1 of 9 2/9/2010 3:38 PM


 Samantha O’Brien’
 7 years ago
 Views:
Transcription
1 1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View] Geometry and Reflections Learning Goal: To learn and practice the geometry skills necessary for complex reflection setups. The law of reflection has the very simple form, where is the angle between the normal and the incident ray and is the angle between the normal and the reflected ray. Although the law itself is easy to use, many realistic situations involve successive reflections from multiple surfaces. The law of reflection does not become any more complicated in such cases, but the geometry of the rays does become complicated. Consider the case of light shining onto a mirror, which is attached to another mirror at some angle, as shown in the figure. In this problem, we will find the angle at which light leaves the arrangement of two mirrors. If the light strikes the first mirror at an angle, what is the reflected angle? Express your answer in terms of. = Now, find the angle (shown in the new figure ) in terms of. You can easily find in terms of, then just substitute your expression from Part A. Relationship between and Express your answer in degrees in terms of. Notice that the degrees symbol is already listed for you, so just use the number "23" to indicate 23 degrees. = Part C Now, find the angle shown in the figure in terms of and. Hint C.1 Angles in a triangle The sum of the angles in a triangle is. Express your answer in degrees in terms of and. = Part D
2 2 of 9 2/9/2010 3:38 PM Find the angle shown in the figure in terms of and. You will need to assume that, as it appears in the picture. Hint D.1 Relationship between and Hint D.2 How to find in terms of Express your answer in degrees in terms of and. = Virtually any reflection problem, no matter how intimidating it may seem, can be broken down into simple parts by considering each individual reflection carefully. Images Produced by Different Concave Mirrors Conceptual Question The same object is placed at different distances in front of six different concave spherical mirrors. Each mirror has the focal length listed below. Which, if any, of these scenarios produce a real image? Which, if any, of these scenarios produce a virtual image? Hint A.4 How to draw a principal ray diagram Definition of a real image Principal rays for objects within the focal length Principal rays for objects outside the focal length Sort the following scenarios into the appropriate bins. View Which, if any, of these scenarios produce an inverted image? Which, if any, of these scenarios produce an upright image? Sort the following scenarios into the appropriate bins. View Part C Rank the images on the basis of their size. Hint C.1 Ratio of distance to focal length You do not need to know the exact numerical values of the object distance and focal length to determine the magnification of the image. The ratio of the object distance and focal length is sufficient. For example, if the object distance is four times the focal length, the magnitude of the magnification is 1/3, regardless of the exact values of the object distance and focal length. Hint C.2 Object at the focal point If an object is located exactly at the focal point, the image is "infinitely" large. As the object moves away from the focal point, in either direction, the image size decreases. Rank these from largest to smallest. To rank items as equivalent, overlap them.
3 3 of 9 2/9/2010 3:38 PM View An object is 15 in front of a concave mirror with a focal length of 23. Problem Locate the image. Express your answer using two significant figures. = 43 Is the image upright or inverted? The image is upright. The image is inverted. Problem A tall object is placed in front of a mirror. A tall upright image is formed behind the mirror, 180 from the object. What is the focal length of the mirror? Express your answer using two significant figures. = 120 Answer Requested Refracted Waves in Unknown Materials When monochromatic light passes through the interface between two unknown materials at an angle where, no changes in the direction of propagation of light are observed. What can be said about the two materials? As described by the law of refraction, when light propagates through the interface between two materials with different indexes of refraction, the direction of propagation changes. If no such phenomenon is observed, it means that the two materials have very similar optical properties. Are they necessarily exactly the same material? Check all that apply. The two materials have matching indexes of refraction. The second material through which light propagates has a lower index of refraction. The second material through which light propagates has a higher index of refraction. The two materials are identical. By simply observing no change in the direction of propagation of light at the interface between two materials, you cannot be certain that the two materials are identical. In fact, different materials with matching indexes of refraction would produce a similar effect. For example, at the interface between glass Pyrex ( ) and glycerin ( ), no relevant change in the direction of propagation of light can be observed. The same monochromatic light passes through the interface between two other unknown materials. This time the transmitted wave is observed to be farther from the normal to the interface than the incident wave. What can be said about these two materials and the light traveling through them? Hint B.2 Hint B.3 Hint B.4 Law of refraction Find how the sines of the angles relate Find in which material light travels faster Check all that apply. The second material through which the light propagates has a higher index of refraction.
4 The second material through which the light propagates has a lower index of refraction. As the light passes into the second material, its speed increases. As the light passes into the second material, its speed decreases. When a ray of light passes into a material having a lower index of refraction, and hence a higher wave speed, the refracted ray bends away from the normal to the interface and will appear closer to the interface than the incident ray. Light Refracted through a Prism Light is incident along the normal to face AB of a glass prism of refractive index 1.55, as shown in the figure. Find, the largest value of the angle such that no light is refracted out of the prism at face AC if the prism is immersed in air. Determine the needed angle of incidence on the glasstoair interface using Snell's law in the regime in which there is total internal reflection. To find the relation between and the angle of incidence as the ray "tries" to move from the glass out into air, copy down the figure and continue the ray across until it actually reaches the interface. You should notice a pair of similar triangles, one containing and one containing the complement of the angle of incidence. You can use these to determine the relation between and the angle of incidence. Drawing the incident ray and the reflected ray Snell's law Snell's law states that where is the angle the light ray makes with the normal to the surface as it propagates through a material of index of refraction, and is the angle with respect to the normal that the continuing beam makes as it propagates through the material of index of refraction. Hint A.4 Total internal reflection When a light ray is refracted from a medium of high index of refraction into one of lower index, the refracted ray is bent away from the normal. Moreover, when the angle of refraction reaches 90 degrees, the refracted wave no longer propagates into the medium of lower index of refraction, and total internal reflection occurs. In this case, the angle of incidence has reached a critical value that can be calculated from Snell's law, and all the light is reflected back from the interface into the material of higher index. Express your answer in degrees. Ignore any reflections from the surface BC. = 49.8 Find, the largest value the angle can have without any light being refracted out of the prism at face AC if the prism is immersed in water (with index of refraction 1.33). Express your answer in degrees. Ignore any reflections from the surface BC. = 30.9 Refraction through Glass and Water A plate of glass with parallel faces having a refractive index of 1.58 is resting on the surface of water in a tank. A ray of light coming from above in air makes an angle of incidence 36.5 with the normal to the top surface of the glass. 4 of 9 2/9/2010 3:38 PM
5 5 of 9 2/9/2010 3:38 PM What angle does the ray refracted into the water make with the normal to the surface? Use 1.33 for the index of refraction of water. Snell's law Express your answer in degrees. = 26.6 Note that the index of refraction of the glass doesn't figure at all in finding the angle of refraction in water. The mathematics reduces to: or. The final angle is the same as if the light ray were passing directly from the air into the water. Total Internal Reflection Conceptual Question Consider scenarios A to F in which a ray of light traveling in material 1 is incident onto the interface with material 2. Material 1 ( ) Material 2 ( ) A air (1.00) water (1.33) B water (1.33) air (1.00) C diamond (2.42) air (1.00) D air (1.00) quartz (1.46) E benzene (1.50) water (1.33) F diamond (2.42) water (1.33) For which of these scenarios is total internal reflection possible? Total internal reflection Angle of refraction Determine the role of the indices of refraction List all correct answers in alphabetical order. For example, if scenarios A and E are correct, enter AE. BCEF For the scenarios in which total internal reflection is possible, rank the scenarios on the basis of the critical angle, the angle above which total internal reflection occurs. At this angle, the refracted ray is at 90 from the normal. Apply Snell's law Rank from largest to smallest. To rank items as equivalent, overlap them. View
6 Problem A fish in a flatsided aquarium sees a can of fish food on the counter. To the fish's eye, the can looks to be 30 cm outside the aquarium. What is the actual distance between the can and the aquarium? (You can ignore the thin glass wall of the aquarium.) 22.6 cm The Focal Length of a Lens An object is located 28.0 from a certain lens. The lens forms a real image that is twice as high as the object. What is the focal length of this lens? Find the magnification Find the object distance Hint A.4 Find the image distance Hint A.5 Thinlens equation Now replace the lens used in with another lens. The new lens is a diverging lens whose focal points are at the same distance from the lens as the focal points of the first lens. If the object is 5.00 what is the height of the image formed by the new lens? The object is still located 28.0 from the lens. high, To find the image height you need to know the magnification of the new lens, which can be calculated if you know the image distance and the object distance. To find the image distance you can use the thinlens equation, but be sure to use the correct value for the focal length. Recall that the focal length of a diverging lens is a negative quantity. Hint B.2 Find the focal length of the new lens Hint B.3 Find the image distance Hint B.4 Find the magnification Lens Producing an Image Conceptual Question A lens produces a real image of a real object. Is the image inverted or upright? Orientation 6 of 9 2/9/2010 3:38 PM
7 7 of 9 2/9/2010 3:38 PM Is the lens diverging or converging? Part C Is the image enlarged or reduced in size? Hint C.1 Hint C.2 Hint C.3 Hint C.4 Determine the object's location Principal rays for possible object location Find the change in image size if the object is moved closer Find the change in image size if the object is moved farther away Part D If two convex lenses identical in size and shape are manufactured from glass with two different indices of refraction, would the focal length of the lens with the greater index of refraction (lens 1) be larger or smaller than that of the other lens (lens 2)? Hint D.1 Hint D.2 Index of refraction Focal length Part E If lens 1 from Part D were placed in exactly the same location as lens 2, would the image produced by lens 1 be larger or smaller than the image produced by lens 2? Hint E.1 Hint E.2 Hint E.3 Hint E.4 Location of the object Image size when object is located at the focal point Ratio of distance to focal length Ray Tracing and Image Formation with a Concave Lens A concave lens refracts parallel rays in such a way that they are bent away from the axis of the lens. For this reason, a concave lens is referred to as a diverging lens. Consider the following diagrams, where F represents the focal point of a concave lens. In these diagrams, the image formed by the lens is obtained using the ray tracing technique. Which diagrams are accurate? A ray parallel to the lens axis A ray parallel to the axis of a concave lens is refracted along a line that extends back through the focal point on the same side of the lens. A ray that passes through the focal point A ray that is directed toward the focal point on the other side of the lens is refracted parallel to the lens axis. A ray that passes through the middle of the lens
8 8 of 9 2/9/2010 3:38 PM A ray that passes through the middle of a concave lens continues on its original direction with essentially no displacement after passing through the lens. Type A if you think that only diagram A is correct, type AB if you think that only diagrams A and B are correct, and so on. AC Answer Requested A concave lens always forms an image that is on the same side of the lens as the object. If the focal length of the concave lens is 7.50, at what distance from the lens should an object be placed so that its image is formed 3.70 from the lens? To determine the object distance you can use the thinlens equation, but be careful to assign the correct sign to each quantity involved in the equation. Hint B.2 The thinlens equation The thinlens equation for a lens with a focal length is, where and are the object distance and the image distance, respectively. Hint B.3 Find the image distance What is the image distance for a concave lens that forms an image 3.70 from the lens? Hint B.3.1 Sign convention for image distances Conventionally the image distance has a positive sign when the image is on the opposite side of the lens from the object (a real image), and a negative sign when the image is on the same side of the lens as the object (a virtual image). Express your answer in centimeters. = Express your answer in centimeters. = 7.30 Part C What is the magnification produced by the concave lens described in? Hint C.1 The magnification Magnification produced by a lens is given by the formula, where and are the object distance and the image distance, respectively. Express your answer numerically to two significant figures. = Part D Where should the object be moved to have a larger magnification? Hint D.1 Magnification and image size. The object should be moved closer to the lens. The object should be moved farther from the lens. The object should be moved to the focal point of the lens. The object should not be moved closer to the lens than the focal point. A 2.0cmdiameter spider is 2.30 from a wall. Problem Determine the focal length of a lens that will make a halfsize image of the spider on the wall cm Determine the position (measured from the wall) of a lens that will make a halfsize image of the spider on the wall cm
9 9 of 9 2/9/2010 3:38 PM Score Summary: Your score on this assignment is 101.7%. You received out of a possible total of 80 points, plus 9.32 points of extra credit.
Convex Mirrors. Ray Diagram for Convex Mirror
Convex Mirrors Center of curvature and focal point both located behind mirror The image for a convex mirror is always virtual and upright compared to the object A convex mirror will reflect a set of parallel
More informationGeometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
More informationRutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
More informationC) D) As object AB is moved from its present position toward the left, the size of the image produced A) decreases B) increases C) remains the same
1. For a plane mirror, compared to the object distance, the image distance is always A) less B) greater C) the same 2. Which graph best represents the relationship between image distance (di) and object
More informationLesson 29: Lenses. Double Concave. Double Convex. Planoconcave. Planoconvex. Convex meniscus. Concave meniscus
Lesson 29: Lenses Remembering the basics of mirrors puts you half ways towards fully understanding lenses as well. The same sort of rules apply, just with a few modifications. Keep in mind that for an
More informationThin Lenses Drawing Ray Diagrams
Drawing Ray Diagrams Fig. 1a Fig. 1b In this activity we explore how light refracts as it passes through a thin lens. Eyeglasses have been in use since the 13 th century. In 1610 Galileo used two lenses
More information1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft
Lenses and Mirrors 1. You stand two feet away from a plane mirror. How far is it from you to your image? a. 2.0 ft c. 4.0 ft b. 3.0 ft d. 5.0 ft 2. Which of the following best describes the image from
More informationSolution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
More informationRAY OPTICS II 7.1 INTRODUCTION
7 RAY OPTICS II 7.1 INTRODUCTION This chapter presents a discussion of more complicated issues in ray optics that builds on and extends the ideas presented in the last chapter (which you must read first!)
More informationEXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS
EXPERIMENT 6 OPTICS: FOCAL LENGTH OF A LENS The following website should be accessed before coming to class. Text reference: pp189196 Optics Bench a) For convenience of discussion we assume that the light
More informationwaves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
More informationLIGHT REFLECTION AND REFRACTION
QUESTION BANK IN SCIENCE CLASSX (TERMII) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection
More informationChapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
More information9/16 Optics 1 /11 GEOMETRIC OPTICS
9/6 Optics / GEOMETRIC OPTICS PURPOSE: To review the basics of geometric optics and to observe the function of some simple and compound optical devices. APPARATUS: Optical bench, lenses, mirror, target
More informationChapter 23. The Reflection of Light: Mirrors
Chapter 23 The Reflection of Light: Mirrors Wave Fronts and Rays Defining wave fronts and rays. Consider a sound wave since it is easier to visualize. Shown is a hemispherical view of a sound wave emitted
More informationChapter 36  Lenses. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 36  Lenses A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Determine
More informationReflection and Refraction
Equipment Reflection and Refraction Acrylic block set, planeconcaveconvex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,
More information2) A convex lens is known as a diverging lens and a concave lens is known as a converging lens. Answer: FALSE Diff: 1 Var: 1 Page Ref: Sec.
Physics for Scientists and Engineers, 4e (Giancoli) Chapter 33 Lenses and Optical Instruments 33.1 Conceptual Questions 1) State how to draw the three rays for finding the image position due to a thin
More informationPhysics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
More informationExperiment 3 Lenses and Images
Experiment 3 Lenses and Images Who shall teach thee, unless it be thine own eyes? Euripides (480?406? BC) OBJECTIVES To examine the nature and location of images formed by es. THEORY Lenses are frequently
More informationAP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
More informationLecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments
Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses
More informationOPTICAL IMAGES DUE TO LENSES AND MIRRORS *
1 OPTICAL IMAGES DUE TO LENSES AND MIRRORS * Carl E. Mungan U.S. Naval Academy, Annapolis, MD ABSTRACT The properties of real and virtual images formed by lenses and mirrors are reviewed. Key ideas are
More informationProcedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Threesurface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
More informationSize Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted
CHAPTER10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a
More informationLecture Notes for Chapter 34: Images
Lecture Notes for hapter 4: Images Disclaimer: These notes are not meant to replace the textbook. Please report any inaccuracies to the professor.. Spherical Reflecting Surfaces Bad News: This subject
More informationChapter 22: Mirrors and Lenses
Chapter 22: Mirrors and Lenses How do you see sunspots? When you look in a mirror, where is the face you see? What is a burning glass? Make sure you know how to:. Apply the properties of similar triangles;
More informationLesson 26: Reflection & Mirror Diagrams
Lesson 26: Reflection & Mirror Diagrams The Law of Reflection There is nothing really mysterious about reflection, but some people try to make it more difficult than it really is. All EMR will reflect
More informationHOMEWORK 4 with Solutions
Winter 996 HOMEWORK 4 with Solutions. ind the image of the object for the single concave mirror system shown in ig. (see next pages for worksheets) by: (a) measuring the radius R and calculating the focal
More informationStudy Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
More informationGeometrical Optics  Grade 11
OpenStaxCNX module: m32832 1 Geometrical Optics  Grade 11 Rory Adams Free High School Science Texts Project Mark Horner Heather Williams This work is produced by OpenStaxCNX and licensed under the Creative
More informationBasic Optics System OS8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 01209900B Basic Optics System
More informationLight and its effects
Light and its effects Light and the speed of light Shadows Shadow films Pinhole camera (1) Pinhole camera (2) Reflection of light Image in a plane mirror An image in a plane mirror is: (i) the same size
More informationChapter 27 Optical Instruments. 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass
Chapter 27 Optical Instruments 27.1 The Human Eye and the Camera 27.2 Lenses in Combination and Corrective Optics 27.3 The Magnifying Glass Figure 27 1 Basic elements of the human eye! Light enters the
More informationUnderstanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
More informationOptics and Geometry. with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004
Optics and Geometry with Applications to Photography Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November 15, 2004 1 Useful approximations This paper can be classified as applied
More informationPhysical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
More informationRevision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
More informationPhysics, Chapter 38: Mirrors and Lenses
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 111958 Physics, Chapter 38: Mirrors and Lenses Henry
More informationRefractive Index Measurement Principle
Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was
More information7.2. Focusing devices: Unit 7.2. context. Lenses and curved mirrors. Lenses. The language of optics
context 7.2 Unit 7.2 ocusing devices: Lenses and curved mirrors Light rays often need to be controlled and ed to produce s in optical instruments such as microscopes, cameras and binoculars, and to change
More informationScience In Action 8 Unit C  Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
More information12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?
12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water
More informationLenses and Telescopes
A. Using single lenses to form images Lenses and Telescopes The simplest variety of telescope uses a single lens. The image is formed at the focus of the telescope, which is simply the focal plane of the
More informationExperiment #2: Determining Sugar Content of a Drink. Objective. Introduction
Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different
More informationb. In Laser View  click on wave. Pose an explanation that explains why the light bends when it enters the water.
Sierzega/Ferri: Optics 5 Observation Experiments: Light Bending Go to: http://phet.colorado.edu/en/simulation /bendinglight You have a laser beam (press the button to turn it on!) that is shining from
More informationEXPERIMENT O6. Michelson Interferometer. Abstract. References. PreLab
EXPERIMENT O6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of HeNe laser light and the index of refraction of a flat transparent
More informationPhysics 202 Problems  Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems  Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
More informationLIGHT SECTION 6REFRACTIONBENDING LIGHT From Hands on Science by Linda Poore, 2003.
LIGHT SECTION 6REFRACTIONBENDING LIGHT From Hands on Science by Linda Poore, 2003. STANDARDS: Students know an object is seen when light traveling from an object enters our eye. Students will differentiate
More informationBasic Geometrical Optics
F UNDAMENTALS OF PHOTONICS Module 1.3 Basic Geometrical Optics Leno S. Pedrotti CORD Waco, Texas Optics is the cornerstone of photonics systems and applications. In this module, you will learn about one
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #4 March 15, 2007 Time: 90 minutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please
More informationLaws; of Refraction. bends away from the normal. more dense medium bends towards the normal. to another does not bend. It is not
Science 8 Laws; of Refraction 1. tight that moyes at an angle from a less dense medium to a more dense medium bends towards the normal. (The second medium slows the light down) Note: The angle of refraction,
More informationSession 7 Bivariate Data and Analysis
Session 7 Bivariate Data and Analysis Key Terms for This Session Previously Introduced mean standard deviation New in This Session association bivariate analysis contingency table covariation least squares
More informationLight and Sound. Pupil Booklet
Duncanrig Secondary School East Kilbride S2 Physics Elective Light and Sound Name: Pupil Booklet Class: SCN 311a  By exploring the refraction of light when passed through different materials, lenses
More information19  RAY OPTICS Page 1 ( Answers at the end of all questions )
19  RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius
More informationReview for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
More informationTHE COMPOUND MICROSCOPE
THE COMPOUND MICROSCOPE In microbiology, the microscope plays an important role in allowing us to see tiny objects that are normally invisible to the naked eye. It is essential for students to learn how
More informationP R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS  LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
More informationParallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.
CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes
More informationWEDNESDAY, 2 MAY 1.30 PM 2.25 PM. 3 Full credit will be given only where the solution contains appropriate working.
C 500/1/01 NATIONAL QUALIFICATIONS 01 WEDNESDAY, MAY 1.0 PM.5 PM MATHEMATICS STANDARD GRADE Credit Level Paper 1 (Noncalculator) 1 You may NOT use a calculator. Answer as many questions as you can. Full
More informationGeometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment
Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points
More informationPhysics 116. Nov 4, 2011. Session 22 Review: ray optics. R. J. Wilkes Email: ph116@u.washington.edu
Physics 116 Session 22 Review: ray optics Nov 4, 2011 R. J. Wilkes Email: ph116@u.washington.edu ! Exam 2 is Monday!! All multiple choice, similar to HW problems, same format as Exam 1!!! Announcements
More informationPhysics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." Edith Wharton
Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel
More informationQuestion based on Refraction and Refractive index. Glass Slab, Lateral Shift.
Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when
More informationThe light. Light (normally spreads out straight... ... and into all directions. Refraction of light
The light Light (normally spreads out straight...... and into all directions. Refraction of light But when a light ray passes from air into glas or water (or another transparent medium), it gets refracted
More informationVision Correction in Camera Viewfinders
Vision Correction in Camera Viewfinders Douglas A. Kerr Issue 2 March 23, 2015 ABSTRACT AND INTRODUCTION Many camera viewfinders are equipped with a lever or knob that controls adjustable vision correction,
More informationPhysical Science 20  Final Exam Practice
Physical Science 20  Final Exam Practice SHORT ANSWER IS ALL CURVED MIRRORS AND LENSES Mirrors and Lenses 1. Complete the following ray diagrams for curved mirrors. Write the 4 characteristics of each
More informationPHY114 S11 Term Exam 3
PHY4 S Term Exam S. G. Rajeev Mar 2 20 2:0 pm to :45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams at the workshop.
More informationVOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region.
Math 6 NOTES 7.5 Name VOLUME of Rectangular Prisms Volume is the measure of occupied by a solid region. **The formula for the volume of a rectangular prism is:** l = length w = width h = height Study Tip:
More informationLenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
More informationSolving Simultaneous Equations and Matrices
Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering
More informationPhysics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
More informationRefraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
More informationIntroduction. In Physics light is referred to as electromagnetic radiation which is a natural phenomenon that can
Introduction In Physics light is referred to as electromagnetic radiation which is a natural phenomenon that can also be produced and detected through technological means. It has proven invaluable for
More informationLight Energy OBJECTIVES
11 Light Energy Can you read a book in the dark? If you try to do so, then you will realize, how much we are dependent on light. Light is very important part of our daily life. We require light for a number
More information1051232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
More informationGeometry: Classifying, Identifying, and Constructing Triangles
Geometry: Classifying, Identifying, and Constructing Triangles Lesson Objectives Teacher's Notes Lesson Notes 1) Identify acute, right, and obtuse triangles. 2) Identify scalene, isosceles, equilateral
More informationMathematics (Project Maths Phase 3)
2014. M328 Coimisiún na Scrúduithe Stáit State Examinations Commission Leaving Certificate Examination 2014 Mathematics (Project Maths Phase 3) Paper 2 Ordinary Level Monday 9 June Morning 9:30 12:00 300
More informationInterference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
More information4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115134 SL/HL Supplemental: Cutnell and Johnson, pp 473477, 507513 Tsokos, pp 216242 REMEMBER TO. Work through all
More informationThe common ratio in (ii) is called the scaledfactor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1
47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not
More informationAP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
More information2.1. Inductive Reasoning EXAMPLE A
CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers
More informationMATHEMATICS TEST. Paper 1 calculator not allowed LEVEL 6 TESTS ANSWER BOOKLET. First name. Middle name. Last name. Date of birth Day Month Year
LEVEL 6 TESTS ANSWER BOOKLET Ma MATHEMATICS TEST LEVEL 6 TESTS Paper 1 calculator not allowed First name Middle name Last name Date of birth Day Month Year Please circle one Boy Girl Year group School
More information6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
More informationCrystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
More informationAspherical Lens Design by Using a Numerical Analysis
Journal of the Korean Physical Society, Vol. 51, No. 1, July 27, pp. 93 13 Aspherical Lens Design by Using a Numerical Analysis GyeongIl Kweon Department of Optoelectronics, Honam University, Gwangju
More informationLens Equation Purpose
Lens Equation Purpose To verify the lens equation for both a converging lens and a diverging lens. To investigate optical systems. To find the focal lengths of a converging lens and a diverging lens. Background
More informationCopyright 2011 Casa Software Ltd. www.casaxps.com. Centre of Mass
Centre of Mass A central theme in mathematical modelling is that of reducing complex problems to simpler, and hopefully, equivalent problems for which mathematical analysis is possible. The concept of
More informationPHYS 39a Lab 3: Microscope Optics
PHYS 39a Lab 3: Microscope Optics Trevor Kafka December 15, 2014 Abstract In this lab task, we sought to use critical illumination and Köhler illumination techniques to view the image of a 1000 linesperinch
More informationAfter a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. Xrays. D. visible light.
More informationPHYSICS 534 (Revised Edition 2001)
Student Study Guide PHYSICS 534 (Revised Edition 2001) Leonardo da Vinci 14521519 Student Study Guide Physics 534 (Revised Edition  2000) This Study Guide was written by a committee of Physics teachers
More informationOptical Communications
Optical Communications Telecommunication Engineering School of Engineering University of Rome La Sapienza Rome, Italy 20052006 Lecture #2, May 2 2006 The Optical Communication System BLOCK DIAGRAM OF
More informationGLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
More informationPHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
More informationThird Grade Light and Optics Assessment
Third Grade Light and Optics Assessment 1a. Light travels at an amazingly high speed. How fast does it travel? a. 186,000 miles per second b. 186,000 miles per hour 1b. Light travels at an amazingly high
More informationLesson. Objectives. Compare how plane, convex, and concave. State the law of reflection.
KH_BD1_SEG5_U4C12L3_407415.indd 407 Essential Question How Do Lenses and Mirrors Affect Light? What reflective surfaces do you see in your classroom? What are the different properties of these surfaces
More informationELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES
ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A. Monday, January 27, 2003 1:15 to 4:15 p.m.
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION MATHEMATICS A Monday, January 27, 2003 1:15 to 4:15 p.m., only Print Your Name: Print Your School s Name: Print your name and the
More information7 Light and Geometric Optics
7 Light and Geometric Optics By the end of this chapter, you should be able to do the following: Use ray diagrams to analyse situations in which light reflects from plane and curved mirrors state the law
More information