# Using Excel for inferential statistics

Size: px
Start display at page:

Transcription

1 FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied to your data, to test the hypothesis that a particular pattern could be due to chance alone rather than caused by some effect. They allow you to find the probability that your results support your predictions. By using the 5% or p 0.05 level of significance (probability equal to or less than 1 in 20 or 5%), you can indicate confidence in your conclusions. In other words, you set a level at which you would expect normal random variations to give results like yours only once in every twenty times or less. This means that your data provide the evidence (not proof) that an effect is caused by something other than chance. (See: Fact sheet: Background to statistics) The main statistical tests supported by Excel are: Pearson product-moment correlation coefficient t-test analysis of variance χ 2 tests for goodness of fit and association (contingency table) Correlations Two variables show an association when they vary together or one variable affects the other. Correlations occur when they vary directly together (straight line, i.e. linear relationships). This may be a positive association when they both go up together or a negative association when one goes up and the other goes down. For example, dandelions and daisies tend to be found together on sports fields or in public parks in numbers that increase or decrease together (a positive association as they vary together in the same way). Thyme prefers alkaline soils, so numbers tend to increase as ph increases (a positive association as increase in ph affects the increase in thyme plants). Sheep s sorrel prefers acid soils, so density of thyme tends to decrease as sheep s sorrel increases (a negative association). Note of caution: when variables show an association, there is a strong tendency to assume that this is due to cause and effect. Dandelions do not cause an increase in daises (or vice versa); they both prefer the same kinds of conditions. They are affected by, for example, grazing or mowing, which reduces competition from taller growing plants. Other variables showing positive associations include listening to loud music and acne, and hand size and reading ability. A negative association occurs between the number of firemen attending a fire Using Excel for inferential statistics: page 1 of 7

2 and the amount of losses in the fire; there is a negative association between mobile phone use and sperm count. Can you suggest reasons for these associations? Correlation coefficients Correlation coefficients are statistical tests used to show the strength of an association. They can be used to calculate the probability that data show an association (positive or negative) by chance alone. Two commonly used tests for association are the Pearson product-moment correlation coefficient (r) and the Spearman rank order correlation coefficient (ρ Greek letter rho). Pearson is used for parametric data, i.e. data that is normally distributed and Spearman for non-parametric data that can be placed in order of magnitude (i.e. ranked). Excel has a function to calculate the Pearson coefficient and can be modified to calculate Spearman. In both cases, values vary between +1 and -1: Perfect negative correlation No correlation Perfect positive correlation Investigating correlations Paired data are collected, so each value for one variable has an associated value for the second variable. These can be used as coordinates to plot a scatter graph. The value of the correlation coefficient depends on how closely data approximate to a straight line relationship. Perfect correlations (+1 or -1) have plots that lie on a straight line: r = +1 r = -1 Sometimes there is no correlation at all: r = 0 r = 0 Using Excel for inferential statistics: page 2 of 7

3 More often, it will be somewhere in between: r = 0.49 r = How do you interpret correlation coefficient scores? For example, when comparing a score of 0.90 with 0.79? You use the probability of obtaining a score to decide whether the value is significant or not. You want to know if your data support the hypothesis that they show a significant correlation. This is called the experimental or alternative hypothesis, H A. You can refine this by testing either for a positive or a negative correlation: e.g. H A = there is a significant positive association between the rate of water loss in woodlice and the external temperature Coefficients of correlation test the null hypothesis, H 0, that there is no significant correlation, any apparent correlation is due solely to chance. In the case of the woodlice, H 0 = there is no significant correlation between the rate of water loss by woodlice and their external temperature, any apparent correlation is due solely to chance. The coefficient of correlation can be used to find the probability that the data support the null hypothesis and this information can be used to support or reject the null hypothesis at a pre-chosen level of significance, usually p 0.05: if you accept the null hypothesis, you reject the alternative hypothesis if you reject the null hypothesis, you the accept alternative hypothesis Degrees of freedom The number of values in a sample has an important effect. Imagine (or try) tossing a coin a few times. Probability suggests that heads will occur half the time, but by chance you will occasionally get, say, 5 heads in a row, or none. Keep going and the fluctuations caused by chance tend to iron out. Runs of heads are matched by runs of tails. Hence, every so often a small sample of results is quite likely to give a high value for a correlation coefficient solely by chance, rather than because there is a genuine correlation. Conversely, a large sample is much less likely to give a high value just due to chance alone. Statistical tests use degrees of freedom to take this effect into account. For Pearson s r, the degrees of freedom are found by subtracting 2 from the number of pairs of data (written as df = N-2). Using Excel for inferential statistics: page 3 of 7

4 You also need to consider whether to use a one- or two-tailed test of significance. Pearson s correlation coefficient may give a positive value greater than zero (positive association) or a negative value less than zero (negative association), i.e. it is usually used as a two-tailed test. However, if you have a good theoretical reason for predicting a positive or negative outcome (stated in your hypothesis), you can use it as a one-tailed test. If you plot a scattergram, you can establish whether you want to test for a positive or a negative correlation and use a one-tailed test of significance. If you have any doubts, use the two-tailed test, you are less likely to make an error of finding a significant correlation where none exists. For a set of data with n paired values x and y, means x and y with standard deviations and s y the Pearson correlation coefficient is: s x The longer second formula is actually easier to work out with a calculator! Using Excel to calculate Pearson s r 1 Type the paired data into two neighbouring columns on the spreadsheet. 2 Click to highlight the cell where the statistic will appear. 3 Format this cell to give 3 decimal places. 4 With the cell still highlighted, click fx next to the formula box, the Insert Function dialogue box will appear. 5 Click the Select a category box to get the drop down menu and select Statistical. 6 Scroll down and select PEARSON. 7 Click OK to get the Function Arguments dialogue box. 8 Check that the cursor is flashing in Array1 (if not, click on the box). 9 Enter the data by clicking and dragging over the cells with the first set of data. 10 Click on the Array2 box and enter the second set of data (those paired with the first set). 11 Click OK to get the value for the Pearson r coefficient for these data. If Array1 or Array2 are empty or have a different number of data points, #N/A will appear. Critical values To check the r value for significance, you will need to find the number of degrees of freedom (N-2) and obtain the related probability value from a table of critical values for r. Is r greater or smaller than the relevant critical value at p = 0.05 (5% probability level)? Using Excel for inferential statistics: page 4 of 7

5 N number of pairs df (= N-2) Critical values for Pearson s r Level of significance (probability, p) for one-tailed test Level of significance (probability, p) for two-tailed test Using Excel for inferential statistics: page 5 of 7

6 Interpreting Pearson s r Suppose that you predicted a positive association. For 20 pairs of results, Pearson s correlation coefficient, r = Degrees of freedom, N - 2 = 20-2 = 18 From the table of critical values (c.v.), for a one tailed test for a positive correlation, at p = 0.05 the critical value is given as r = Your value exceeds the critical value: r = > c.v. = 0.400, i.e. the probability is less than 0.05 (p < 0.05) that this r score is due solely to chance. So you can reject the null hypothesis that any apparent positive correlation is due solely to chance and therefore accept the alternative hypothesis that there is a positive correlation, at the p 0.05 significance level. You can report your findings as: r(18) = 0.521, p < 0.05 (one tailed). Therefore the null hypothesis can be rejected and the alternative hypothesis, there is a significant positive correlation not due to chance, is accepted at p < Note: For df = 18, r = is also the c.v. for a two-tailed test at p = 0.1, or twice the probability for the one-tailed test, as the association can be positive or negative. At p = 0.05, a two-tailed test has a c.v of p = 0.468, still less than the r score. So a two-tailed hypothesis would also be supported here. Greater confidence If you track across the table you can see that r = lies between the next two critical values: 0.68 and So, for a one-tailed test, the probability that the null hypothesis is correct is between p < and p >0.01. So you could reject the null hypothesis at the p < level of significance, i.e. with greater confidence than at p < 0.05, but not at p For biological investigations, where results tend to vary more, the p 0.05 significance level is usually acceptable. When more precise measurements are being taken, for example in physics and chemistry, higher confidence levels such as p 0.01should be used. Spearman rank order correlation coefficient, r s There is no Excel formula for this coefficient, but it can be calculated by using the Pearson calculation (=PEARSON) on the ranks of the original data. Data are placed in order of magnitude and the calculation is based on the differences between the ranks for each pair. When ranks are tied, an average rank is given. Unfortunately, the Excel =RANK function does not average tied ranks, so ranking is A best done by hand. However, the Excel sort button (see right) can be used to place Z all the scores in order. This makes ranking by hand easy. Using Excel for inferential statistics: page 6 of 7

7 Pearson s r is a more powerful test than Spearman s ρ. As a parametric test, it uses data that have more information: your data should show a normal distribution and be measured on a continuous interval scale. By using ranks, the non-parametric Spearman s test does not take into account the differences in sizes of neighbouring data. Spearman s is still a good statistical test, but it is weaker and less likely than Pearson s to detect a correlation. However, Pearson s test is robust and can be used even if data only approximate to parametric requirements. Using Excel for inferential statistics: page 7 of 7

### Pearson's Correlation Tests

Chapter 800 Pearson's Correlation Tests Introduction The correlation coefficient, ρ (rho), is a popular statistic for describing the strength of the relationship between two variables. The correlation

### EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:

EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis

### Projects Involving Statistics (& SPSS)

Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,

### Point Biserial Correlation Tests

Chapter 807 Point Biserial Correlation Tests Introduction The point biserial correlation coefficient (ρ in this chapter) is the product-moment correlation calculated between a continuous random variable

### Two Related Samples t Test

Two Related Samples t Test In this example 1 students saw five pictures of attractive people and five pictures of unattractive people. For each picture, the students rated the friendliness of the person

### We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries?

Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of full-time education earn higher salaries? Do

### Descriptive Statistics

Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize

### Hypothesis testing - Steps

Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =

### 1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

### Biology statistics made simple using Excel

Millar Biology statistics made simple using Excel Biology statistics made simple using Excel Neil Millar Spreadsheet programs such as Microsoft Excel can transform the use of statistics in A-level science

### Simple Regression Theory II 2010 Samuel L. Baker

SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the

Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology Step-by-Step - Excel Microsoft Excel is a spreadsheet software application

### KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management

KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To

### How To Run Statistical Tests in Excel

How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting

### Using Microsoft Excel to Analyze Data

Entering and Formatting Data Using Microsoft Excel to Analyze Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page. For the comparison of pipets:

### DESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.

DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,

### SPSS/Excel Workshop 3 Summer Semester, 2010

SPSS/Excel Workshop 3 Summer Semester, 2010 In Assignment 3 of STATS 10x you may want to use Excel to perform some calculations in Questions 1 and 2 such as: finding P-values finding t-multipliers and/or

### X X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)

CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.

### t Tests in Excel The Excel Statistical Master By Mark Harmon Copyright 2011 Mark Harmon

t-tests in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com www.excelmasterseries.com

### SPSS Tests for Versions 9 to 13

SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list

### II. DISTRIBUTIONS distribution normal distribution. standard scores

Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

### QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

### SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

### Study Guide for the Final Exam

Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

### Statistical tests for SPSS

Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

### UNDERSTANDING THE DEPENDENT-SAMPLES t TEST

UNDERSTANDING THE DEPENDENT-SAMPLES t TEST A dependent-samples t test (a.k.a. matched or paired-samples, matched-pairs, samples, or subjects, simple repeated-measures or within-groups, or correlated groups)

### HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1

Bill Burton Albert Einstein College of Medicine william.burton@einstein.yu.edu April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce

### The correlation coefficient

The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative

### Simple Linear Regression Inference

Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

### Using MS Excel to Analyze Data: A Tutorial

Using MS Excel to Analyze Data: A Tutorial Various data analysis tools are available and some of them are free. Because using data to improve assessment and instruction primarily involves descriptive and

### Data Analysis Tools. Tools for Summarizing Data

Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool

### The Dummy s Guide to Data Analysis Using SPSS

The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests

### Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay

Using Microsoft Excel to Analyze Data from the Disk Diffusion Assay Entering and Formatting Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure

### An introduction to IBM SPSS Statistics

An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive

### Using Excel for descriptive statistics

FACT SHEET Using Excel for descriptive statistics Introduction Biologists no longer routinely plot graphs by hand or rely on calculators to carry out difficult and tedious statistical calculations. These

### CHAPTER 13 SIMPLE LINEAR REGRESSION. Opening Example. Simple Regression. Linear Regression

Opening Example CHAPTER 13 SIMPLE LINEAR REGREION SIMPLE LINEAR REGREION! Simple Regression! Linear Regression Simple Regression Definition A regression model is a mathematical equation that descries the

### Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship)

1 Calculating, Interpreting, and Reporting Estimates of Effect Size (Magnitude of an Effect or the Strength of a Relationship) I. Authors should report effect sizes in the manuscript and tables when reporting

### Data exploration with Microsoft Excel: analysing more than one variable

Data exploration with Microsoft Excel: analysing more than one variable Contents 1 Introduction... 1 2 Comparing different groups or different variables... 2 3 Exploring the association between categorical

### Testing for differences I exercises with SPSS

Testing for differences I exercises with SPSS Introduction The exercises presented here are all about the t-test and its non-parametric equivalents in their various forms. In SPSS, all these tests can

### Statistics Review PSY379

Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

### LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING

LAB 4 INSTRUCTIONS CONFIDENCE INTERVALS AND HYPOTHESIS TESTING In this lab you will explore the concept of a confidence interval and hypothesis testing through a simulation problem in engineering setting.

### Regression Analysis: A Complete Example

Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty

### Describing Populations Statistically: The Mean, Variance, and Standard Deviation

Describing Populations Statistically: The Mean, Variance, and Standard Deviation BIOLOGICAL VARIATION One aspect of biology that holds true for almost all species is that not every individual is exactly

### Introduction to Quantitative Methods

Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................

### Normality Testing in Excel

Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

### 5 Correlation and Data Exploration

5 Correlation and Data Exploration Correlation In Unit 3, we did some correlation analyses of data from studies related to the acquisition order and acquisition difficulty of English morphemes by both

### One-Way ANOVA using SPSS 11.0. SPSS ANOVA procedures found in the Compare Means analyses. Specifically, we demonstrate

1 One-Way ANOVA using SPSS 11.0 This section covers steps for testing the difference between three or more group means using the SPSS ANOVA procedures found in the Compare Means analyses. Specifically,

### Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable

### Using Excel for Statistics Tips and Warnings

Using Excel for Statistics Tips and Warnings November 2000 University of Reading Statistical Services Centre Biometrics Advisory and Support Service to DFID Contents 1. Introduction 3 1.1 Data Entry and

### Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures

Testing Group Differences using T-tests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 35487-0348 Phone:

### Directions for using SPSS

Directions for using SPSS Table of Contents Connecting and Working with Files 1. Accessing SPSS... 2 2. Transferring Files to N:\drive or your computer... 3 3. Importing Data from Another File Format...

### TI-Inspire manual 1. Instructions. Ti-Inspire for statistics. General Introduction

TI-Inspire manual 1 General Introduction Instructions Ti-Inspire for statistics TI-Inspire manual 2 TI-Inspire manual 3 Press the On, Off button to go to Home page TI-Inspire manual 4 Use the to navigate

### UNDERSTANDING THE TWO-WAY ANOVA

UNDERSTANDING THE e have seen how the one-way ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables

### Association Between Variables

Contents 11 Association Between Variables 767 11.1 Introduction............................ 767 11.1.1 Measure of Association................. 768 11.1.2 Chapter Summary.................... 769 11.2 Chi

### NCSS Statistical Software

Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

### Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

### Difference tests (2): nonparametric

NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge

### Part 2: Analysis of Relationship Between Two Variables

Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable

### Statistics for Sports Medicine

Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach

### Hypothesis Testing: Two Means, Paired Data, Two Proportions

Chapter 10 Hypothesis Testing: Two Means, Paired Data, Two Proportions 10.1 Hypothesis Testing: Two Population Means and Two Population Proportions 1 10.1.1 Student Learning Objectives By the end of this

### Simple Linear Regression, Scatterplots, and Bivariate Correlation

1 Simple Linear Regression, Scatterplots, and Bivariate Correlation This section covers procedures for testing the association between two continuous variables using the SPSS Regression and Correlate analyses.

### Introduction to Hypothesis Testing

I. Terms, Concepts. Introduction to Hypothesis Testing A. In general, we do not know the true value of population parameters - they must be estimated. However, we do have hypotheses about what the true

### CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA

CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working

### Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

### One-Way Analysis of Variance (ANOVA) Example Problem

One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means

### StatCrunch and Nonparametric Statistics

StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that

### Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

### Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

### Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression

Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a

### AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Ms. Foglia Date AP: LAB 8: THE CHI-SQUARE TEST Probability, Random Chance, and Genetics Why do we study random chance and probability at the beginning of a unit on genetics? Genetics is the study of inheritance,

### NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

### DATA INTERPRETATION AND STATISTICS

PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

### Independent samples t-test. Dr. Tom Pierce Radford University

Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of

### HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION

HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate

### Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information.

Excel Tutorial Below is a very brief tutorial on the basic capabilities of Excel. Refer to the Excel help files for more information. Working with Data Entering and Formatting Data Before entering data

### Scientific Graphing in Excel 2010

Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.

### UNDERSTANDING THE INDEPENDENT-SAMPLES t TEST

UNDERSTANDING The independent-samples t test evaluates the difference between the means of two independent or unrelated groups. That is, we evaluate whether the means for two independent groups are significantly

There are three kinds of people in the world those who are good at math and those who are not. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 Positive Views The record of a month

### Correlational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots

Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship

### NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)

NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions

### TI-Inspire manual 1. I n str uctions. Ti-Inspire for statistics. General Introduction

TI-Inspire manual 1 I n str uctions Ti-Inspire for statistics General Introduction TI-Inspire manual 2 General instructions Press the Home Button to go to home page Pages you will use the most #1 is a

### Using Microsoft Excel to Plot and Analyze Kinetic Data

Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type

### Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk

Analysing Questionnaires using Minitab (for SPSS queries contact -) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:

### Statistical skills example sheet: Spearman s Rank

Statistical skills example sheet: Spearman s Rank Spearman s rank correlation is a statistical test that is carried out in order to assess the degree of association between different measurements from

### Stat 5102 Notes: Nonparametric Tests and. confidence interval

Stat 510 Notes: Nonparametric Tests and Confidence Intervals Charles J. Geyer April 13, 003 This handout gives a brief introduction to nonparametrics, which is what you do when you don t believe the assumptions

### Chapter 7. Comparing Means in SPSS (t-tests) Compare Means analyses. Specifically, we demonstrate procedures for running Dependent-Sample (or

1 Chapter 7 Comparing Means in SPSS (t-tests) This section covers procedures for testing the differences between two means using the SPSS Compare Means analyses. Specifically, we demonstrate procedures

### 8 6 X 2 Test for a Variance or Standard Deviation

Section 8 6 x 2 Test for a Variance or Standard Deviation 437 This test uses the P-value method. Therefore, it is not necessary to enter a significance level. 1. Select MegaStat>Hypothesis Tests>Proportion

### Graphing Parabolas With Microsoft Excel

Graphing Parabolas With Microsoft Excel Mr. Clausen Algebra 2 California State Standard for Algebra 2 #10.0: Students graph quadratic functions and determine the maxima, minima, and zeros of the function.

### Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS

Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple

### MBA 611 STATISTICS AND QUANTITATIVE METHODS

MBA 611 STATISTICS AND QUANTITATIVE METHODS Part I. Review of Basic Statistics (Chapters 1-11) A. Introduction (Chapter 1) Uncertainty: Decisions are often based on incomplete information from uncertain

### Using Excel in Research. Hui Bian Office for Faculty Excellence

Using Excel in Research Hui Bian Office for Faculty Excellence Data entry in Excel Directly type information into the cells Enter data using Form Command: File > Options 2 Data entry in Excel Tool bar:

### Two Correlated Proportions (McNemar Test)

Chapter 50 Two Correlated Proportions (Mcemar Test) Introduction This procedure computes confidence intervals and hypothesis tests for the comparison of the marginal frequencies of two factors (each with

### Non-Parametric Tests (I)

Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

### Summary of important mathematical operations and formulas (from first tutorial):

EXCEL Intermediate Tutorial Summary of important mathematical operations and formulas (from first tutorial): Operation Key Addition + Subtraction - Multiplication * Division / Exponential ^ To enter a

### Section 7.1. Introduction to Hypothesis Testing. Schrodinger s cat quantum mechanics thought experiment (1935)

Section 7.1 Introduction to Hypothesis Testing Schrodinger s cat quantum mechanics thought experiment (1935) Statistical Hypotheses A statistical hypothesis is a claim about a population. Null hypothesis