# Question based on Refraction and Refractive index. Glass Slab, Lateral Shift.

Save this PDF as:

Size: px
Start display at page:

Download "Question based on Refraction and Refractive index. Glass Slab, Lateral Shift."

## Transcription

1 Question based on Refraction and Refractive index. Glass Slab, Lateral Shift. Q.What is refraction of light? What are the laws of refraction? Ans: Deviation of ray of light from its original path when it travels from one transparent homogeneous medium to another transparent homogenous medium is called the refraction of light. There are two laws of refraction :- (I ) incident ray, reflected ray and normal lie in the same plane. (ii) The ratio of sine of angle of incidence and sine of angle of refraction is constant i.e. Sin i / Sin r = n. This is also called as Snell s law. Q. Define Refractive Index: Ans: It is the ratio of speed of light in vacuum to the speed of light in medium is called Refractive index. Q. Give the ratio of velocities of two light waves travelling is vacuum and having wave lengths 4000A0 and 8000A0. Ans: In Vacuum, light of all the wave lengths travel with the same velocity i.e. 3 X 108 m/sec. Q.. For what angle of incidence, the lateral shift produced by parallel sided glass plate is zero? Ans: For <i = 0. Q. What are the factors on which the lateral shift depends? Ans: Thickness of the refracting medium, angle of incidence and its refractive index. Q. Refractive index of media A,B,C and D are A B C D In which of the four media is the speed of light (i) Minimum (ii) Maximum. Ans: (i) Speed of light is minimum in medium D (n = 1.62). (ii) Speed of light is maximum is medium B (n = 1.33). Q. What is the value of Relative refractive index of air? Ans: One. 1 P a g e

2 Q. If speed of light in vacuum = 3 x 10 8 m/sec and Refractive index of water = 4/3, What is the speed of light in water? Ans: Refractive index of water = Speed of light in vacuum / Speed of light in water; 4/3 = (3 x 108 m/sec )/ (Speed of light in water) Speed of light in water = (3 x 10 8 m/sec) x ¾ = 9/4 x 10 8 m/sec = 2.25 x 10 8 m/sec. Q. For the same angle of incidence in media P, Q and R, the angles of refraction are 35 0, 25 0, 15 0 respectively. In which medium will the velocity of light be minimum? Ans: According Snell s law n = Sin i / Sin = C / V For given angle of incidence (i), V will be minimum, when angle of refraction <r is minimum In given data it is for medium R. Q. A coin in a glass beaker appears to rise as the beaker is slowly filled with water. Why? Ans: It happens on account of refraction of light. A ray of light starting from the coin goes from water to air and bends away from normal. Therefore, bottom of the beaker on which the coin lies appears to be raised. Q. When a ray of light passes through a parallel sided glass slab of transparent medium then show that angle of incidence is equals to angle of emergence. Applying Snell s Law at B, Sin i 1 / Sin r 1 = n g /n a (i) Applying Snell s Law at C, Sin r 2 / Sin e = n a /n g n g /n a = Sin e / Sin r (ii) From (i) & (ii) Sin i 1 / Sin r 1 = Sin e / Sin r (iv) Now, KL II MN and N 1 KL and N 2 MN N 1 II N 2 and BC is transversal, <r 2 = <r 1 Sin r 2 = Sin r (v) From (iv) & (v) Sin i 1 = Sin e 2 P a g e

3 Angle of emergent at second boundary MN of glass slab is equal to angle of incidence at the first boundary KL of glass slab. Hence, CD II AB Q. What is lateral shift? Explain with the help of a diagram. Ans: When a ray of light travels through a glass slab from air, it bends towards the normal and when it comes out of the other side of the glass slab it bends away from the normal. It is found that the incident ray and the emergent ray are not along the same straight line, but the emergent ray seems to be displaced with respect to the incident ray. This shift in the emergent ray with respect to the incident ray is called lateral shift or lateral displacement. The incident and the emergent rays, however, remain parallel. Lateral Shift The perpendicular distance between incident and emergent ray is known as lateral shift. Lateral Shift d = BC and t = thickness of slab In BOC, sin(i - r) = BC/OB = d/ob d = OB sin (i - r) (i) In OBD, (cos r) =OD/OB = t/ob OB = t/(cos r) (ii) From (i) and (ii) d = t sin (i - r) / (Cos r) Q. An object under water appears to be at lesser depth than in reality. Explain why? Ans: This is due to refraction of light. We know Real depth / Apparent depth = n Or Apparent depth = Real depth / n 3 P a g e

4 Since n > 1, so apparent depth < real depth. Q. When does Snell's law fail? Ans: Snell's law fails when light is incident normally on surface of a refracting medium. Q. Light of wavelength λ in air enters a medium of refractive index n. What will be its wavelength, velocity and frequency in the medium? Answer: We know, n = c / v, where c = 3 x 10 8 ms-1 Therefore, v = c / n, which is the velocity of light in the medium. Also c = vλ and v = vλ Therefore, c / v = λ / λ Or λ = λ / (c / v) = λ / n, which is wavelength of light in the medium. Frequency of light in air, v = c / λ Frequency of light in medium, v = v / λ = (v / λ )n =( v / λ)( c / v) = c / λ. Hence v = v. So frequency of light in the medium is same as that in air. Q. With respect to air the refractive index of ice and rock salt benzene are 1.31 and 1.54 respectively. Calculate the refractive index of rock salt with respect to ice. Ans: We know that, With respect to air the refractive index of ice and rock salt benzene i r n = a r n / a n I = 1.54 / 1.31 = 1.17 Q. When light goes from one medium to another, the characteristics that remain unaffected is (a) Speed (b) Direction (c) Wave length (d) Frequency Ans: (d) Frequency Q. Bending of a ray of light due to change in velocity with medium is called a) Reflection b) Refraction c) Diffraction d) Dispersion Ans: b) Refraction Q. For no bending of a ray of light through a glass slab, angle of incidence must be (a)0 0 (b) 30 0 (c) 60 0 (d) 90 0 Ans: (a) 0 0 Experiment: Aim: To trace the path of a ray of light passing through a rectangular glass slab for different angles of incidence and to measure the angle of incidence, angle of refraction and angle of emergence and interpret the result. Apparatus: A drawing board, rectangular glass slab, office pins, sheet of white paper, a protractor and sharply pointed pencil. 4 P a g e

5 Conclusions : The path of the incident ray, the refracted ray and the emergent ray when light passes through a rectangular glass slab is shown above. Within the experimental error, i = e, this implies that the incident ray and the emergent ray are parallel to each other. Doing the Experiment Apparatus: A drawing board, rectangular glass slab, office pins, sheet of white paper, a protractor and sharply pointed pencil. About the experiment: 5 P a g e

6 PQRS represents a glass slab. Consider that a ray of light enters the glass slab along AE. It means that light is travelling from a rarer medium (i.e., air) to glass which is denser medium. Thus the refracted ray bends towards the normal making r At the other face of the slab, the ray EF while travelling through glass meets the surface SR of air which is a rarer medium. It emerges out along FD,bending away from the normal.the ray FD is known as the emergent ray. The angle which the emergent ray makes with the normal at the point of emergence is called the angle of emergence and is denoted by the letter E Procedure : Fix a sheet of white paper on a drawing board with drawing pins. Place the given glass slab nearly in the middle of the sheet. Mark the boundary of the glass slab with a sharp pencil and label it as PQRS after removing the slab from its position. On the line PQ mark a point E and draw a normal N 1 EN 2 at it. Draw a line AE making angle AEN1 with the normal.the angle should neither too small nor too large (say about 40 degree). Now place the glass slab again on its boundary PQRS and fix two pins A and B vertically about 10 cm apart on the line AE (say points A and B). Look through the glass slab along the plane of the paper from the side SR and move your head until the images of the two pins A and B are seen clearly. Closing your one eye,adjust the position of your head in such a way that the images of the pins A and B lie in the same straight line. Fix two other pins C and D vertically in such a way that the images of the pins A and B and pins C and D, all these four, lie in the same straight line. Ensure that the feet of the pins ( not their heads ) lie in the same straight line. Remove the slab and also the pins from the board and encircle the pin-pricks on the paper,with a sharp pencil. Join the points D and C and produce the line DC towards the slab so that it meets the boundary line RS at the point F. Join the points e and F. Thus for the incident ray represented by line AE, the refracted ray and the emergant ray are represented by EF and FD respectively. On the line RS draw a normal N 1 'FN 2 ' at point F. Now, with a protractor, measure angle AEN 1, angle FEN 2 and angle DFN 2 ' labelled as angle i, angle r and angle e respectively. Now place the glass slab at some other position on the sheet of paper fixed on the board and repeat all the above steps again taking another angle of incidence. Measure the angle of incidence i.e angle of refraction, angle of emergence, again. 6 P a g e

7 Make a record of your observations in the observation table as shown below. Observation Table : 7 P a g e

### Reflection and Refraction

Equipment Reflection and Refraction Acrylic block set, plane-concave-convex universal mirror, cork board, cork board stand, pins, flashlight, protractor, ruler, mirror worksheet, rectangular block worksheet,

### Class 10 Reflection and refraction of Light

Class 10 Reflection and refraction of Light Light is the form of energy having both wave and particle nature. Speed of light in vacuum is 3 lakhs km/s Reflection of Light by plane and Spherical Mirrors

### LIGHT REFLECTION AND REFRACTION

QUESTION BANK IN SCIENCE CLASS-X (TERM-II) 10 LIGHT REFLECTION AND REFRACTION CONCEPTS To revise the laws of reflection at plane surface and the characteristics of image formed as well as the uses of reflection

### Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.

Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves

### REFLECTION & REFRACTION

REFLECTION & REFRACTION OBJECTIVE: To study and verify the laws of reflection and refraction using a plane mirror and a glass block. To see the virtual images that can be formed by the reflection and refraction

### Ray Tracing: the Law of Reflection, and Snell s Law

Ray Tracing: the Law of Reflection, and Snell s Law Each of the experiments is designed to test or investigate the basic ideas of reflection and the ray-like behavior of light. The instructor will explain

### Periodic Wave Phenomena

Name: Periodic Wave Phenomena 1. The diagram shows radar waves being emitted from a stationary police car and reflected by a moving car back to the police car. The difference in apparent frequency between

### Solution Derivations for Capa #13

Solution Derivations for Capa #13 1) A super nova releases 1.3 10 45 J of energy. It is 1540 ly from earth. If you were facing the star in question, and your face was a circle 7 cm in radius, how much

### PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions

230 PREVIOUS 8 YEARS QUESTIONS (1 mark & 2 marks) 1 mark questions 1. An object is held at the principal focus of a concave lens of focal length f. Where is the image formed? (AISSCE 2008) Ans: That is

### The Thin Convex Lens convex lens focal point thin lens thin convex lens real images

1 The Thin Convex Lens In the previous experiment, we observed the phenomenon of refraction for a rectangular piece of glass. The bending or refraction of the light was observed for two parallel interfaces,

### Turnbull High School Physics Department. CfE. National 4 /National. Physics. Unit 1: Waves and Radiation. Section 3: Light

Turnbull High School Physics Department CfE National 4 /National 5 Physics Unit 1: Waves and Radiation Section 3: Light Name: Class: 1 National 5 Unit 1: Section 3 I can state the law of reflection and

### Refractive Index and Dispersion: Prism Spectrometer

Refractive Index and Dispersion: Prism Spectrometer OBJECTIVES: The purpose of this experiment is to study the phenomenon of dispersion i.e. to determine the variation of refractive index of the glass

### Practical Geometry. Chapter Introduction

Practical Geometry Chapter 14 14.1 Introduction We see a number of shapes with which we are familiar. We also make a lot of pictures. These pictures include different shapes. We have learnt about some

### PRACTICE Q6--Quiz 6, Ch15.1 &15.2 Interference & Diffraction

Name: Class: Date: ID: A PRACTICE Q6--Quiz 6, Ch5. &5. Interference & Diffraction Multiple Choice Identify the choice that best completes the statement or answers the question.. The trough of the sine

### Crystal Optics of Visible Light

Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means

### Bronx High School of Science Regents Physics

Bronx High School of Science Regents Physics 1. Orange light has a frequency of 5.0 10 14 hertz in a vacuum. What is the wavelength of this light? (A) 1.5 10 23 m (C) 6.0 10 7 m (B) 1.7 10 6 m (D) 2.0

### 3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted

Light and Sound 3.14 understand that light waves are transverse waves which can be reflected, refracted and diffracted 3.15 use the law of reflection (the angle of incidence equals the angle of reflection)

### 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all

### 12.1 What is Refraction pg. 515. Light travels in straight lines through air. What happens to light when it travels from one material into another?

12.1 What is Refraction pg. 515 Light travels in straight lines through air. What happens to light when it travels from one material into another? Bending Light The light traveling from an object in water

### Chapter 17 Light and Image Formation

Chapter 7 Light and Image Formation Reflection and Refraction How is an image in a mirror produced? Reflection and Image Formation In chapter 6 we studied physical optics, which involve wave aspects of

### v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :

PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material

### Basic Optics System OS-8515C

40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System

### 19 - RAY OPTICS Page 1 ( Answers at the end of all questions )

19 - RAY OPTICS Page 1 1 ) A ish looking up through the water sees the outside world contained in a circular horizon. I the reractive index o water is 4 / 3 and the ish is 1 cm below the surace, the radius

### Physics I Honors: Chapter 14 Practice Test - Refraction of Light

Physics I Honors: Chapter 14 Practice Test - Refraction of Light Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Refraction is the bending

### Lecture 14 Images Chapter 34

Lecture 4 Images Chapter 34 Preliminary topics before mirrors and lenses Law of Reflection Dispersion Snell s Law Brewsters Angle Law of Reflection Dispersion Snell s Law Brewsters Angle Geometrical Optics:Study

### Waves review practice questions

Name: ate: 1. The diagram shown represents four waves traveling to the right in the same transmitting medium. 4. Which wave has the greatest amplitude?.... Which type of wave is represented? 5. Which characteristic

### AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,

### Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

### Size Of the Image Nature Of the Image At Infinity At the Focus Highly Diminished, Point Real and Inverted

CHAPTER-10 LIGHT REFLECTION AND REFRACTION Light rays; are; electromagnetic in nature, and do not need material medium for Propagation Speed of light in vacuum in 3*10 8 m/s When a light ray falls on a

### 104 Practice Exam 2-3/21/02

104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero

### PHYSICS EXPERIMENTS (LIGHT)

PHYSICS EXPERIMENTS (LIGHT) In the matter of physics, the first lessons should contain nothing but what is experimental and interesting to see. A pretty experiment is in itself often more valuable than

### PHYS-2020: General Physics II Course Lecture Notes Section XI

PHYS-2020: General Physics II Course Lecture Notes Section XI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and

### Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular to the surface (the normal) Angle of incidence

The maximum displacement of particles of the medium from their mean positions during the propagation of a wave Angle of an incident (arriving) ray or particle to a surface; measured from a line perpendicular

### Chapter 23. The Refraction of Light: Lenses and Optical Instruments

Chapter 23 The Refraction of Light: Lenses and Optical Instruments Lenses Converging and diverging lenses. Lenses refract light in such a way that an image of the light source is formed. With a converging

### Lecture PowerPoints. Chapter 23 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints Chapter 23 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

### Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets. Wave Nature of Light

Wave Nature of Light Christian Huygen Light is a wave, not merely a ray As waves propagate each point on the wavefront produces new wavelets Chapter 24 Wavelength Changes Wavelength of light changes in

### EXPERIMENT 9 Diffraction Gratings

EXPERIMENT 9 Diffraction Gratings 1. How a Diffraction Grating works? Diffraction gratings are optical components with a period modulation on its surface. Either the transmission (or the phase) changes

### You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Write your name here Surname Other names Edexcel IGCSE Mathematics B Paper 1 Centre Number Candidate Number Monday 6 June 2011 Afternoon Time: 1 hour 30 minutes Paper Reference 4MB0/01 You must have: Ruler

### Chapter 24. Wave Optics

Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena. Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric)

### Chapter One. Points, Lines, Planes, and Angles

Chapter One Points, Lines, Planes, and Angles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately

### Enrichment The Physics of Soccer Recall from Lesson 7-1 that the formula for the maximum height h h v 0 2 sin 2

7-1 The Physics of Soccer Recall from Lesson 7-1 that the formula for the maximum height h h v 0 2 sin 2 of a projectile is 2g, where is the measure of the angle of elevation in degrees, v 0 is the initial

### Question 2: The radius of curvature of a spherical mirror is 20 cm. What is its focal length?

Question 1: Define the principal focus of a concave mirror. ANS: Light rays that are parallel to the principal axis of a concave mirror converge at a specific point on its principal axis after reflecting

### 2/16/2016. Reflection and Refraction WHITEBOARD WHITEBOARD. Chapter 21 Lecture What path did the light follow to reach the wall?

Chapter 21 Lecture What path did the light follow to reach the wall? Reflection and Refraction Represent the path from the laser to the wall with an arrow. Why can t you see the beam of light itself but

### Mirror, mirror - Teacher Guide

Introduction Mirror, mirror - Teacher Guide In this activity, test the Law of Reflection based on experimental evidence. However, the back-silvered glass mirrors present a twist. As light travels from

### GEOMETRICAL OPTICS. Lens Prism Mirror

GEOMETRICAL OPTICS Geometrical optics is the treatment of the passage of light through lenses, prisms, etc. by representing the light as rays. A light ray from a source goes in a straight line through

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two radio antennas are 120 m apart on a north-south line. The two antennas radiate in

### Chapter 23. Ray Optics. Chapter 23. Ray Optics. What is specular reflection? Chapter 23. Reading Quizzes

Chapter 23. Ray Optics Chapter 23. Ray Optics Our everyday experience that light travels in straight lines is the basis of the ray model of light. Ray optics apply to a variety of situations, including

### Waves - Transverse and Longitudinal Waves

Waves - Transverse and Longitudinal Waves wave may be defined as a periodic disturbance in a medium that carries energy from one point to another. ll waves require a source and a medium of propagation.

### INTEGRATED SCIENCE 1: UNIT 4: PHYSICS

INTEGRATED SCIENCE 1: UNIT 4: PHYSICS Sub Unit 1: Waves TEST 2: Electromagnetic Waves Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1)Electromagnetic

### ENGINEERING DRAWING. UNIT I - Part A

ENGINEERING DRAWING UNIT I - Part A 1. Solid Geometry is the study of graphic representation of solids of --------- dimensions on plane surfaces of ------- dimensions. 2. In the orthographic projection,

### Refractive Index Measurement Principle

Refractive Index Measurement Principle Refractive index measurement principle Introduction Detection of liquid concentrations by optical means was already known in antiquity. The law of refraction was

### Ch 24 Wave Optics. concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53

Ch 24 Wave Optics concept questions #8, 11 problems #1, 3, 9, 15, 19, 31, 45, 48, 53 Light is a wave so interference can occur. Interference effects for light are not easy to observe because of the short

### sin ( sin(45 )) 70.5

Seismology and Global Waves Chap. 4 HW Answers 1. A swinging door is embedded in a N S oriented wall. What force direction would be required to make the door swing on its hinge?. A ray is travelling in

### Q1. The diagram shows a plane mirror used by a dentist to see the back of a patient s tooth.

Year 0 Physics Waves Revision questions Higher Name: Q. The diagram shows a plane mirror used by a dentist to see the back of a patient s tooth. (a) Use a ruler to draw a ray of light on the diagram to

### Waves Physics Leaving Cert Quick Notes

Waves Physics Leaving Cert Quick Notes Waves A wave is a means of transferring energy from one point to another Waves can be classified as mechanical where the wave must have a medium to travel through,

### Physics 25 Exam 3 November 3, 2009

1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,

### ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES

ELECTRIC FIELD LINES AND EQUIPOTENTIAL SURFACES The purpose of this lab session is to experimentally investigate the relation between electric field lines of force and equipotential surfaces in two dimensions.

### Ray Optics 11/96. Physical Science 101 Name Section. Partner s Name

Physical Science 101 Name Section Partner s Name Purpose: The purpose of this lab is to study the laws of reflection and refraction for flat surfaces and to find out how converging lenses and converging

### Wednesday 15 January 2014 Morning Time: 2 hours

Write your name here Surname Other names Pearson Edexcel Certificate Pearson Edexcel International GCSE Mathematics A Paper 4H Centre Number Wednesday 15 January 2014 Morning Time: 2 hours Candidate Number

### Chapter 17: Light and Image Formation

Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the

### NCERT. not to be republished LINES AND ANGLES UNIT 5. (A) Main Concepts and Results

UNIT 5 LINES AND ANGLES (A) Main Concepts and Results An angle is formed when two lines or rays or line segments meet or intersect. When the sum of the measures of two angles is 90, the angles are called

### 1 of 9 2/9/2010 3:38 PM

1 of 9 2/9/2010 3:38 PM Chapter 23 Homework Due: 8:00am on Monday, February 8, 2010 Note: To understand how points are awarded, read your instructor's Grading Policy. [Return to Standard Assignment View]

### not to be republished NCERT WAVE OPTICS Chapter Ten MCQ I

Chapter Ten WAVE OTICS MCQ I 10.1 Consider a light beam incident from air to a glass slab at Brewster s angle as shown in Fig. 10.1. A polaroid is placed in the path of the emergent ray at point and rotated

### 4 BASIC GEOMETRICAL IDEAS

4 BASIC GEOMETRICAL IDEAS Q.1. Use the figure to name. (a) Five points (b) A line (c) Four rays (d) Five line segments Ans. (a) O, B, C, D and E. (b) DB, OB etc. (c) OB, OC, OD and ED Exercise 4.1 (d)

### Page 1 Class 10 th Physics LIGHT REFLECTION AND REFRACTION

Page 1 LIGHT Light is a form of energy, which induces the sensation of vision in our eyes and makes us able to see various things present in our surrounding. UNITS OF LIGHT Any object which has an ability

### Experiment #2: Determining Sugar Content of a Drink. Objective. Introduction

Experiment #2: Determining Sugar Content of a Drink Objective How much sugar is there in your drink? In this experiment, you will measure the amount of sugar dissolved in a soft drink by using two different

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### Light Reflection of Light

Light Reflection of Light 1. (a) What do you understand by the following terms? (i) Light (ii) Diffused light. (b) By giving one example and one use explain or define (i) regular reflection (ii) irregular

### EXPERIMENT 8. To Determine the Wavelength of Sodium Light using Newton s Rings. Introduction. Background

EXPERIMENT 8 To Determine the Wavelength of Sodium Light using Newton s Rings Introduction Please read additional instructions on the bench for setting up the PC and camera for this experiment Newton s

### GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics

Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals

### And although two objects like these bumper boats cannot be in the same place on the water at the same time, water waves can. Why is that?

Physics 1103 Wave Interactions (picture of beach on screen) Today, we go back to the beach to investigate more wave interactions. For example, what makes these waves change direction as they approach the

### Objectives: To determine how rays of light reflect off the surface of mirrors.

1 Home Lab 4 Reflection of Light Rays Overview: With a simple flat mirror, paper, and a ruler we can demonstrate how we see reflections of different objects in mirrors. Activity 4-1: Tracing reflected

### Experiment 4: Refraction and Interference with Microwaves

Experiment 4: Refraction and Interference with Microwaves Introduction Many phenomena whose study comes under the heading of "physical optics" arise from certain integral relationships between the wavelength

### Important Equations in Physics for IGCSE course. Area of triangular shaped graph = ½ base height

Important Equations in Physics for IGCSE course General Physics: 1 For constant motion: v = s t 2 For acceleration a v u a = t 3 Graph Area of a rectangular shaped graph = base height. 4 Weight and mass

### Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P

Q28.1 A positive point charge is moving to the right. The magnetic field that the point charge produces at point P (see diagram below) P r + v r A. points in the same direction as v. B. points from point

### AP Physics B Free Response Solutions

AP Physics B Free Response Solutions. (0 points) A sailboat at rest on a calm lake has its anchor dropped a distance of 4.0 m below the surface of the water. The anchor is suspended by a rope of negligible

### Three Lasers Converging at a Focal Point : A Demonstration

Three Lasers Converging at a Focal Point : A Demonstration Overview In this activity, students will see how we can use the property of refraction to focus parallel rays of light. Students will observe

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### After a wave passes through a medium, how does the position of that medium compare to its original position?

Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.

### Discover Reflection Kit

Instruction Manual No. 012-09301A Discover Reflection Kit SE-8803 Included Equipment Plane mirror with stand (15 cm x 15 cm) Corkboard (22 cm x 28 cm) Colored pins Additional Equipment Recommended Protractor

### 1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chapter 28: MAGNETIC FIELDS 1 Units of a magnetic field might be: A C m/s B C s/m C C/kg D kg/c s E N/C m 2 In the formula F = q v B: A F must be perpendicular to v but not necessarily to B B F must be

### REFLECTION AND PLANAR MIRRORS

REFLECTION AND PLANAR MIRRORS by Kirby Morgan REFLECTION AND PLANAR MIRRORS 1. Introduction.............................................. 1 2. Law of Reflection a. Light Waves Can be Represented by Rays...............

### CET Moving Charges & Magnetism

CET 2014 Moving Charges & Magnetism 1. When a charged particle moves perpendicular to the direction of uniform magnetic field its a) energy changes. b) momentum changes. c) both energy and momentum

### Tutorial 6: Solutions

Tutorial 6: Solutions 1. A stationary radiating system consists of a linear chain of parallel oscillators separated by a distance d. The phase of the oscillators varies linearly along the chain, Find the

### MIRRORS AND REFLECTION

MIRRORS AND REFLECTION PART 1 ANGLE OF INCIDENCE, ANGLE OF REFLECTION In this exploration we will compare θ i (angle of incidence) and θ r (angle of reflection). We will also investigate if rays are reversed

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### Double Slit Experiment. and diffrac5on gra5ngs

Double Slit Experiment and diffrac5on gra5ngs Diffraction Diffraction is normally taken to refer to various phenomena which occur when a wave encounters an obstacle. It is described as the apparent bending

### Light as a wave. VCE Physics.com. Light as a wave - 1

Light as a wave Huygen s wave theory Newton s corpuscular theory Young s double slit experiment Double slit interference Diffraction Single slit interference The electromagnetic nature of light The electromagnetic

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Optics and Image formation

Optics and Image formation Pascal Chartrand chercheur-agrégé Département de Biochimie email: p.chartrand@umontreal.ca The Light Microscope Four centuries of history Vibrant current development One of the

### EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent

### Homework 13 chapter 36: 17, 21, 33, 74

http://iml.umkc.edu/physics/wrobel/phy50/homework.htm Homework chapter 6: 7,,, 74 Problem 6.7 A spherical mirror is to be used to form, on a screen located 5 m from the object, an image five times the

### LASER OPTICAL DISK SET

LASER OPTICAL DISK SET LODS01 5 6 7 4 8 3 9 2 10 1 11 1. Description The laser Optical Disk Set includes a Laser Ray Box powered by a low voltage wall-mount power supply, a set of eight ray optics elements

### NCERT. Area of the circular path formed by two concentric circles of radii. Area of the sector of a circle of radius r with central angle θ =

AREA RELATED TO CIRCLES (A) Main Concepts and Results CHAPTER 11 Perimeters and areas of simple closed figures. Circumference and area of a circle. Area of a circular path (i.e., ring). Sector of a circle

### Physics 1230: Light and Color

Physics 1230: Light and Color Exam 1 is finished, Avg: 84 +/- 10.5 Solutions on the web and scores on CULearn. HW4: Due Thursday, 5PM Lecture 6: Reflection, mirror images, and refraction. Reading: Chapter

### Objectives 426 CHAPTER 10 LIGHT AND OPTICAL SYSTEMS

Objectives Explain what is meant by the curvature and focal length of mirrors and lenses. Explain how curvature and focal length are related. Use light rays to trace light from an object to a mirror to