b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water.

Save this PDF as:

Size: px
Start display at page:

Download "b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the water."

Transcription

1 Sierzega/Ferri: Optics 5 Observation Experiments: Light Bending Go to: /bending-light You have a laser beam (press the button to turn it on!) that is shining from into some other material such as,, mystery material A, or mystery material B. Use for part 1 of this lab Observational Experiments (Air Water) Grab the protractor from the toolbox and set it up so that you can easily measure the angle at which the laser beam strikes the (relative to the normal line) and the angle that it makes with the normal line once it is in the. a. What happens to the laser beam as it enters the? b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the.

2 Buggé: Optics 6 c. Collect the following data to help you find the relationship between the incident ray (the incoming laser beam from the ) and the refracted ray (the laser beam after it is bent by the ). Measure your angles relative to the normal. Angle of Incident Ray, Θ 1 Angle of Refracted Ray, Θ d. Does the reflected beam behave in the same way it would if it were reflected off another smooth surface, like a mirror? e. When the incident ray enters the and bends, does it bend toward the normal line or away from the normal line? 5.2 Observational Experiments (Water Air) a. What happens to the laser beam as it enters the? b. In Laser View - click on wave. Pose an explanation that explains why the light bends when it enters the.

3 Sierzega/Ferri: Optics 5 c. Collect the following data to help you find the relationship between the incident ray (the incoming laser beam from the ) and the refracted ray (the laser beam after it is bent by the ). Measure your angles relative to the normal. Angle of Incident Ray, Θ 1 Angle of Refracted Ray, Θ d. Does the reflected beam behave in the same way it would if it were reflected off another smooth surface, like a mirror? e. When the incident ray enters the and bends, does it bend toward the normal line or away from the normal line? 5.3 Summarize a. Can you see a pattern in the way a ray of light bends when it passes across a boundary surface between two substances? b. What determines how much the ray bends when it crosses a boundary surface?

4 Buggé: Optics Summarize your conclusions - refraction of light rays Review your observations in the previous exercise. Consider the examples pictured below. ethyl alcohol 1. What are the dotted lines in the figure above? 2. Record the way light bends when passing from into each material and from each material back into the. Describe the direction of refraction in terms of the normal to the surface at the point where the ray passes through (toward the normal or away from the normal). Materials Direction of refraction: from Direction of refraction: to Relative amount of refraction Water and From into : From into : From into : From into : Glass and From into alcohol: From alcohol into : Alcohol and 3. Describe any patterns that can be detected in all the experiments above

5 Sierzega/Ferri: Optics Predict and test - triangular prism 1. Use the pattern you found in the previous exercise to predict what will happen when a beam of light passes through a triangular prism. incident light ray 2. Perform the experiment. Did the results match your prediction? 5.6. Represent and reason - sunken toy Mike has dropped his new Samsung Galaxy IV smartphone into the swimming pool at south. 1. Draw the ray of light that reaches Mike's eye from the beautiful widescreen display. 2. What is the apparent position of this wonderful device from Mike's point of view?

6 Buggé: Optics Predict and test We observed that when light passes from into another material, its path refracts towards a normal line that is perpendicular to the surface of the material. When light passes from another material into, its path refracts away from the normal line. Use this pattern to predict the path of light rays moving through a prism in each of the cases below. 1. Glass prism in laser beam 2. Hollow prism in. You can ignore the thin walls of the hollow prism. laser beam 3. Solid prism in Note that the light bends toward the perpendicular line when going from to, and vice versa in going from to. laser beam

REFLECTION & REFRACTION

REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

Ray Optics 11/96. Physical Science 101 Name Section. Partner s Name

Physical Science 101 Name Section Partner s Name Purpose: The purpose of this lab is to study the laws of reflection and refraction for flat surfaces and to find out how converging lenses and converging

Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction

Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different

Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted

Light and Sound 3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted 3.15 use the law of reflection (the angle of incidence equals the angle of reflection)

Which type of electromagnetic radiation would be used to take the photograph? ... (1)

Q. After a person is injured a doctor will sometimes ask for a photograph to be taken of the patient s bone structure, e.g. in the case of a suspected broken arm. (i) Which type of electromagnetic radiation

Reflection and Refraction

Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

Turnbull High School Physics Department. CfE. National 4 /National. Physics. Unit 1: Waves and Radiation. Section 3: Light

Turnbull High School Physics Department CfE National 4 /National 5 Physics Unit 1: Waves and Radiation Section 3: Light Name: Class: 1 National 5 Unit 1: Section 3 I can state the law of reflection and

12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?

12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water

ConcepTest Reflection

ConcepTest 23.1 When watching the Moon over the ocean, you often see a long streak of light on the surface of the water. This occurs because: Reflection 1) the Moon is very large 2) atmospheric conditions

Solution Derivations for Capa #13

Solution Derivations for Capa #13 1) A super nova releases 1.3 10 45 J of energy. It is 1540 ly from earth. If you were facing the star in question, and your face was a circle 7 cm in radius, how much

NNIN Nanotechnology Education

NNIN Nanotechnology Education Lesson 1: Refraction Tank Teacher s Preparatory Guide Purpose: This lab will help students understand and measure the angle of incidence and the angle of refraction of a beam

(text on screen) VO In diffuse reflection, parallel incident light rays are reflected in different directions.

Physics 1401 Mirrors You ve probably heard the old saying, The end is in sight. Well, that saying applies doubly to our class. Not only do we start the final unit that ends our year of physics but today

1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

It bends away from the normal, like this. So the angle of refraction, r is greater than the angle of incidence, i.

Physics 1403 Lenses It s party time, boys and girls, because today we wrap up our study of physics. We ll get this party started in a bit, but first, you have some more to learn about refracted light.

2/16/2016. Reflection and Refraction WHITEBOARD WHITEBOARD. Chapter 21 Lecture What path did the light follow to reach the wall?

Chapter 21 Lecture What path did the light follow to reach the wall? Reflection and Refraction Represent the path from the laser to the wall with an arrow. Why can t you see the beam of light itself but

Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

Mirror, mirror - Teacher Guide

Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from

Law of Reflection. The angle of incidence (i) is equal to the angle of reflection (r)

Light GCSE Physics Reflection Law of Reflection The angle of incidence (i) is equal to the angle of reflection (r) Note: Both angles are measured with respect to the normal. This is a construction line

The Thin Convex Lens convex lens focal point thin lens thin convex lens real images

1 The Thin Convex Lens In the previous experiment, we observed the phenomenon of refraction for a rectangular piece of glass. The bending or refraction of the light was observed for two parallel interfaces,

Objectives: To determine how rays of light reflect off the surface of mirrors.

1 Home Lab 4 Reflection of Light Rays Overview: With a simple flat mirror, paper, and a ruler we can demonstrate how we see reflections of different objects in mirrors. Activity 4-1: Tracing reflected

Lenses. Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil.

Lenses Notes_10_ SNC2DE_09-10 Types of Lenses (The word lens is derived from the Latin word lenticula, which means lentil. A lens is in the shape of a lentil. ) Most lenses are made of transparent glass

Physics I Honors: Chapter 14 Practice Test - Refraction of Light

Physics I Honors: Chapter 14 Practice Test - Refraction of Light Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Refraction is the bending

Convex Mirrors. Ray Diagram for Convex Mirror

Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003.

LIGHT SECTION 6-REFRACTION-BENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate

Three Lasers Converging at a Focal Point : A Demonstration

Three Lasers Converging at a Focal Point : A Demonstration Overview In this activity, students will see how we can use the property of refraction to focus parallel rays of light. Students will observe

Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

Chapter 17 Light and Image Formation

Chapter 7 Light and Image Formation Reflection and Refraction How is an image in a mirror produced? Reflection and Image Formation In chapter 6 we studied physical optics, which involve wave aspects of

Unit 3 Lesson 3 Mirrors and Lenses How do mirrors and lenses work?

Big Idea: Visible light is the small part of the electromagnetic spectrum that is essential for human vision Unit 3 Lesson 3 Mirrors and Lenses How do mirrors and lenses work? Copyright Houghton Mifflin

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

Objectives 426 CHAPTER 10 LIGHT AND OPTICAL SYSTEMS

Objectives Explain what is meant by the curvature and focal length of mirrors and lenses. Explain how curvature and focal length are related. Use light rays to trace light from an object to a mirror to

Delta, Delta, Delta: Teacher Lesson Plan

Introduction Delta, Delta, Delta: Teacher Lesson Plan In this experiment, students construct an equilateral triangle using graph paper, pencil, protractor, and a ruler. They also make a laser triangle

Discover Reflection Kit

Instruction Manual No. 012-09301A Discover Reflection Kit SE-8803 Included Equipment Plane mirror with stand (15 cm x 15 cm) Corkboard (22 cm x 28 cm) Colored pins Additional Equipment Recommended Protractor

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics B Name Multiple Choice 1. Which of the following theories can explain the bending of waves behind obstacles into shadow region? (A) Particle theory of light (B)

How Do Lenses and Mirrors Affect Light?

Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces that make some reflections better than

Lecture 14 Images Chapter 34

Lecture 4 Images Chapter 34 Preliminary topics before mirrors and lenses Law of Reflection Dispersion Snell s Law Brewsters Angle Law of Reflection Dispersion Snell s Law Brewsters Angle Geometrical Optics:Study

Build Your Own Michelson Interferometer Subject Area: Scientific processes and physical science Grade Level: 9-12 OVERVIEW Build your own Michelson interferometer for under \$150. The Michelson interferometer

Refraction and Lenses. Snell s Law Total internal reflection Dispersion Absorption Scattering

Refraction and Lenses Snell s Law Total internal reflection Dispersion Absorption Scattering Refraction Two things happen when a light ray is incident on a smooth boundary between two transparent materials:

Page 1 SNC 2D Grade 10 Science, Academic Unit: Light and Geometric Optics The Big Ideas: Light has characteristics and properties that can be manipulated with mirrors and lenses for a range of uses. Society

LASER OPTICAL DISK SET

LASER OPTICAL DISK SET LODS01 5 6 7 4 8 3 9 2 10 1 11 1. Description The laser Optical Disk Set includes a Laser Ray Box powered by a low voltage wall-mount power supply, a set of eight ray optics elements

Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed

Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus

Light and Optics Investigations. Level A Investigations. Level B Investigations

Light and Optics Investigations Level A Investigations A-1 Introduction to Light How can you make light and how can you study it? Students learn how light is produced by examining the effects of adding

After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

Lab 9. Optics. 9.1 Introduction

Lab 9 Name: Optics 9.1 Introduction Unlike other scientists, astronomers are far away from the objects they want to examine. Therefore astronomers learn everything about an object by studying the light

CH 35. Interference. A. Interference of light waves, applied in many branches of science.

CH 35 Interference [SHIVOK SP212] March 17, 2016 I. Optical Interference: A. Interference of light waves, applied in many branches of science. B. The blue of the top surface of a Morpho butterfly wing

Ray Tracing: the Law of Reflection, and Snell s Law

Ray Tracing: the Law of Reflection, and Snell s Law Each of the experiments is designed to test or investigate the basic ideas of reflection and the ray-like behavior of light. The instructor will explain

How can I predict how big my reflection will appear in a mirror? Think about it and we might try your solution.

How can I predict how big my reflection will appear in a mirror? Think about it and we might try your solution. Introduction to Optics Lecture 12 (See Giancoli Chapter 23) Refraction Phenomena Silas Laycock,

FIRST EDITION Cambridge Physics Outlet Peabody, Massachusetts 01960

FIRST EDITION Cambridge Physics Outlet Peabody, Massachusetts 01960 Scope and Sequence 15.1 Seeing an Image Learning Goals Reading Synopsis Materials and Setup IPC TEKS Calculate the magnification level

Light-Pipes: Controlling Light

Light-Pipes: Controlling Light The Big Idea 1) Light usually goes in a straight line, but we can control where it goes using reflections. 2) All our data (internet, TV etc.) is sent this way, by light

Michael Svec Students will understand how images are formed in a flat mirror.

Unit Title Topic Name and email address of person submitting the unit Aims of unit Indicative content Resources needed Teacher notes Forming Images Physics Light and optics Michael Svec Michael.Svec@furman.edu

Refractometry. Introduction

Refractometry Introduction A refractometer measures the extent to which light is bent (i.e. refracted) when it moves from air into a sample and is typically used to determine the index of refraction (aka

Study Guide for Exam on Light

Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used

THE STUDY OF HOW MUCH LIGHT IS REFLECTED OFF OF EVERYDAY HOUSEHOLD OBJECTS

THE STUDY OF HOW MUCH LIGHT IS REFLECTED OFF OF EVERYDAY HOUSEHOLD OBJECTS Joshua Pullen Cary Academy ABSTRACT The purpose of these experiments was to discover what materials reflected the most light and

Hot Air. Introduction. Materials. Preparation

Name: Class: Group: Date: Hot Air Introduction Light has many interesting aspects. Refraction is the way that light bends as it travels through different mediums. The medium is the substance that light

Refractive Index and Dispersion: Prism Spectrometer

Refractive Index and Dispersion: Prism Spectrometer OBJECTIVES: The purpose of this experiment is to study the phenomenon of dispersion i.e. to determine the variation of refractive index of the glass

1. Reflection, Refraction, and Geometric Optics (Chapters 33 and 34) [ Edit ]

1 of 17 2/8/2016 9:34 PM Signed in as Weida Wu, Instructor Help Sign Out My Courses Course Settings University Physics with Modern Physics, 14e Young/Freedman Instructor Resources etext Study Area ( RUPHY228S16

Part I: Measuring the Wavelength of Light

Physics S-1ab Lab 10: Wave Optics Summer 2007 Introduction Preparation: Before coming to lab, read the lab handout and all course required reading in Giancoli through Chapter 25. Be sure to bring to lab:

Geometric Optics Physics Leaving Cert Quick Notes

Geometric Optics Physics Leaving Cert Quick Notes Geometric Optics Properties of light Light is a form of energy. As such it can be converted into other forms of energy. We can demonstrate this using a

Students at MIT did a feasibility study. See Light: Geometric Optics

Ch-23-1 Chapter 23 : Light - Geometric Optics Questions 1. Archimedes is said to have burned the whole Roman fleet in the harbor of Syracuse, Italy, by focusing the rays of the Sun with a huge spherical

Geometric Optics Converging Lenses and Mirrors Physics Lab IV

Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The

GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

12. Reflection and Refraction

12. Reflection and Refraction Wave fronts Spherical waves are solutions to Maxwell s equations Molecules scatter spherical waves Spherical waves can add up to plane waves Reflection and refraction from

The Electromagnetic Spectrum

The Electromagnetic Spectrum 1 Look around you. What do you see? You might say "people, desks, and papers." What you really see is light bouncing off people, desks, and papers. You can only see objects

Wave Optics. b. the crest from one wave overlaps with the d. darkness cannot occur as the two waves are coherent.

Wave Optics 1. Two beams of coherent light are shining on the same piece of white paper. With respect to the crests and troughs of such waves, darkness will occur on the paper where: a. the crest from

Physics 1230: Light and Color

Physics 1230: Light and Color Exam 1 is finished, Avg: 84 +/- 10.5 Solutions on the web and scores on CULearn. HW4: Due Thursday, 5PM Lecture 6: Reflection, mirror images, and refraction. Reading: Chapter

A STUDY OF LENSES INTRODUCTION. LAB LIGH.1 From Laboratory Manual of Elementary Physics, Westminster College

A STUDY OF LENSES LAB LIGH.1 From Laboratory Manual of Elementary Physics, Westminster College INTRODUCTION A lens is a piece of transparent material bounded by two curved surfaces or a curved surface

Optics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004

Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

Interference. Physics 102 Workshop #3. General Instructions

Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

RAY OPTICS II 7.1 INTRODUCTION

7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)

Physics 1402 Reflection and Refraction

Physics 1402 Reflection and Refraction At the end of our last program, I showed you this little pink pig, and you saw that my fingers go right through it. So it must be an image. Well, here s the real

Curved surfaces and lenses

Curved surfaces and lenses (Material taken from: Optics, by E. Hecht, 4th Ed., Ch: 5) One of the important challenges pertaining to the practical aspects of optics is wave shaping, i.e. controlling the

LIGHT REFLECTION AND REFRACTION

QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

PHY208FALL2008. Week3HW. Is Light Reflected or Refracted? Due at 11:59pm on Sunday, September 21, [ Print ] View Grading Details

Assignment Display Mode: View Printable Answers PHY208FALL2008 Week3HW [ Print ] Due at 11:59pm on Sunday, September 21, 2008 View Grading Details The next exercise is about reflection and refraction of

Light and its effects

Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size

April 29. Physics 272. Spring Prof. Philip von Doetinchem

Physics 272 April 29 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 411 Summary Object

Understanding Spherical Mirrors

[ Assignment View ] [ Eðlisfræði 2, vor 2007 34. Geometric Optics and Optical Instruments Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

THE REFRACTION OF LIGHT: LENSES AND OPTICAL INSTRUMENTS

CHAPTER 26 THE RERACTION O LIGHT: LENSES AND OPTICAL INSTRUMENTS CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION Since the index of refraction of water is greater than that of air, the ray in igure 26.2a

Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

Light Reflection of Light

Light Reflection of Light 1. (a) What do you understand by the following terms? (i) Light (ii) Diffused light. (b) By giving one example and one use explain or define (i) regular reflection (ii) irregular

OPTICAL FIBERS INTRODUCTION

OPTICAL FIBERS References: J. Hecht: Understanding Fiber Optics, Ch. 1-3, Prentice Hall N.J. 1999 D. R. Goff: Fiber Optic Reference Guide (2 nd ed.) Focal Press 1999 Projects in Fiber Optics (Applications

Introduction: Light is energy, capable of being transformed and used. 2) Spinning light vein(light energy can be converted back to work energy)

Introduction: Light is energy, capable of being transformed and used 1) Handcrank Generator(work energy can be converted to light energy) We ll bring in a handcrank generator to illustrate the point that

Chapter 24. Wave Optics

Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

PROPERTIES OF THIN LENSES. Paraxial-ray Equations

PROPERTIES OF THIN LENSES Object: To measure the focal length of lenses, to verify the thin lens equation and to observe the more common aberrations associated with lenses. Apparatus: PASCO Basic Optical

Laser Beam Alignment Version 0.1, February 9th 2016

Laser Beam Alignment Version 0.1, February 9th 2016 Precautions Introduction Laser Terminology Simple Alignment Test The principle of alignment Aligning the Mirrors Tube to Mirror 1 Mirror 1 to Mirror

University Physics (Prof. David Flory) Chapt_36 Monday, August 06, 2007

Name: Date: 1. In an experiment to measure the wavelength of light using a double slit, it is found that the fringes are too close together to easily count them. To spread out the fringe pattern, one could:

PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction

Name: Class: Date: ID: A PRACTICE Q6--Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine

Physics 9 Fall 2009 DIFFRACTION

Physics 9 Fall 2009 NAME: TA: SECTION NUMBER: LAB PARTNERS: DIFFRACTION 1 Introduction In these experiments we will review and apply the main ideas of the interference and diffraction of light. After reviewing

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 11

ASTRONOMY 161 Introduction to Solar System Astronomy Class 11 Telescopes Friday, February 2 Telescopes: Key Concepts (1) Telescopes use either a lens or a mirror to gather light. (2) The main purposes

PhysicsQuest 2006 ACTIVITY 4. Bring it into Focus. (Lenses and optics)

ACTIVITY 4 Bring it into Focus (Lenses and optics) Table of contents Page 2: Disappearing Test Tube: Make clear objects visible or invisible using what you know about how light bends (level 1 demonstration)

PHYS General Physics II Lab Diffraction Grating

1 PHYS 1040 - General Physics II Lab Diffraction Grating In this lab you will perform an experiment to understand the interference of light waves when they pass through a diffraction grating and to determine

Chapter 23. The Refraction of Light: Lenses and Optical Instruments

Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging

Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular to the surface (the normal) Angle of incidence

The maximum displacement of particles of the medium from their mean positions during the propagation of a wave Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular