perfect square trinomial? YES YES NO NO a 2 -b

### SIMPLIFYING SQUARE ROOTS 40 (8-8) Chapter 8 Powers and Roots 8. SIMPLIFYING SQUARE ROOTS In this section Using the Product Rule Rationalizing the Denominator Simplified Form of a Square Root In Section 8. you learned to simplify

### FACTORING ax 2 bx c. Factoring Trinomials with Leading Coefficient 1 5.7 Factoring ax 2 bx c (5-49) 305 5.7 FACTORING ax 2 bx c In this section In Section 5.5 you learned to factor certain special polynomials. In this section you will learn to factor general quadratic polynomials.

### 0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

### Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

### FACTORING POLYNOMIALS 296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated

### 1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

### Boolean Algebra (cont d) UNIT 3 BOOLEAN ALGEBRA (CONT D) Guidelines for Multiplying Out and Factoring. Objectives. Iris Hui-Ru Jiang Spring 2010 Boolean Algebra (cont d) 2 Contents Multiplying out and factoring expressions Exclusive-OR and Exclusive-NOR operations The consensus theorem Summary of algebraic simplification Proving validity of an

### UNIT 5 VOCABULARY: POLYNOMIALS 2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to

### A Systematic Approach to Factoring A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool

### Numerical and Algebraic Fractions Numerical and Algebraic Fractions Aquinas Maths Department Preparation for AS Maths This unit covers numerical and algebraic fractions. In A level, solutions often involve fractions and one of the Core

### Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

### 5 means to write it as a product something times something instead of a sum something plus something plus something. Intermediate algebra Class notes Factoring Introduction (section 6.1) Recall we factor 10 as 5. Factoring something means to think of it as a product! Factors versus terms: terms: things we are adding

### By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms. SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor

### 5.1 FACTORING OUT COMMON FACTORS C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.

### Using the ac Method to Factor 4.6 Using the ac Method to Factor 4.6 OBJECTIVES 1. Use the ac test to determine factorability 2. Use the results of the ac test 3. Completely factor a trinomial In Sections 4.2 and 4.3 we used the trial-and-error 8. Simplification of Radical Expressions 8. OBJECTIVES 1. Simplify a radical expression by using the product property. Simplify a radical expression by using the quotient property NOTE A precise set of

### Monomial Factors. Sometimes the expression to be factored is simple enough to be able to use straightforward inspection. The Mathematics 11 Competency Test Monomial Factors The first stage of factoring an algebraic expression involves the identification of any factors which are monomials. We will describe the process by

### Simplifying Exponential Expressions Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write

### CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

### SPECIAL PRODUCTS AND FACTORS CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the

### To Evaluate an Algebraic Expression 1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum

### How To Solve Factoring Problems 05-W4801-AM1.qxd 8/19/08 8:45 PM Page 241 Factoring, Solving Equations, and Problem Solving 5 5.1 Factoring by Using the Distributive Property 5.2 Factoring the Difference of Two Squares 5.3 Factoring

### Section A-3 Polynomials: Factoring APPLICATIONS. A-22 Appendix A A BASIC ALGEBRA REVIEW A- Appendi A A BASIC ALGEBRA REVIEW C In Problems 53 56, perform the indicated operations and simplify. 53. ( ) 3 ( ) 3( ) 4 54. ( ) 3 ( ) 3( ) 7 55. 3{[ ( )] ( )( 3)} 56. {( 3)( ) [3 ( )]} 57. Show by 8.1 Radicals - Square Roots Objective: Simplify expressions with square roots. Square roots are the most common type of radical used. A square root unsquares a number. For example, because 5 2 = 25 we

### POLYNOMIALS and FACTORING POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use

### FACTORING OUT COMMON FACTORS 278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the

### Finding the Measure of Segments Examples Finding the Measure of Segments Examples 1. In geometry, the distance between two points is used to define the measure of a segment. Segments can be defined by using the idea of betweenness. In the figure 8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals

### MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006 MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order

### FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c Tallahassee Community College 55 FACTORING TRINOMIALS IN THE FORM OF ax 2 + bx + c This kind of trinomial differs from the previous kind we have factored because the coefficient of x is no longer "1".

### PREPARATION FOR MATH TESTING at CityLab Academy PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST

### Factoring Special Polynomials 6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These

### MTH 086 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 20, 2006 MTH 06 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 0, 006 Math 06, Introductory Algebra, covers the mathematical content listed below. In order

### Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

### MATHEMATICS FOR ENGINEERING BASIC ALGEBRA MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 1 ALGEBRAIC LAWS This tutorial is useful to anyone studying engineering. It uses the principle of learning by example. On completion of this tutorial

### Factoring. Factoring Monomials Monomials can often be factored in more than one way. Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,

### 1.2 Linear Equations and Rational Equations Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of

### Algebra 2 PreAP. Name Period Algebra 2 PreAP Name Period IMPORTANT INSTRUCTIONS FOR STUDENTS!!! We understand that students come to Algebra II with different strengths and needs. For this reason, students have options for completing

### SIMPLIFYING ALGEBRAIC FRACTIONS Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is

### Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm

### Multiplying and Dividing Algebraic Fractions . Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple

### 7-6. Choosing a Factoring Model. Extension: Factoring Polynomials with More Than One Variable IN T RO DUC E T EACH. Standards for Mathematical Content 7-6 Choosing a Factoring Model Extension: Factoring Polynomials with More Than One Variable Essential question: How can you factor polynomials with more than one variable? What is the connection between EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades

### Algebra (Expansion and Factorisation) Chapter10 Algebra (Expansion and Factorisation) Contents: A B C D E F The distributive law Siplifying algebraic expressions Brackets with negative coefficients The product (a + b)(c + d) Geoetric applications

### 3. Solve the equation containing only one variable for that variable. Question : How do you solve a system of linear equations? There are two basic strategies for solving a system of two linear equations and two variables. In each strategy, one of the variables is eliminated

### FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project 9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module

### Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Math 50, Chapter 8 (Page 1 of 20) 8.1 Common Factors Definitions 1. A factor of integer is an integer that will divide the given integer evenly (with no remainder). Find all the factors of a. 44 b. 32

### COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

### Tim Kerins. Leaving Certificate Honours Maths - Algebra. Tim Kerins. the date Leaving Certificate Honours Maths - Algebra the date Chapter 1 Algebra This is an important portion of the course. As well as generally accounting for 2 3 questions in examination it is the basis for many

### MATH 21. College Algebra 1 Lecture Notes MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a

### Free Pre-Algebra Lesson 55! page 1 Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can

### STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

### 1.1 Practice Worksheet Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

### north seattle community college INTRODUCTION TO FRACTIONS If we divide a whole number into equal parts we get a fraction: For example, this circle is divided into quarters. Three quarters, or, of the circle is shaded. DEFINITIONS: The

### Simple Examples. This is the information that we are given. To find the answer we are to solve an equation in one variable, x. Worksheet. Solving Equations in One Variable Section 1 Simple Examples You are on your way to Brisbane from Sydney, and you know that the trip is 1100 km. You pass a sign that says that Brisbane is now

### Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions: Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?

### Factoring - Factoring Special Products 6.5 Factoring - Factoring Special Products Objective: Identify and factor special products including a difference of squares, perfect squares, and sum and difference of cubes. When factoring there are

### Chapter 1: Order of Operations, Fractions & Percents HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain Factoring Trinomials using Algebra Tiles Student Activity Materials: Algebra Tiles (student set) Worksheet: Factoring Trinomials using Algebra Tiles Algebra Tiles: Each algebra tile kits should contain Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the