# Noon Sun Angle = 90 Zenith Angle

Size: px
Start display at page:

Transcription

1 Noon Sun Angle Worksheet Name Name Date Subsolar Point (Latitude where the sun is overhead at noon) Equinox March 22 nd 0 o Equinox September 22 nd 0 o Solstice June 22 nd 23.5 N Solstice December 22 nd 23.5 S Noon Sun Angle = 90 Zenith Angle Zenith Angle = latitude where you are at ± subsolar point If the subsolar point and your latitude are in the same hemisphere, subtract. If the subsolar point and your latitude are in different hemispheres, add. Note: if you get a negative number, it means that no sunlight is received at that time of year or it is dark for 24 hours, use 0 o as your answer. Instructions: complete the table. Problem Time of Year Subsolar Point Latitude where you are "at" Zenith Angle Noon Sun Angle Calculation Example September = = Equinox 23.5 N 90 = 2 March N 90 = 3 September S 90 = 4 June N 90 = 5 June S 90 = 6 June = 7 December S 90 = 8 December N 90 = 9 December S 90 = 10 March N 90 = 11. June N 90 = 12. December N 90 = Noon Sun Angle

2 More about Noon Sun Angles North South This is a diagram of a house in Arizona. Pretend that the house is in southern Arizona at 33 N. The diagram shows summer sun's rays at noon on the June 22nd Solstice and winter sun's rays at noon on the December 22nd Solstice. 13. What is the angle of the sun s rays at noon during the summer (June 22 nd Solstice)?. Show your work here: 14. What is the angle of the sun s rays at noon during the winter (December 22 nd Solstice)?. Show your work here: Bonus Questions 15. The original diagram is not correct. The summer angle should both be more vertical and the winter angle should be shallower. Use a protractor to check the diagram, then correct the picture. Use the white in the middle of the picture as the guide for your protractor. 16. Would you put a shade tree on the north or the south side of the house? Why?

3 KEY Problem Time of Year Subsolar Point Latitude where you are "at" Zenith Angle Noon Sun Angle Calculation Example September = = Noon Sun Angle 1 Equinox N = = March N 80 0 = = September S 80 0 = = June N 80 N = = June N 80 S = = this means no sunlight is received 0 24 hours of night 6 June N = = December S 80 S = = December S 80 N = = this means no sunlight is received 9 December S 23.5 S = = March N 34 0 = = hours of night 11. June N 34 N = = December S 34 N = =

4 KEY Original- not correct Correct North South North South This is a diagram of a house in Arizona. Let s pretend that the house is in southern Arizona at 33 N. The diagram shows summer sun's rays at noon on the June 22nd Solstice and winter sun's rays at noon on the December 22nd Solstice. 13. What is the angle of the sun s rays at noon during the summer (June 22 nd Solstice)?. Show your work here: Zenith Angle = = 9.5 Sun Angle = = What is the angle of the sun s rays at noon during the winter (December 22 nd Solstice)?. Show your work here: Zenith Angle = = 56.5 Sun Angle = = 33.5 Bonus Questions 15. The original diagram is not correct. The summer angle should both be more vertical and the winter angle should be shallower. Use a protractor to check the diagram, then correct the picture. Use the white in the middle of the picture as the guide for your protractor. See correction in diagram at the top of this page 16. Would you put a shade tree on the north or the south side of the house? Why? The diagram shows that the sun is always shining from the south. The shade is always cast to the north of the tree. The smart place to put a shade tree would be on the south side of the house.

5 Name Instructions: FILL IN THE CIRCLE BY THE CORRECT ANSWER 1. Why is it summer in the Northern Hemisphere in June? A. Earth is closer to the sun in June B. Sun angles are high and days are long C. The sun sends out giant solar flares in June D. The Northern Hemisphere is tilted away from the sun. 2. Which statement about the Vernal Equinox is correct? A. There are 12 hours of daylight and 12 hours of darkness at all latitudes. B. Sun angles are low and days are short. C. It is the first day of fall. D. Earth s axis is pointed way from the sun. 3. Look at the diagram above. Where is it summer? A. In Antarctica B. In the Southern Hemisphere C. At the Equator D. In the Northern Hemisphere 4. Where can you go on Summer Solstice (June 21st) and have 24-hours of daylight? A. The Equator B. The Tropic of Cancer C. All of the latitudes from the Arctic Circle to the North Pole D. All of the latitudes from the Antarctic Circle to the South Pole 5. When only a small amount of light hits a surface there is A. high solar flux and warm temperatures. B. high solar flux and cool temperatures. C. low solar flux and warm temperature. D. low solar flux and cool temperatures.

6 KEY and Explanation for Geography Assessment 1. Why is it summer in the Northern Hemisphere in June? B. Sun angles are high and days are long. When the hemisphere on Earth "tilts towards the sun, as it does in the Northern Hemisphere in June, days are longer and sun angles are higher. This means that a lot more sunlight is received, making it summer. 2. Which statement about the Vernal Equinox is correct? A. There are 12 hours of daylight and 12 hours of darkness at all latitudes. There are 12 hours of darkness and light because on the both the Vernal and Autumnal Equinox, the axis points neither towards, nor away from the sun. The Vernal Equinox is the first day of spring. 3. Look at the diagram above. Where is it summer? D. In the Northern Hemisphere. The sun is overhead at the Tropic of Cancer, making higher sun angles with more intense sunlight. Also, days are longer. 4. Where can you go on Summer Solstice (June 21st) and have 24-hours of daylight? C. All of the latitudes from the Arctic Circle to the North Pole These latitudes receive sunlight for all 24 hours as Earth spins on its axis. 5. When only a small amount of light hits a surface there is D. low solar flux and cool temperatures. Solar flux describes amount of sunlight that strikes a given surface. The higher the solar flux the hotter the surface.

### Solar energy and the Earth s seasons

Solar energy and the Earth s seasons Name: Tilt of the Earth s axis and the seasons We now understand that the tilt of Earth s axis makes it possible for different parts of the Earth to experience different

### FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

FIRST GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF FIRST GRADE UNIVERSE WEEK 1. PRE: Describing the Universe. LAB: Comparing and contrasting bodies that reflect light. POST: Exploring

### Lab Activity on the Causes of the Seasons

Lab Activity on the Causes of the Seasons 2002 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Objectives When you have completed this lab you

### Where on Earth are the daily solar altitudes higher and lower than Endicott?

Where on Earth are the daily solar altitudes higher and lower than Endicott? In your notebooks, write RELATIONSHIPS between variables we tested CAUSE FIRST EFFECT SECOND EVIDENCE As you increase the time

### Celestial Observations

Celestial Observations Earth experiences two basic motions: Rotation West-to-East spinning of Earth on its axis (v rot = 1770 km/hr) (v rot Revolution orbit of Earth around the Sun (v orb = 108,000 km/hr)

### Answers for the Study Guide: Sun, Earth and Moon Relationship Test

Answers for the Study Guide: Sun, Earth and Moon Relationship Test 1) It takes one day for the Earth to make one complete on its axis. a. Rotation 2) It takes one year for the Earth to make one around

### Shadows, Angles, and the Seasons

Shadows, Angles, and the Seasons If it's cold in winter, why is Earth closer to the Sun? This activity shows the relationship between Earth-Sun positions and the seasons. From The WSU Fairmount Center

### Tropical Horticulture: Lecture 2

Lecture 2 Theory of the Tropics Earth & Solar Geometry, Celestial Mechanics The geometrical relationship between the earth and sun is responsible for the earth s climates. The two principal movements of

### Study Guide: Sun, Earth and Moon Relationship Assessment

I can 1. Define rotation, revolution, solstice and equinox. *Rotation and Revolution Review Worksheet 2. Describe why we experience days and years due to the rotation and r evolution of the Earth around

### The Reasons for the Seasons

The Reasons for the Seasons (The Active Learning Approach) Materials: 4 Globes, One light on stand with soft white bulb, 4 flashlights, Four sets of "Seasons" Cards, Four laminated black cards with 1 inch

### Basic Coordinates & Seasons Student Guide

Name: Basic Coordinates & Seasons Student Guide There are three main sections to this module: terrestrial coordinates, celestial equatorial coordinates, and understanding how the ecliptic is related to

### Earth-Sun Relationships. The Reasons for the Seasons

Earth-Sun Relationships The Reasons for the Seasons Solar Radiation The earth intercepts less than one two-billionth of the energy given off by the sun. However, the radiation is sufficient to provide

### Sun Earth Relationships

1 ESCI-61 Introduction to Photovoltaic Technology Sun Earth Relationships Ridha Hamidi, Ph.D. Spring (sun aims directly at equator) Winter (northern hemisphere tilts away from sun) 23.5 2 Solar radiation

### Today. Solstices & Equinoxes Precession Phases of the Moon Eclipses. Ancient Astronomy. Lunar, Solar FIRST HOMEWORK DUE NEXT TIME

Today Solstices & Equinoxes Precession Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy FIRST HOMEWORK DUE NEXT TIME The Reason for Seasons Hypothesis check: How would seasons in the northern

### Today FIRST HOMEWORK DUE NEXT TIME. Seasons/Precession Recap. Phases of the Moon. Eclipses. Lunar, Solar. Ancient Astronomy

Today FIRST HOMEWORK DUE NEXT TIME Seasons/Precession Recap Phases of the Moon Eclipses Lunar, Solar Ancient Astronomy How do we mark the progression of the seasons? We define four special points: summer

### Relationship Between the Earth, Moon and Sun

Relationship Between the Earth, Moon and Sun Rotation A body turning on its axis The Earth rotates once every 24 hours in a counterclockwise direction. Revolution A body traveling around another The Earth

### The following words and their definitions should be addressed before completion of the reading:

Seasons Vocabulary: The following words and their definitions should be addressed before completion of the reading: sphere any round object that has a surface that is the same distance from its center

### Solar Angles and Latitude

Solar Angles and Latitude Objectives The student will understand that the sun is not directly overhead at noon in most latitudes. The student will research and discover the latitude ir classroom and calculate

### The Four Seasons. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Moon s Phases

The Four Seasons A Warm Up Exercise What fraction of the Moon s surface is illuminated by the Sun (except during a lunar eclipse)? a) Between zero and one-half b) The whole surface c) Always half d) Depends

### Renewable Energy. Solar Power. Courseware Sample 86352-F0

Renewable Energy Solar Power Courseware Sample 86352-F0 A RENEWABLE ENERGY SOLAR POWER Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2009 Lab-Volt Ltd. All rights reserved. No part of this

### Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the

Ok, so if the Earth weren't tilted, we'd have a picture like the one shown below: 12 hours of daylight at all latitudes more insolation in the tropics, less at higher latitudes Ok, so if the Earth weren't

### What Causes Climate? Use Target Reading Skills

Climate and Climate Change Name Date Class Climate and Climate Change Guided Reading and Study What Causes Climate? This section describes factors that determine climate, or the average weather conditions

### Solar Flux and Flux Density. Lecture 3: Global Energy Cycle. Solar Energy Incident On the Earth. Solar Flux Density Reaching Earth

Lecture 3: Global Energy Cycle Solar Flux and Flux Density Planetary energy balance Greenhouse Effect Vertical energy balance Latitudinal energy balance Seasonal and diurnal cycles Solar Luminosity (L)

Earth, Sun and Moon Table of Contents 0. Unit Challenge 1. Earth and Its Motion 2. Earth s Rotation and Revolution 3. Earth s Tilt and Seasons 4. Seasons 5. The Moon 6. The Lunar Cycle 7. Lunar Geography

### CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS

INTRODUCTION CELESTIAL CLOCK - THE SUN, THE MOON, AND THE STARS This is a scientific presentation to provide you with knowledge you can use to understand the sky above in relation to the earth. Before

### Essential Question. Enduring Understanding

Earth In Space Unit Diagnostic Assessment: Students complete a questionnaire answering questions about their ideas concerning a day, year, the seasons and moon phases: My Ideas About A Day, Year, Seasons

### Use WITH Investigation 4, Part 2, Step 2

INVESTIGATION 4 : The Sundial Project Use WITH Investigation 4, Part 2, Step 2 EALR 4: Earth and Space Science Big Idea: Earth in Space (ES1) Projects: Tether Ball Pole Sundial Globe and a Light Indoors

### Seasonal Temperature Variations

Seasonal and Daily Temperatures Fig. 3-CO, p. 54 Seasonal Temperature Variations What causes the seasons What governs the seasons is the amount of solar radiation reaching the ground What two primary factors

### 1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram?

1. In the diagram below, the direct rays of the Sun are striking the Earth's surface at 23 º N. What is the date shown in the diagram? 5. During how many days of a calendar year is the Sun directly overhead

### Seasonal & Daily Temperatures. Seasons & Sun's Distance. Solstice & Equinox. Seasons & Solar Intensity

Seasonal & Daily Temperatures Seasons & Sun's Distance The role of Earth's tilt, revolution, & rotation in causing spatial, seasonal, & daily temperature variations Please read Chapter 3 in Ahrens Figure

### Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year

Exploring Solar Energy Variations on Earth: Changes in the Length of Day and Solar Insolation Through the Year Purpose To help students understand how solar radiation varies (duration and intensity) during

### CELESTIAL MOTIONS. In Charlottesville we see Polaris 38 0 above the Northern horizon. Earth. Starry Vault

CELESTIAL MOTIONS Stars appear to move counterclockwise on the surface of a huge sphere the Starry Vault, in their daily motions about Earth Polaris remains stationary. In Charlottesville we see Polaris

### Reasons for Seasons. Question: TRUE OR FALSE. Question: TRUE OR FALSE? What causes the seasons? What causes the seasons?

Reasons for Seasons Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Question: TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the

### Chapter 3 Earth - Sun Relations

3.1 Introduction We saw in the last chapter that the short wave radiation from the sun passes through the atmosphere and heats the earth, which in turn radiates energy in the infrared portion of the electromagnetic

### ASTRONOMY 161. Introduction to Solar System Astronomy

ASTRONOMY 161 Introduction to Solar System Astronomy Seasons & Calendars Monday, January 8 Season & Calendars: Key Concepts (1) The cause of the seasons is the tilt of the Earth s rotation axis relative

### Seasons on Earth LESSON

LESSON 4 Seasons on Earth On Earth, orange and red autumn leaves stand out against the blue sky. NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (NOAA) PHOTO LIBRARY/NOAA CENTRAL LIBRARY INTRODUCTION Nearly

### PHSC 3033: Meteorology Seasons

PHSC 3033: Meteorology Seasons Changing Aspect Angle Direct Sunlight is more intense and concentrated. Solar Incidence Angle is Latitude and Time/Date Dependent Daily and Seasonal Variation Zenith There

### Earth, Sun and Moon is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - 'Earth, Sun and Moon'.

is a set of interactives designed to support the teaching of the QCA primary science scheme of work 5e - ''. Learning Connections Primary Science Interactives are teaching tools which have been created

### Heat Transfer. Energy from the Sun. Introduction

Introduction The sun rises in the east and sets in the west, but its exact path changes over the course of the year, which causes the seasons. In order to use the sun s energy in a building, we need to

Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents

### Measuring Your Latitude from the Angle of the Sun at Noon

Measuring Your Latitude from the Angle of the Sun at Noon Background: You can measure your latitude in earth's northern hemisphere by finding out the altitude of the celestial equator from the southern

Shadows and Solar Zenith Name Lab Partner Section Introduction: The solar zenith angle is defined to be the angle between the sun and a line that goes straight up (to the zenith) In reality the sun is

### Geography affects climate.

KEY CONCEPT Climate is a long-term weather pattern. BEFORE, you learned The Sun s energy heats Earth s surface unevenly The atmosphere s temperature changes with altitude Oceans affect wind flow NOW, you

### CHAPTER 3. The sun and the seasons. Locating the position of the sun

zenith 90 summer solstice 75 equinox 52 winter solstice 29 altitude angles observer Figure 3.1: Solar noon altitude angles for Melbourne SOUTH winter midday shadow WEST summer midday shadow summer EAST

### ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING

ES 106 Laboratory # 5 EARTH-SUN RELATIONS AND ATMOSPHERIC HEATING 5-1 Introduction Weather is the state of the atmosphere at a particular place for a short period of time. The condition of the atmosphere

### The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

### DETERMINING SOLAR ALTITUDE USING THE GNOMON. How does the altitude change during the day or from day to day?

Name Partner(s) Section Date DETERMINING SOLAR ALTITUDE USING THE GNOMON Does the Sun ever occur directly overhead in Maryland? If it does, how would you determine or know it was directly overhead? How

### Chapter Overview. Seasons. Earth s Seasons. Distribution of Solar Energy. Solar Energy on Earth. CHAPTER 6 Air-Sea Interaction

Chapter Overview CHAPTER 6 Air-Sea Interaction The atmosphere and the ocean are one independent system. Earth has seasons because of the tilt on its axis. There are three major wind belts in each hemisphere.

### Earth, Moon, and Sun Study Guide. (Test Date: )

Earth, Moon, and Sun Study Guide Name: (Test Date: ) Essential Question #1: How are the Earth, Moon, and Sun alike and how are they different? 1. List the Earth, Moon, and Sun, in order from LARGEST to

### How Do Oceans Affect Weather and Climate?

How Do Oceans Affect Weather and Climate? In Learning Set 2, you explored how water heats up more slowly than land and also cools off more slowly than land. Weather is caused by events in the atmosphere.

### Full credit for this chapter to Prof. Leonard Bachman of the University of Houston

Chapter 6: SOLAR GEOMETRY Full credit for this chapter to Prof. Leonard Bachman of the University of Houston SOLAR GEOMETRY AS A DETERMINING FACTOR OF HEAT GAIN, SHADING AND THE POTENTIAL OF DAYLIGHT PENETRATION...

### EARTH'S MOTIONS. 2. The Coriolis effect is a result of Earth's A tilted axis B orbital shape C revolution D rotation

EARTH'S MOTIONS 1. Which hot spot location on Earth's surface usually receives the greatest intensity of insolation on June 21? A Iceland B Hawaii C Easter Island D Yellowstone 2. The Coriolis effect is

### Solar Energy Systems. Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University

Solar Energy Solar Energy Systems Matt Aldeman Senior Energy Analyst Center for Renewable Energy Illinois State University 1 SOLAR ENERGY OVERVIEW 1) Types of Solar Power Plants 2) Describing the Solar

### ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS

ASTR 1030 Astronomy Lab 65 Celestial Motions CELESTIAL MOTIONS SYNOPSIS: The objective of this lab is to become familiar with the apparent motions of the Sun, Moon, and stars in the Boulder sky. EQUIPMENT:

### Name Period 4 th Six Weeks Notes 2015 Weather

Name Period 4 th Six Weeks Notes 2015 Weather Radiation Convection Currents Winds Jet Streams Energy from the Sun reaches Earth as electromagnetic waves This energy fuels all life on Earth including the

### 1-2. What is the name given to the path of the Sun as seen from Earth? a.) Equinox b.) Celestial equator c.) Solstice d.

Chapter 1 1-1. How long does it take the Earth to orbit the Sun? a.) one sidereal day b.) one month c.) one year X d.) one hour 1-2. What is the name given to the path of the Sun as seen from Earth? a.)

### Motions of Earth, Moon, and Sun

Motions of Earth, Moon, and Sun Apparent Motions of Celestial Objects An apparent motion is a motion that an object appears to make. Apparent motions can be real or illusions. When you see a person spinning

### Global Seasonal Phase Lag between Solar Heating and Surface Temperature

Global Seasonal Phase Lag between Solar Heating and Surface Temperature Summer REU Program Professor Tom Witten By Abstract There is a seasonal phase lag between solar heating from the sun and the surface

### ATM S 111, Global Warming: Understanding the Forecast

ATM S 111, Global Warming: Understanding the Forecast DARGAN M. W. FRIERSON DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 1: OCTOBER 1, 2015 Outline How exactly the Sun heats the Earth How strong? Important concept

APPENDIX D: SOLAR RADIATION The sun is the source of most energy on the earth and is a primary factor in determining the thermal environment of a locality. It is important for engineers to have a working

### Lesson Plan. Skills: Describe, model Knowledge: position, size, motion, earth, moon, sun, day, night, solar eclipse, lunar eclipse, phases, moon

Gallmeyer 1 Lesson Plan Lesson: Rotation of the Earth Length: 45 minutes Age or Grade Level Intended: 4 th Academic Standard(s): Science: Earth and Space: 6.2.1 Describe and model how the position, size

### Motions of Earth LEARNING GOALS

2 Patterns in the Sky Motions of Earth The stars first found a special place in legend and mythology as the realm of gods and goddesses, holding sway over the lives of humankind. From these legends and

### The Globe Latitudes and Longitudes

INDIAN SCHOOL MUSCAT MIDDLE SECTION DEPARTMENT OF SOCIAL SCIENCE The Globe Latitudes and Longitudes NAME: CLASS VI SEC: ROLL NO: DATE:.04.2015 I NAME THE FOLLOWING: 1. A small spherical model of the Earth:

### LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR

LATITUDE GNOMON AND QUADRANT FOR THE WHOLE YEAR Sakari Ekko EAAE Summer School Working Group (Finland) Abstract In this workshop, we examine the correlation between our latitude and the altitude of the

### ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation

ESCI 107/109 The Atmosphere Lesson 2 Solar and Terrestrial Radiation Reading: Meteorology Today, Chapters 2 and 3 EARTH-SUN GEOMETRY The Earth has an elliptical orbit around the sun The average Earth-Sun

### Optimum Orientation of Solar Panels

Optimum Orientation of Solar Panels To get the most from solar panels, point them in the direction that captures the most sun. But there are a number of variables in figuring out the best direction. This

### Cycles in the Sky. Teacher Guide: Cycles in the Sky Page 1 of 8 2008 Discovery Communications, LLC

Cycles in the Sky What is a Fun damental? Each Fun damental is designed to introduce your younger students to some of the basic ideas about one particular area of science. The activities in the Fun damental

### The Sun-Earth-Moon System. Unit 5 covers the following framework standards: ES 9, 11 and PS 1. Content was adapted the following:

Unit 5 The Sun-Earth-Moon System Chapter 10 ~ The Significance of Earth s Position o Section 1 ~ Earth in Space o Section 2 ~ Phases, Eclipses, and Tides o Section 3 ~ Earth s Moon Unit 5 covers the following

### Astrock, t he A stronomical Clock

Astrock, t he A stronomical Clock The astronomical clock is unlike any other clock. At first glance you ll find it has similar functions of a standard clock, however the astronomical clock can offer much

### Geometry and Geography

Geometry and Geography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 12, 2011 1 Pedagogical Advice I have been leading mathematical circles using this topic for many years,

### Earth In Space Chapter 3

Earth In Space Chapter 3 Shape of the Earth Ancient Greeks Earth casts a circular shadow on the moon during a lunar eclipse Shape of the Earth Ancient Greeks Ships were observed to disappear below the

### SOLAR CALCULATIONS (2)

OLAR CALCULATON The orbit of the Earth is an ellise not a circle, hence the distance between the Earth and un varies over the year, leading to aarent solar irradiation values throughout the year aroximated

### Graphing Sea Ice Extent in the Arctic and Antarctic

Graphing Sea Ice Extent in the Arctic and Antarctic Summary: Students graph sea ice extent (area) in both polar regions (Arctic and Antarctic) over a three-year period to learn about seasonal variations

### CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles

CHAPTER 5 Lectures 10 & 11 Air Temperature and Air Temperature Cycles I. Air Temperature: Five important factors influence air temperature: A. Insolation B. Latitude C. Surface types D. Coastal vs. interior

### Solar Matters II Teacher Page

Solar Matters II Teacher Page Sun Misconceptions Student Objective understands why some common phrases about the Sun are incorrect can describe how the Earth s rotation affects how we perceive the Sun

### CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015

CELESTIAL EVENTS CALENDAR APRIL 2014 TO MARCH 2015 *** Must See Event 2014 ***April 8 - Mars at Opposition. The red planet will be at its closest approach to Earth and its face will be fully illuminated

### A Few Facts about Antarctica

A Few Facts about Antarctica Antarctica is the continent that surrounds the South Pole, the southernmost point at the bottom of the earth. Antarctica is a continent because it is land that is covered by

### 2- The Top and bottom of the leaf is covered by thin layer of cells called epidermis that allow sunlight to easily pass into the middle of the leaf.

Final exam summary sheet Topic 5, lesson 2 How leaf is adapted to carry on photosynthesis? 1- Waxy layer called the cuticle cover the leaf slow the water loss. 2- The Top and bottom of the leaf is covered

### Activity 10 - Universal Time

Activity 10 - Universal Time Teacher s Guide Scientists use the Universal Time reference to talk about data that is taken around the globe. Universal Time is the time kept in the time zone centered on

### Homework Assignment #7: The Moon

Name Homework Assignment #7: The Moon 2008 Ann Bykerk-Kauffman, Dept. of Geological and Environmental Sciences, California State University, Chico * Chapter 21 Origins of Modern Astronomy Motions of the

### SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES

SIXTH GRADE 1 WEEK LESSON PLANS AND ACTIVITIES UNIVERSE CYCLE OVERVIEW OF SIXTH GRADE UNIVERSE WEEK 1. PRE: Exploring how the Universe may have evolved. LAB: Comparing the night sky with zodiac signs.

### Stellarium a valuable resource for teaching astronomy in the classroom and beyond

Stellarium 1 Stellarium a valuable resource for teaching astronomy in the classroom and beyond Stephen Hughes Department of Physical and Chemical Sciences, Queensland University of Technology, Gardens

### MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond

1 MULTI-LEVEL LESSON PLAN GUIDE Earth, Moon, and Beyond Jeni Gonzales e-mail: JeniLG7@aol.com SED 5600 Dr. Michael Peterson December 18, 2001 1 2 Unit Plan: Multi-level- Earth, Moon, and Beyond Theme:

### Machu Pichu. Machu Pichu is located north east of Cusco, Chile in the district of Machu Picchu, province of Urubamba.

Machu Pichu 1 Sunlight plays an important role in understanding the design of this fabled Inca city. Incan architects designed practical homes for Machu's residents. They also marked in their creations,

### Sunlight and its Properties. EE 495/695 Y. Baghzouz

Sunlight and its Properties EE 495/695 Y. Baghzouz The sun is a hot sphere of gas whose internal temperatures reach over 20 million deg. K. Nuclear fusion reaction at the sun's core converts hydrogen to

### Which month has larger and smaller day time?

ACTIVITY-1 Which month has larger and smaller day time? Problem: Which month has larger and smaller day time? Aim: Finding out which month has larger and smaller duration of day in the Year 2006. Format

### The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium

The Orbit TelleriumThe Orbit TelleriumThe Orbit Tellerium 16 Appendix 4 Moon Chart: For each day draw the shape of the Moon, record the time and mark the position of the Moon in the sky in relation to

### The Analemma for Latitudinally-Challenged People

The Analemma for Latitudinally-Challenged People Teo Shin Yeow An academic exercise presented in partial fulfillment for the degree of Bachelor of Science with Honours in Mathematics Supervisor : Associate

### The ecliptic - Earth s orbital plane

The ecliptic - Earth s orbital plane The line of nodes descending node The Moon s orbital plane Moon s orbit inclination 5.45º ascending node celestial declination Zero longitude in the ecliptic The orbit

### Night Sky III Planetary Motion Lunar Phases

Night Sky III Planetary Motion Lunar Phases Astronomy 1 Elementary Astronomy LA Mission College Spring F2015 Quotes & Cartoon of the Day Everything has a natural explanation. The moon is not a god, but

### DEPLOSUN REFLECTORS. Carrer dels Vergós, 11 08017 Barcelona Spain Tel: (+34) 934.090.359 Fx: (+34) 934.090.358 info@espaciosolar.

DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS DEPLOSUN REFLECTORS is an innovative reflector system which captures the sun rays in the upper part of the atria and redirects them downwards, increasing daylight

### 8.5 Comparing Canadian Climates (Lab)

These 3 climate graphs and tables of data show average temperatures and precipitation for each month in Victoria, Winnipeg and Whitehorse: Figure 1.1 Month J F M A M J J A S O N D Year Precipitation 139

### EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Instructor: L. M. Khandro EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1 1. An arc second is a measure of a. time interval between oscillations of a standard clock b. time

### Lines of Latitude and Longitude

ED 5661 Mathematics & Navigation Teacher Institute Keith Johnson Lesson Plan Lines of Latitude and Longitude Lesson Overview: This lesson plan will introduce students to latitude and longitude along with