Parametric and non-parametric statistical methods for the life sciences - Session I

Size: px
Start display at page:

Download "Parametric and non-parametric statistical methods for the life sciences - Session I"

Transcription

1 Why nonparametric methods What test to use? Rank Tests Parametric and non-parametric statistical methods for the life sciences - Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-Biostat) Universiteit Hasselt June 7, 2011

2 Why nonparametric methods What test to use? Rank Tests Table of contents 1 Why nonparametric methods Introductory example Nonparametric test of hypotheses 2 What test to use? Two independent samples More then two independent samples Two dependent samples More then two dependent samples Ordered hypotheses 3 Rank Tests Wilcoxon Rank Sum Test Kruskal-Wallis Test Friedmann Statistic Sign Test Jonckheere-Terpstra Test

3 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Why nonparametric methods?

4 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Introductory Example The paper Hypertension in Terminal Renal Failure, Observations Pre and Post Bilateral Nephrectomy (J. Chronic Diseases (1973): ) gave blood pressure readings for five terminal renal patients before and 2 months after surgery (removal of kidney). Patient Before surgery After surgery Question: Does the mean blood pressure before surgery exceed the mean blood pressure two months after surgery?

5 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Classical Approach Paired t-test: Patient Before surgery After surgery Difference D i Hypotheses: H 0 : µ d = 0 versus H 1 : µ d > 0 µ d : mean difference in blood pressure Test-Statistic : t = D 1 (Di D) n(n 1) 2 follows a t distribution with n 1 d.f.

6 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Assumptions The statistic follows a t-distribution if the differences are normally distributed t-test = parametric method Observations are made independent: selection of a patient does not influence chance of any other patient for inclusion (Two sample t test): populations must have same variances Variables must be measured in an interval scale, to interpret the results These assumptions are often not tested, but accepted.

7 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Normal probability plot Normality is questionable!

8 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Nonparametric Test of Hypotheses Follow same general procedure as parametric tests: State null and alternative hypothesis Calculate the value of the appropriate test statistic (choice based on the design of the study) Decision rule: either reject or accept depending on the magnitude of the statistic P H0 (T c) =?? Exact distribution Approximation for the exact distribution

9 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples When to use what test

10 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples What test to use? Choice of appropriate test statistic depends on the design of the study: number of groups? independent of dependent samples? ordered alternative hypothesis?

11 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Two Independent Samples Permeability constants of the human chorioamnion (a placental membrane) for at term (x) and between 12 to 26 weeks gestational age (y) pregnancies are given in the table below. Investigate the alternative of interest that the permeability of the human chorioamnion for a term pregnancy is greater than for a 12 to 26 weeks of gestational age pregnancy. X (at term) Y (12-26weeks) Statistical Methods: t-test Wilcoxon Rank Sum Test

12 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples More Than Two Independent Samples Protoporphyrin levels were determined for three groups of people - a control group of normal workers, a group of alcoholics with sideroblasts in their bone marrow, and a group of alcoholics without sideroblasts. The data is shown below. Does the data suggest that normal workers and alcoholics with and without sideroblasts differ with respect to protoporphyrin level? Group Protoporphyrin level (mg) Normal Alcoholics with sideroblasts Alcoholics without sideroblasts Statistical Methods: ANOVA Kruskal-Wallis Test

13 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Two Dependent Samples Twelve adult males were put on liquid diet in a weight-reducing plan. Weights were recorded before and after the diet. The data are shown in the table below. Subject Before After Statistical Methods: Paired t-test Sign test; Signed-rank test

14 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Randomized Blocked Design Effect of Hypnosis: Emotions of fear, happiness, depression and calmness were requested (in random order) from 8 subject during hypnosis Response: skin potential (in millivolts) Subject Fear Happiness Depression Calmness Statistical Methods: Mixed Models Friedmann test

15 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Ordered Treatments Patients were treated with a drug a four dose levels (100mg, 200mg, 300mg and 400mg) and then monitored for toxicity. Drug Toxicity Dose Mild Moderate Severe Drug Death 100mg mg mg mg Statistical Methods: Regression Jonckheere-Terpstra Test

16 Wilcoxon Rank Sum Test

17 Wilxocon Rank Sum Test Detailed Example: Data : GAF scores Control Treatment Does treatment improve the functioning?

18 Parametric Approach: t-test t = X 1 X 0 s S X1, where S X1 X X 0 = s2 0 n 0 1 n0 t test: means of two normally distributed populations are equal H 0 : µ 1 = µ 0 H 1 : µ 1 µ 0 (one sided test H 1 : µ 1 µ 0 equal sample sizes two distributions have the same variance X 1 = 34.00, X 0 = 23.33, S X1 = 7.21, S X0 = t = 1.27 P H0 (t 1.27) =

19 Wilxocon Rank Sum Test Detailed Example: Control Treatment Order data: Position of patients on treatment as compared with position of patients in control arm? Ranks

20 Treatment is effective if treated patients rank sufficiently high in the combined ranking of all patients Test statistic such that: treatment ranks are high value test statistic is high treatment ranks are low value test statistic is low W S = S 1 + S S n (n=3, number of patients in treatment arm) Ranks W S = =14 Control (25) (10) (35) Treatment (36) (26) (40)

21 Reject null hypothesis when W S is sufficiently large : W S c P H0 (W S c) = α (alpha=0.05) Distribution of W S under H 0? Suppose no treatment effect (H 0 ) rank is solely determined by patients health status rank is independent of receiving treatment or placebo rank is assigned to patient before randomisation Random selection of patients for treatment random selection of 3 ranks out of 6 Randomisation divides ranks (1,2,...6) into two groups! Number of possible combinations : ( ) N n = N! n!(n n)!

22 All posibilities: (each as a probability of 1/20 under H 0 ) treatment ranks (4,5,6) (3,5,6) (3,4,6) (3,4,5) (2,5,6) w s treatment ranks (2,4,6) (2,4,5) (2,3,6) (2,3,5) (2,3,4) w treatment ranks (1,5,6) (1,4,6) (1,4,5) (1,3,6) (1,3,5) w s treatment ranks (1,3,4) (1,2,6) (1,2,5) (1,2,4) (1,2,3) w s

23 Distribution of W S under the null hypothesis: w P H0 (W s = w)

24 P HO (W S 14) = 0.1 Do not reject H 0. Conclusion: Treatment does not increase the GAF scores. Power of this study???

25 Large Sample Size-case ( N ) n increases rapidly with N and n ( 20 ( ) = ) = 924 Asymptotic Null Distribution: Central Limit Theorem Sum T of large number of independent random variables is approximately normally distributed. ( ) T E(T ) P a Φ(a) Var(T ) where Φ(a) is the area to the left of a under a standard normal curve

26 If both n and m are sufficiently large: W S N(E(W S ); Var(W S )) E(W S ) = 1 2n(N + 1) Var(W S ) = 1 12nm(N + 1)

27 Kruskal-Wallis Test

28 Kruskal- Wallis test Example: Kruskal- Wallis test: The following data represent corn yields per acre from three different fields where different farming methods were used. Method 1 Method 2 Method Question: is the yields different for the 4 methods?

29 Parametric Approach One-way ANOVA Statistical test of whether or not the means of several groups are all equal Assumptions: Independence of cases The distributions of the residuals are normal : ɛ i (0, σ 2 ). Homoscedasticity variance between groups F = = variance within groups MSTR MSE Statistic follows a F distribution with s 1, n s d.f.

30 Small F: Large F:

31 One-Way ANOVA results X 1 = 89, X 2 = 88.33, X 3 = 99 σ 1 = 3.56, σ 2 = 6.65, σ 3 = 4.08 MSTR= , MSE = F= 6.11 P H0 (F 6.11) =

32 Ranks: Method 1 Method 2 Method R i. :

33 Hypothesis : H 0 : No difference between the treatments H 1 : Any difference between the treatments If treatments do not differ widely (H 0 ): R i. are close to each other R i. close to R.. If treatments do differ (H 1 ): R i. differ substantial R i. not close to R..

34 Evaluate the null hypothesis by investigating: K = 12 N(N + 1) s n i (R i. R.. ) 2 i=1 P H0 (K c) =? Exact distribution of K under H 0 : ranks are determined before assignment to treatment random assignment all possibilities same chance of being observed Number ( of possible combinations: multinomial coefficient : 11 ( 4,3,4) = 11 )( )( 4) = ( ) ( N n 1,n 2,...,n s = N )( N n1 ) ( n 1 n 2... N n1... n s 1 ) n s

35 A few possible configurations: Method 1 Method 2 Method 3 K (1,2,3,4) (5,6,7) (8,9,10,11) 8.91 (1,2,3,5) (4,6,7) (8,9,10,11) 8.32 (1,2,3,6) (4,5,6) (8,9,10,11) 7.84 (1,2,3,7) (4,5,6) (8,9,10,11) 7,48... (1,3,5,6) (2,4,8) (7,9,10,11) Each configuration has a probability of to happen.

36 Exact Distribution of K: P H0 (K 6.16) = Conclusion: Reject H 0 : there is a difference between the farming methods Large sample size approximation χ 2 distribution with s 1 d.f.

37 Friedmann Test

38 Friedmann Statistic Setting 1: complete randomization: Kruskal-Wallis test p-value = Treatment effect is blurred by the variability between subjects Setting 2: randomisation within age groups: p-value Conclusion reject H 0

39 Procedure Divide subjects in homogeneous subgroups (BLOCKS) Compare subjects within the blocks w.r.t. treatment effects (Generalisation of the paired comparison design)

40 Example Data Age-group treatment y y y y A B C Rank subjects within a block: Age-group treatment y y y y A B C

41 Mean of ranks for: treatment A = R A. = 10 4 = 2.5 treatment B = R B. = 6 4 = 1.5 treatment C = R C. = 9 4 = 2.25 If these mean ranks are different reject H 0 If these mean ranks are close accept H 0

42 Measure for closseness of the mean ranks: if the R i. are all close to each other then they are close to the overall mean R.. and (R i. R.. ) 2 will be close to zero Friedman Statistic Q = 12N s(s + 1) s (R i. R.. ) 2 i=1

43 P H0 (Q c) =? Exact distribution of Q under H 0 : A few possible configurations: Age-group Q Treatment y y y y A B C A B C A B C A B C

44 Exact Distribution of Q: Q Pr E E E E E-02

45 Number of possibilities for the rank combinations: age-group year: 3! = 6 age-groups are independent total number of possible combinations: (3!) 4 = 1296 Under the null these are all equally likely : (s!) N, s= treatment groups, N = of blocks P H0 (Q 3.5) = Do not reject H 0

46 Sign Test

47 Sign Test Special case of Friedmann test: blocks of size 2 subjects matched on e.g. age, gender,... twins two eyes (hands) of a person subject serves as own control: e.g. blood pressure before and after treatment Example: Pain scores for lower back pain, before and after having acupuncture Pain score Pain score Sign Pain score Pain score Sign Patient Before After Patient Before After

48 9 pairs out 15 where treatment comes out ahead (reduction in pain scores) Sign Test: S N = 9 P H0 (S N 9) =??? Exact Distribution of S N under H 0 is binomial N trials, N = number of pairs Success probability: 1 2 P H0 (S N 9) = ( ( 15 9 P H0 (S N = a) = ) + ( ( ) N 1 a 2 N ) ( ) 15 ) 1 =

49 Jonckheere-Terpstra Test

50 Jonckheere-Terpstra Test To be used when the H 1 is ordered. Ordinal data for the responses and an ordering in the treatment/groups. Example: Data: Three diets for rats Response: growth H 1 : Growth rate decreases from A to C : A B C A B C

51 Parametric Approach : Regression Models the relationship between a dependent and independent variable y i = β 0 + β 1 x i + ɛ i Assumptions ɛ i N(0, σ 2 ), ɛ i are independent homoscedasticity x i is measured without error

52 β 0 = 169, p-value = < β 1 = 16, p-value = R-square =

53 Jonckheere-Terpstra Test Based on Mann-Whitney statistics for two treatments Comparing the treatment groups two by two if W BA is large: growth A > growth B : (W BA = 18 if W BC is large: growth B > growth C : (W BC = 18 if W CA is large: growth A > growth C : (W BA = 23 JT Statistic: W = i<j W ij Reject H 0 when W is sufficiently large W = 59 P H0 (W c) = Compare with the result of a Kruskal-Wallis Test: p-value = The distribution of W follows a normal distribution for large samples

54 Parametric versus nonparametric tests Parametric tests: Assumptions about the distribution in the population Conditions are often not tested Test depends on the validity of the assumptions Most powerful test if all assumptions are met Nonparametric tests: Fewer assumptions about the distribution in the population In case of small sample sizes often the only alternative (unless the nature of the population distribution is known exactly) Less sensitive for measurement error (uses ranks) Can be used for data which are inherently in ranks, even for data measured in a nominal scale Easier to learn

3. Nonparametric methods

3. Nonparametric methods 3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

More information

NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)

NONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem) NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of p-values classical significance testing depend on assumptions

More information

THE KRUSKAL WALLLIS TEST

THE KRUSKAL WALLLIS TEST THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKAL-WALLIS TEST: The non-parametric alternative to ANOVA: testing for difference between several independent groups 2 NON

More information

Module 9: Nonparametric Tests. The Applied Research Center

Module 9: Nonparametric Tests. The Applied Research Center Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } One-Sample Chi-Square Test

More information

Analysis of numerical data S4

Analysis of numerical data S4 Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:

More information

Chapter Five: Paired Samples Methods 1/38

Chapter Five: Paired Samples Methods 1/38 Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery

More information

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS

Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS Overview of Non-Parametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical

More information

1 Nonparametric Statistics

1 Nonparametric Statistics 1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions

More information

II. DISTRIBUTIONS distribution normal distribution. standard scores

II. DISTRIBUTIONS distribution normal distribution. standard scores Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,

More information

Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples

Statistics. One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples Statistics One-two sided test, Parametric and non-parametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours

More information

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420

BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 BA 275 Review Problems - Week 6 (10/30/06-11/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394-398, 404-408, 410-420 1. Which of the following will increase the value of the power in a statistical test

More information

Hypothesis testing S2

Hypothesis testing S2 Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to

More information

Non-parametric tests I

Non-parametric tests I Non-parametric tests I Objectives Mann-Whitney Wilcoxon Signed Rank Relation of Parametric to Non-parametric tests 1 the problem Our testing procedures thus far have relied on assumptions of independence,

More information

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.

Introduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures. Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.

More information

Rank-Based Non-Parametric Tests

Rank-Based Non-Parametric Tests Rank-Based Non-Parametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs

More information

Nonparametric Statistics

Nonparametric Statistics 1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables

More information

1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.

1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data. Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)

More information

Module 5 Hypotheses Tests: Comparing Two Groups

Module 5 Hypotheses Tests: Comparing Two Groups Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this

More information

How to choose a statistical test. Francisco J. Candido dos Reis DGO-FMRP University of São Paulo

How to choose a statistical test. Francisco J. Candido dos Reis DGO-FMRP University of São Paulo How to choose a statistical test Francisco J. Candido dos Reis DGO-FMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There

More information

Chapter 21 Section D

Chapter 21 Section D Chapter 21 Section D Statistical Tests for Ordinal Data The rank-sum test. You can perform the rank-sum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first

More information

Research Methodology: Tools

Research Methodology: Tools MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide

More information

Research Methods & Experimental Design

Research Methods & Experimental Design Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and

More information

Nonparametric tests these test hypotheses that are not statements about population parameters (e.g.,

Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., CHAPTER 13 Nonparametric and Distribution-Free Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).

More information

Non-Inferiority Tests for Two Means using Differences

Non-Inferiority Tests for Two Means using Differences Chapter 450 on-inferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for non-inferiority tests in two-sample designs in which the outcome is a continuous

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Sampling and the normal distribution Z-scores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are

More information

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS

QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NON-PARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information

12. Nonparametric Statistics

12. Nonparametric Statistics 12. Nonparametric Statistics Objectives Calculate Mann-Whitney Test Calculate Wilcoxon s Matched-Pairs Signed-Ranks Test Calculate Kruskal-Wallis One-Way ANOVA Calculate Friedman s Rank Test for k Correlated

More information

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011

SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES

SCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR

More information

Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504

Inferential Statistics. Probability. From Samples to Populations. Katie Rommel-Esham Education 504 Inferential Statistics Katie Rommel-Esham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice

More information

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1:

Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 2000: Page 1: Research Methods 1 Handouts, Graham Hole,COGS - version 1.0, September 000: Page 1: NON-PARAMETRIC TESTS: What are non-parametric tests? Statistical tests fall into two kinds: parametric tests assume that

More information

StatCrunch and Nonparametric Statistics

StatCrunch and Nonparametric Statistics StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that

More information

Two-Sample T-Tests Assuming Equal Variance (Enter Means)

Two-Sample T-Tests Assuming Equal Variance (Enter Means) Chapter 4 Two-Sample T-Tests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when the variances of

More information

Statistical Significance and Bivariate Tests

Statistical Significance and Bivariate Tests Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions,

More information

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference)

Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Chapter 45 Two-Sample T-Tests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one- or two-sided two-sample t-tests when no assumption

More information

NCSS Statistical Software

NCSS Statistical Software Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, two-sample t-tests, the z-test, the

More information

Chapter 3: Nonparametric Tests

Chapter 3: Nonparametric Tests B. Weaver (15-Feb-00) Nonparametric Tests... 1 Chapter 3: Nonparametric Tests 3.1 Introduction Nonparametric, or distribution free tests are so-called because the assumptions underlying their use are fewer

More information

Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test

Nonparametric Two-Sample Tests. Nonparametric Tests. Sign Test Nonparametric Two-Sample Tests Sign test Mann-Whitney U-test (a.k.a. Wilcoxon two-sample test) Kolmogorov-Smirnov Test Wilcoxon Signed-Rank Test Tukey-Duckworth Test 1 Nonparametric Tests Recall, nonparametric

More information

1. Why the hell do we need statistics?

1. Why the hell do we need statistics? 1. Why the hell do we need statistics? There are three kind of lies: lies, damned lies, and statistics, British Prime Minister Benjamin Disraeli (as credited by Mark Twain): It is easy to lie with statistics,

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 3 K-sample Methods 2 3.1 Setup............................ 2 3.2 Classic Method Based on Normality Assumption..... 3 3.3 Permutation F -test.................... 5 3.4 Kruskal-Wallis

More information

Non-Parametric Tests (I)

Non-Parametric Tests (I) Lecture 5: Non-Parametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of Distribution-Free Tests (ii) Median Test for Two Independent

More information

Tests of relationships between variables Chi-square Test Binomial Test Run Test for Randomness One-Sample Kolmogorov-Smirnov Test.

Tests of relationships between variables Chi-square Test Binomial Test Run Test for Randomness One-Sample Kolmogorov-Smirnov Test. N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands

More information

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test

Introduction to Analysis of Variance (ANOVA) Limitations of the t-test Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One- Way ANOVA Limitations of the t-test Although the t-test is commonly used, it has limitations Can only

More information

UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates

UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates UCLA STAT 13 Statistical Methods - Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally

More information

ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer.

ANOVA MULTIPLE CHOICE QUESTIONS. In the following multiple-choice questions, select the best answer. ANOVA MULTIPLE CHOICE QUESTIONS In the following multiple-choice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard

More information

Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.

Variables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test. The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide

More information

Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics

Outline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public

More information

UNIVERSITY OF NAIROBI

UNIVERSITY OF NAIROBI UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER

More information

SAS 3: Comparing Means

SAS 3: Comparing Means SAS 3: Comparing Means University of Guelph Revised June 2011 Table of Contents SAS Availability... 2 Goals of the workshop... 2 Data for SAS sessions... 3 Statistical Background... 4 T-test... 8 1. Independent

More information

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA)

INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) INTERPRETING THE ONE-WAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the one-way ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA

Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA Statistics for Clinical Trial SAS Programmers 1: paired t-test Kevin Lee, Covance Inc., Conshohocken, PA ABSTRACT This paper is intended for SAS programmers who are interested in understanding common statistical

More information

Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35

Statistiek I. t-tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen.  John Nerbonne 1/35 Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistiek-i/ John Nerbonne 1/35 t-tests To test an average or pair of averages when σ is known, we

More information

Statistical tests for SPSS

Statistical tests for SPSS Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly

More information

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217

Part 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217 Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing

More information

CHAPTER 14 NONPARAMETRIC TESTS

CHAPTER 14 NONPARAMETRIC TESTS CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences

More information

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses

Introduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the

More information

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ

e = random error, assumed to be normally distributed with mean 0 and standard deviation σ 1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.

More information

Parametric and Nonparametric: Demystifying the Terms

Parametric and Nonparametric: Demystifying the Terms Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD

More information

Lecture 7: Binomial Test, Chisquare

Lecture 7: Binomial Test, Chisquare Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two

More information

Analysis of Variance ANOVA

Analysis of Variance ANOVA Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.

More information

p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.

p1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0. Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested

More information

Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics

Analysis of Data. Organizing Data Files in SPSS. Descriptive Statistics Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Between-subjects manipulations: variable to

More information

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as...

HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1. used confidence intervals to answer questions such as... HYPOTHESIS TESTING (ONE SAMPLE) - CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric

More information

Permutation & Non-Parametric Tests

Permutation & Non-Parametric Tests Permutation & Non-Parametric Tests Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate

More information

Statistics Review PSY379

Statistics Review PSY379 Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses

More information

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl

Statistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 One-way ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic

More information

EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST

EPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeated-measures data if participants are assessed on two occasions or conditions

More information

Compare birds living near a toxic waste site with birds living in a pristine area.

Compare birds living near a toxic waste site with birds living in a pristine area. STT 430/630/ES 760 Lecture Notes: Chapter 7: Two-Sample Inference 1 February 27, 2009 Chapter 7: Two Sample Inference Chapter 6 introduced hypothesis testing in the one-sample setting: one sample is obtained

More information

ANSWERS TO EXERCISES AND REVIEW QUESTIONS

ANSWERS TO EXERCISES AND REVIEW QUESTIONS ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 16-21 of the SPSS

More information

Supplement on the Kruskal-Wallis test. So what do you do if you don t meet the assumptions of an ANOVA?

Supplement on the Kruskal-Wallis test. So what do you do if you don t meet the assumptions of an ANOVA? Supplement on the Kruskal-Wallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and non-normal data, but we won

More information

Univariate and Bivariate Tests

Univariate and Bivariate Tests Univariate and BUS 230: Business and Economics Research and Communication Univariate and Goals Hypotheses Tests Goals 1/ 20 Specific goals: Be able to distinguish different types of data and prescribe

More information

SPSS 3: COMPARING MEANS

SPSS 3: COMPARING MEANS SPSS 3: COMPARING MEANS UNIVERSITY OF GUELPH LUCIA COSTANZO lcostanz@uoguelph.ca REVISED SEPTEMBER 2012 CONTENTS SPSS availability... 2 Goals of the workshop... 2 Data for SPSS Sessions... 3 Statistical

More information

SPSS Explore procedure

SPSS Explore procedure SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stem-and-leaf plots and extensive descriptive statistics. To run the Explore procedure,

More information

Nonparametric tests, Bootstrapping

Nonparametric tests, Bootstrapping Nonparametric tests, Bootstrapping http://www.isrec.isb-sib.ch/~darlene/embnet/ Hypothesis testing review 2 competing theories regarding a population parameter: NULL hypothesis H ( straw man ) ALTERNATIVEhypothesis

More information

Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction

Data Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments - Introduction Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments - Introduction

More information

Nonparametric Test Procedures

Nonparametric Test Procedures Nonparametric Test Procedures 1 Introduction to Nonparametrics Nonparametric tests do not require that samples come from populations with normal distributions or any other specific distribution. Hence

More information

Study Guide for the Final Exam

Study Guide for the Final Exam Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make

More information

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means

Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis

More information

Interpretation of Computer Analysis Output for Fundamental Statistical Tests Volume One T-test P.Y. Cheng

Interpretation of Computer Analysis Output for Fundamental Statistical Tests Volume One T-test P.Y. Cheng Interpretation of Computer Analysis Output for Fundamental Statistical Tests Volume One T-test P.Y. Cheng Preface When I firstly came to the department in 1985, PC computers were still not common at all.

More information

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.

C. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters. Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample

More information

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm

Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jin-tselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm

More information

Chris Slaughter, DrPH. GI Research Conference June 19, 2008

Chris Slaughter, DrPH. GI Research Conference June 19, 2008 Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions

More information

DATA INTERPRETATION AND STATISTICS

DATA INTERPRETATION AND STATISTICS PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE

More information

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson

fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example

More information

6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test

6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test 6 Comparison of differences between 2 groups: Student s T-test, Mann-Whitney U-Test, Paired Samples T-test and Wilcoxon Test Having finally arrived at the bottom of our decision tree, we are now going

More information

Simple Linear Regression Inference

Simple Linear Regression Inference Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation

More information

The Wilcoxon Rank-Sum Test

The Wilcoxon Rank-Sum Test 1 The Wilcoxon Rank-Sum Test The Wilcoxon rank-sum test is a nonparametric alternative to the twosample t-test which is based solely on the order in which the observations from the two samples fall. We

More information

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS

CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHAPTER 11 CHI-SQUARE AND F DISTRIBUTIONS CHI-SQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chi-square tests of independence we use the hypotheses. H0: The variables are independent

More information

Chi-Square P216; 269

Chi-Square P216; 269 Chi-Square P16; 69 Confidence intervals CI: % confident that interval contains population mean (µ) % is determined by researcher (e.g. 85, 90, 95%) Formula for z-test and t-test: CI = M +/- z*(σ M ) CI

More information

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394

BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 BA 275 Review Problems - Week 5 (10/23/06-10/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380-394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete

More information

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1.

General Method: Difference of Means. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n 1, n 2 ) 1. General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either Welch-Satterthwaite formula or simpler df = min(n

More information

Inferences About Differences Between Means Edpsy 580

Inferences About Differences Between Means Edpsy 580 Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at Urbana-Champaign Inferences About Differences Between Means Slide

More information

Tutorial 5: Hypothesis Testing

Tutorial 5: Hypothesis Testing Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrc-lmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................

More information

Statistics 641 - EXAM II - 1999 through 2003

Statistics 641 - EXAM II - 1999 through 2003 Statistics 641 - EXAM II - 1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the

More information

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2

Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Chapter 11: Linear Regression - Inference in Regression Analysis - Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.

More information