Parametric and nonparametric statistical methods for the life sciences  Session I


 Aron Allen
 1 years ago
 Views:
Transcription
1 Why nonparametric methods What test to use? Rank Tests Parametric and nonparametric statistical methods for the life sciences  Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute for Biostatistics and statistical Bioinformatics (IBiostat) Universiteit Hasselt June 7, 2011
2 Why nonparametric methods What test to use? Rank Tests Table of contents 1 Why nonparametric methods Introductory example Nonparametric test of hypotheses 2 What test to use? Two independent samples More then two independent samples Two dependent samples More then two dependent samples Ordered hypotheses 3 Rank Tests Wilcoxon Rank Sum Test KruskalWallis Test Friedmann Statistic Sign Test JonckheereTerpstra Test
3 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Why nonparametric methods?
4 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Introductory Example The paper Hypertension in Terminal Renal Failure, Observations Pre and Post Bilateral Nephrectomy (J. Chronic Diseases (1973): ) gave blood pressure readings for five terminal renal patients before and 2 months after surgery (removal of kidney). Patient Before surgery After surgery Question: Does the mean blood pressure before surgery exceed the mean blood pressure two months after surgery?
5 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Classical Approach Paired ttest: Patient Before surgery After surgery Difference D i Hypotheses: H 0 : µ d = 0 versus H 1 : µ d > 0 µ d : mean difference in blood pressure TestStatistic : t = D 1 (Di D) n(n 1) 2 follows a t distribution with n 1 d.f.
6 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Assumptions The statistic follows a tdistribution if the differences are normally distributed ttest = parametric method Observations are made independent: selection of a patient does not influence chance of any other patient for inclusion (Two sample t test): populations must have same variances Variables must be measured in an interval scale, to interpret the results These assumptions are often not tested, but accepted.
7 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Normal probability plot Normality is questionable!
8 Why nonparametric methods What test to use? Rank Tests Introductory example Nonparametric test of hypotheses Nonparametric Test of Hypotheses Follow same general procedure as parametric tests: State null and alternative hypothesis Calculate the value of the appropriate test statistic (choice based on the design of the study) Decision rule: either reject or accept depending on the magnitude of the statistic P H0 (T c) =?? Exact distribution Approximation for the exact distribution
9 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples When to use what test
10 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples What test to use? Choice of appropriate test statistic depends on the design of the study: number of groups? independent of dependent samples? ordered alternative hypothesis?
11 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Two Independent Samples Permeability constants of the human chorioamnion (a placental membrane) for at term (x) and between 12 to 26 weeks gestational age (y) pregnancies are given in the table below. Investigate the alternative of interest that the permeability of the human chorioamnion for a term pregnancy is greater than for a 12 to 26 weeks of gestational age pregnancy. X (at term) Y (1226weeks) Statistical Methods: ttest Wilcoxon Rank Sum Test
12 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples More Than Two Independent Samples Protoporphyrin levels were determined for three groups of people  a control group of normal workers, a group of alcoholics with sideroblasts in their bone marrow, and a group of alcoholics without sideroblasts. The data is shown below. Does the data suggest that normal workers and alcoholics with and without sideroblasts differ with respect to protoporphyrin level? Group Protoporphyrin level (mg) Normal Alcoholics with sideroblasts Alcoholics without sideroblasts Statistical Methods: ANOVA KruskalWallis Test
13 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Two Dependent Samples Twelve adult males were put on liquid diet in a weightreducing plan. Weights were recorded before and after the diet. The data are shown in the table below. Subject Before After Statistical Methods: Paired ttest Sign test; Signedrank test
14 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Randomized Blocked Design Effect of Hypnosis: Emotions of fear, happiness, depression and calmness were requested (in random order) from 8 subject during hypnosis Response: skin potential (in millivolts) Subject Fear Happiness Depression Calmness Statistical Methods: Mixed Models Friedmann test
15 Why nonparametric methods What test to use? Rank Tests Two independent samples More then two independent samples Ordered Treatments Patients were treated with a drug a four dose levels (100mg, 200mg, 300mg and 400mg) and then monitored for toxicity. Drug Toxicity Dose Mild Moderate Severe Drug Death 100mg mg mg mg Statistical Methods: Regression JonckheereTerpstra Test
16 Wilcoxon Rank Sum Test
17 Wilxocon Rank Sum Test Detailed Example: Data : GAF scores Control Treatment Does treatment improve the functioning?
18 Parametric Approach: ttest t = X 1 X 0 s S X1, where S X1 X X 0 = s2 0 n 0 1 n0 t test: means of two normally distributed populations are equal H 0 : µ 1 = µ 0 H 1 : µ 1 µ 0 (one sided test H 1 : µ 1 µ 0 equal sample sizes two distributions have the same variance X 1 = 34.00, X 0 = 23.33, S X1 = 7.21, S X0 = t = 1.27 P H0 (t 1.27) =
19 Wilxocon Rank Sum Test Detailed Example: Control Treatment Order data: Position of patients on treatment as compared with position of patients in control arm? Ranks
20 Treatment is effective if treated patients rank sufficiently high in the combined ranking of all patients Test statistic such that: treatment ranks are high value test statistic is high treatment ranks are low value test statistic is low W S = S 1 + S S n (n=3, number of patients in treatment arm) Ranks W S = =14 Control (25) (10) (35) Treatment (36) (26) (40)
21 Reject null hypothesis when W S is sufficiently large : W S c P H0 (W S c) = α (alpha=0.05) Distribution of W S under H 0? Suppose no treatment effect (H 0 ) rank is solely determined by patients health status rank is independent of receiving treatment or placebo rank is assigned to patient before randomisation Random selection of patients for treatment random selection of 3 ranks out of 6 Randomisation divides ranks (1,2,...6) into two groups! Number of possible combinations : ( ) N n = N! n!(n n)!
22 All posibilities: (each as a probability of 1/20 under H 0 ) treatment ranks (4,5,6) (3,5,6) (3,4,6) (3,4,5) (2,5,6) w s treatment ranks (2,4,6) (2,4,5) (2,3,6) (2,3,5) (2,3,4) w treatment ranks (1,5,6) (1,4,6) (1,4,5) (1,3,6) (1,3,5) w s treatment ranks (1,3,4) (1,2,6) (1,2,5) (1,2,4) (1,2,3) w s
23 Distribution of W S under the null hypothesis: w P H0 (W s = w)
24 P HO (W S 14) = 0.1 Do not reject H 0. Conclusion: Treatment does not increase the GAF scores. Power of this study???
25 Large Sample Sizecase ( N ) n increases rapidly with N and n ( 20 ( ) = ) = 924 Asymptotic Null Distribution: Central Limit Theorem Sum T of large number of independent random variables is approximately normally distributed. ( ) T E(T ) P a Φ(a) Var(T ) where Φ(a) is the area to the left of a under a standard normal curve
26 If both n and m are sufficiently large: W S N(E(W S ); Var(W S )) E(W S ) = 1 2n(N + 1) Var(W S ) = 1 12nm(N + 1)
27 KruskalWallis Test
28 Kruskal Wallis test Example: Kruskal Wallis test: The following data represent corn yields per acre from three different fields where different farming methods were used. Method 1 Method 2 Method Question: is the yields different for the 4 methods?
29 Parametric Approach Oneway ANOVA Statistical test of whether or not the means of several groups are all equal Assumptions: Independence of cases The distributions of the residuals are normal : ɛ i (0, σ 2 ). Homoscedasticity variance between groups F = = variance within groups MSTR MSE Statistic follows a F distribution with s 1, n s d.f.
30 Small F: Large F:
31 OneWay ANOVA results X 1 = 89, X 2 = 88.33, X 3 = 99 σ 1 = 3.56, σ 2 = 6.65, σ 3 = 4.08 MSTR= , MSE = F= 6.11 P H0 (F 6.11) =
32 Ranks: Method 1 Method 2 Method R i. :
33 Hypothesis : H 0 : No difference between the treatments H 1 : Any difference between the treatments If treatments do not differ widely (H 0 ): R i. are close to each other R i. close to R.. If treatments do differ (H 1 ): R i. differ substantial R i. not close to R..
34 Evaluate the null hypothesis by investigating: K = 12 N(N + 1) s n i (R i. R.. ) 2 i=1 P H0 (K c) =? Exact distribution of K under H 0 : ranks are determined before assignment to treatment random assignment all possibilities same chance of being observed Number ( of possible combinations: multinomial coefficient : 11 ( 4,3,4) = 11 )( )( 4) = ( ) ( N n 1,n 2,...,n s = N )( N n1 ) ( n 1 n 2... N n1... n s 1 ) n s
35 A few possible configurations: Method 1 Method 2 Method 3 K (1,2,3,4) (5,6,7) (8,9,10,11) 8.91 (1,2,3,5) (4,6,7) (8,9,10,11) 8.32 (1,2,3,6) (4,5,6) (8,9,10,11) 7.84 (1,2,3,7) (4,5,6) (8,9,10,11) 7,48... (1,3,5,6) (2,4,8) (7,9,10,11) Each configuration has a probability of to happen.
36 Exact Distribution of K: P H0 (K 6.16) = Conclusion: Reject H 0 : there is a difference between the farming methods Large sample size approximation χ 2 distribution with s 1 d.f.
37 Friedmann Test
38 Friedmann Statistic Setting 1: complete randomization: KruskalWallis test pvalue = Treatment effect is blurred by the variability between subjects Setting 2: randomisation within age groups: pvalue Conclusion reject H 0
39 Procedure Divide subjects in homogeneous subgroups (BLOCKS) Compare subjects within the blocks w.r.t. treatment effects (Generalisation of the paired comparison design)
40 Example Data Agegroup treatment y y y y A B C Rank subjects within a block: Agegroup treatment y y y y A B C
41 Mean of ranks for: treatment A = R A. = 10 4 = 2.5 treatment B = R B. = 6 4 = 1.5 treatment C = R C. = 9 4 = 2.25 If these mean ranks are different reject H 0 If these mean ranks are close accept H 0
42 Measure for closseness of the mean ranks: if the R i. are all close to each other then they are close to the overall mean R.. and (R i. R.. ) 2 will be close to zero Friedman Statistic Q = 12N s(s + 1) s (R i. R.. ) 2 i=1
43 P H0 (Q c) =? Exact distribution of Q under H 0 : A few possible configurations: Agegroup Q Treatment y y y y A B C A B C A B C A B C
44 Exact Distribution of Q: Q Pr E E E E E02
45 Number of possibilities for the rank combinations: agegroup year: 3! = 6 agegroups are independent total number of possible combinations: (3!) 4 = 1296 Under the null these are all equally likely : (s!) N, s= treatment groups, N = of blocks P H0 (Q 3.5) = Do not reject H 0
46 Sign Test
47 Sign Test Special case of Friedmann test: blocks of size 2 subjects matched on e.g. age, gender,... twins two eyes (hands) of a person subject serves as own control: e.g. blood pressure before and after treatment Example: Pain scores for lower back pain, before and after having acupuncture Pain score Pain score Sign Pain score Pain score Sign Patient Before After Patient Before After
48 9 pairs out 15 where treatment comes out ahead (reduction in pain scores) Sign Test: S N = 9 P H0 (S N 9) =??? Exact Distribution of S N under H 0 is binomial N trials, N = number of pairs Success probability: 1 2 P H0 (S N 9) = ( ( 15 9 P H0 (S N = a) = ) + ( ( ) N 1 a 2 N ) ( ) 15 ) 1 =
49 JonckheereTerpstra Test
50 JonckheereTerpstra Test To be used when the H 1 is ordered. Ordinal data for the responses and an ordering in the treatment/groups. Example: Data: Three diets for rats Response: growth H 1 : Growth rate decreases from A to C : A B C A B C
51 Parametric Approach : Regression Models the relationship between a dependent and independent variable y i = β 0 + β 1 x i + ɛ i Assumptions ɛ i N(0, σ 2 ), ɛ i are independent homoscedasticity x i is measured without error
52 β 0 = 169, pvalue = < β 1 = 16, pvalue = Rsquare =
53 JonckheereTerpstra Test Based on MannWhitney statistics for two treatments Comparing the treatment groups two by two if W BA is large: growth A > growth B : (W BA = 18 if W BC is large: growth B > growth C : (W BC = 18 if W CA is large: growth A > growth C : (W BA = 23 JT Statistic: W = i<j W ij Reject H 0 when W is sufficiently large W = 59 P H0 (W c) = Compare with the result of a KruskalWallis Test: pvalue = The distribution of W follows a normal distribution for large samples
54 Parametric versus nonparametric tests Parametric tests: Assumptions about the distribution in the population Conditions are often not tested Test depends on the validity of the assumptions Most powerful test if all assumptions are met Nonparametric tests: Fewer assumptions about the distribution in the population In case of small sample sizes often the only alternative (unless the nature of the population distribution is known exactly) Less sensitive for measurement error (uses ranks) Can be used for data which are inherently in ranks, even for data measured in a nominal scale Easier to learn
3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationTHE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKALWALLIS TEST: The nonparametric alternative to ANOVA: testing for difference between several independent groups 2 NON
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationAnalysis of numerical data S4
Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:
More informationChapter Five: Paired Samples Methods 1/38
Chapter Five: Paired Samples Methods 1/38 5.1 Introduction 2/38 Introduction Paired data arise with some frequency in a variety of research contexts. Patients might have a particular type of laser surgery
More informationOverview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
More information1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationStatistics. Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples
Statistics Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
More informationBA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420
BA 275 Review Problems  Week 6 (10/30/0611/3/06) CD Lessons: 53, 54, 55, 56 Textbook: pp. 394398, 404408, 410420 1. Which of the following will increase the value of the power in a statistical test
More informationHypothesis testing S2
Basic medical statistics for clinical and experimental research Hypothesis testing S2 Katarzyna Jóźwiak k.jozwiak@nki.nl 2nd November 2015 1/43 Introduction Point estimation: use a sample statistic to
More informationNonparametric tests I
Nonparametric tests I Objectives MannWhitney Wilcoxon Signed Rank Relation of Parametric to Nonparametric tests 1 the problem Our testing procedures thus far have relied on assumptions of independence,
More informationIntroduction to Hypothesis Testing. Point estimation and confidence intervals are useful statistical inference procedures.
Introduction to Hypothesis Testing Point estimation and confidence intervals are useful statistical inference procedures. Another type of inference is used frequently used concerns tests of hypotheses.
More informationRankBased NonParametric Tests
RankBased NonParametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
More informationNonparametric Statistics
1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables
More information1/22/2016. What are paired data? Tests of Differences: two related samples. What are paired data? Paired Example. Paired Data.
Tests of Differences: two related samples What are paired data? Frequently data from ecological work take the form of paired (matched, related) samples Before and after samples at a specific site (or individual)
More informationModule 5 Hypotheses Tests: Comparing Two Groups
Module 5 Hypotheses Tests: Comparing Two Groups Objective: In medical research, we often compare the outcomes between two groups of patients, namely exposed and unexposed groups. At the completion of this
More informationHow to choose a statistical test. Francisco J. Candido dos Reis DGOFMRP University of São Paulo
How to choose a statistical test Francisco J. Candido dos Reis DGOFMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There
More informationChapter 21 Section D
Chapter 21 Section D Statistical Tests for Ordinal Data The ranksum test. You can perform the ranksum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first
More informationResearch Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide
More informationResearch Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
More informationNonparametric tests these test hypotheses that are not statements about population parameters (e.g.,
CHAPTER 13 Nonparametric and DistributionFree Statistics Nonparametric tests these test hypotheses that are not statements about population parameters (e.g., 2 tests for goodness of fit and independence).
More informationNonInferiority Tests for Two Means using Differences
Chapter 450 oninferiority Tests for Two Means using Differences Introduction This procedure computes power and sample size for noninferiority tests in twosample designs in which the outcome is a continuous
More informationNonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationHYPOTHESIS TESTING: POWER OF THE TEST
HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,
More information12. Nonparametric Statistics
12. Nonparametric Statistics Objectives Calculate MannWhitney Test Calculate Wilcoxon s MatchedPairs SignedRanks Test Calculate KruskalWallis OneWay ANOVA Calculate Friedman s Rank Test for k Correlated
More informationSPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationInferential Statistics. Probability. From Samples to Populations. Katie RommelEsham Education 504
Inferential Statistics Katie RommelEsham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice
More informationResearch Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 2000: Page 1:
Research Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 000: Page 1: NONPARAMETRIC TESTS: What are nonparametric tests? Statistical tests fall into two kinds: parametric tests assume that
More informationStatCrunch and Nonparametric Statistics
StatCrunch and Nonparametric Statistics You can use StatCrunch to calculate the values of nonparametric statistics. It may not be obvious how to enter the data in StatCrunch for various data sets that
More informationTwoSample TTests Assuming Equal Variance (Enter Means)
Chapter 4 TwoSample TTests Assuming Equal Variance (Enter Means) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when the variances of
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationTwoSample TTests Allowing Unequal Variance (Enter Difference)
Chapter 45 TwoSample TTests Allowing Unequal Variance (Enter Difference) Introduction This procedure provides sample size and power calculations for one or twosided twosample ttests when no assumption
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationChapter 3: Nonparametric Tests
B. Weaver (15Feb00) Nonparametric Tests... 1 Chapter 3: Nonparametric Tests 3.1 Introduction Nonparametric, or distribution free tests are socalled because the assumptions underlying their use are fewer
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More information1. Why the hell do we need statistics?
1. Why the hell do we need statistics? There are three kind of lies: lies, damned lies, and statistics, British Prime Minister Benjamin Disraeli (as credited by Mark Twain): It is easy to lie with statistics,
More informationContents 1. Contents
Contents 1 Contents 3 Ksample Methods 2 3.1 Setup............................ 2 3.2 Classic Method Based on Normality Assumption..... 3 3.3 Permutation F test.................... 5 3.4 KruskalWallis
More informationNonParametric Tests (I)
Lecture 5: NonParametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of DistributionFree Tests (ii) Median Test for Two Independent
More informationTests of relationships between variables Chisquare Test Binomial Test Run Test for Randomness OneSample KolmogorovSmirnov Test.
N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationUCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
More informationANOVA MULTIPLE CHOICE QUESTIONS. In the following multiplechoice questions, select the best answer.
ANOVA MULTIPLE CHOICE QUESTIONS In the following multiplechoice questions, select the best answer. 1. Analysis of variance is a statistical method of comparing the of several populations. a. standard
More informationVariables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.
The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide
More informationOutline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics
Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public
More informationUNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
More informationSAS 3: Comparing Means
SAS 3: Comparing Means University of Guelph Revised June 2011 Table of Contents SAS Availability... 2 Goals of the workshop... 2 Data for SAS sessions... 3 Statistical Background... 4 Ttest... 8 1. Independent
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationStatistics for Clinical Trial SAS Programmers 1: paired ttest Kevin Lee, Covance Inc., Conshohocken, PA
Statistics for Clinical Trial SAS Programmers 1: paired ttest Kevin Lee, Covance Inc., Conshohocken, PA ABSTRACT This paper is intended for SAS programmers who are interested in understanding common statistical
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationStatistical tests for SPSS
Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly
More informationPart 3. Comparing Groups. Chapter 7 Comparing Paired Groups 189. Chapter 8 Comparing Two Independent Groups 217
Part 3 Comparing Groups Chapter 7 Comparing Paired Groups 189 Chapter 8 Comparing Two Independent Groups 217 Chapter 9 Comparing More Than Two Groups 257 188 Elementary Statistics Using SAS Chapter 7 Comparing
More informationCHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
More informationIntroduction to Hypothesis Testing. Hypothesis Testing. Step 1: State the Hypotheses
Introduction to Hypothesis Testing 1 Hypothesis Testing A hypothesis test is a statistical procedure that uses sample data to evaluate a hypothesis about a population Hypothesis is stated in terms of the
More informatione = random error, assumed to be normally distributed with mean 0 and standard deviation σ
1 Linear Regression 1.1 Simple Linear Regression Model The linear regression model is applied if we want to model a numeric response variable and its dependency on at least one numeric factor variable.
More informationParametric and Nonparametric: Demystifying the Terms
Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationp1^ = 0.18 p2^ = 0.12 A) 0.150 B) 0.387 C) 0.300 D) 0.188 3) n 1 = 570 n 2 = 1992 x 1 = 143 x 2 = 550 A) 0.270 B) 0.541 C) 0.520 D) 0.
Practice for chapter 9 and 10 Disclaimer: the actual exam does not mirror this. This is meant for practicing questions only. The actual exam in not multiple choice. Find the number of successes x suggested
More informationAnalysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Betweensubjects manipulations: variable to
More informationHYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1. used confidence intervals to answer questions such as...
HYPOTHESIS TESTING (ONE SAMPLE)  CHAPTER 7 1 PREVIOUSLY used confidence intervals to answer questions such as... You know that 0.25% of women have red/green color blindness. You conduct a study of men
More informationNonparametric Statistics
Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric
More informationPermutation & NonParametric Tests
Permutation & NonParametric Tests Statistical tests Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?) Form a test statistic for which large values indicate
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationStatistiek II. John Nerbonne. October 1, 2010. Dept of Information Science j.nerbonne@rug.nl
Dept of Information Science j.nerbonne@rug.nl October 1, 2010 Course outline 1 Oneway ANOVA. 2 Factorial ANOVA. 3 Repeated measures ANOVA. 4 Correlation and regression. 5 Multiple regression. 6 Logistic
More informationEPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeatedmeasures data if participants are assessed on two occasions or conditions
More informationCompare birds living near a toxic waste site with birds living in a pristine area.
STT 430/630/ES 760 Lecture Notes: Chapter 7: TwoSample Inference 1 February 27, 2009 Chapter 7: Two Sample Inference Chapter 6 introduced hypothesis testing in the onesample setting: one sample is obtained
More informationANSWERS TO EXERCISES AND REVIEW QUESTIONS
ANSWERS TO EXERCISES AND REVIEW QUESTIONS PART FIVE: STATISTICAL TECHNIQUES TO COMPARE GROUPS Before attempting these questions read through the introduction to Part Five and Chapters 1621 of the SPSS
More informationSupplement on the KruskalWallis test. So what do you do if you don t meet the assumptions of an ANOVA?
Supplement on the KruskalWallis test So what do you do if you don t meet the assumptions of an ANOVA? {There are other ways of dealing with things like unequal variances and nonnormal data, but we won
More informationUnivariate and Bivariate Tests
Univariate and BUS 230: Business and Economics Research and Communication Univariate and Goals Hypotheses Tests Goals 1/ 20 Specific goals: Be able to distinguish different types of data and prescribe
More informationSPSS 3: COMPARING MEANS
SPSS 3: COMPARING MEANS UNIVERSITY OF GUELPH LUCIA COSTANZO lcostanz@uoguelph.ca REVISED SEPTEMBER 2012 CONTENTS SPSS availability... 2 Goals of the workshop... 2 Data for SPSS Sessions... 3 Statistical
More informationSPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stemandleaf plots and extensive descriptive statistics. To run the Explore procedure,
More informationNonparametric tests, Bootstrapping
Nonparametric tests, Bootstrapping http://www.isrec.isbsib.ch/~darlene/embnet/ Hypothesis testing review 2 competing theories regarding a population parameter: NULL hypothesis H ( straw man ) ALTERNATIVEhypothesis
More informationData Analysis. Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) SS Analysis of Experiments  Introduction
Data Analysis Lecture Empirical Model Building and Methods (Empirische Modellbildung und Methoden) Prof. Dr. Dr. h.c. Dieter Rombach Dr. Andreas Jedlitschka SS 2014 Analysis of Experiments  Introduction
More informationNonparametric Test Procedures
Nonparametric Test Procedures 1 Introduction to Nonparametrics Nonparametric tests do not require that samples come from populations with normal distributions or any other specific distribution. Hence
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationLesson 1: Comparison of Population Means Part c: Comparison of Two Means
Lesson : Comparison of Population Means Part c: Comparison of Two Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
More informationInterpretation of Computer Analysis Output for Fundamental Statistical Tests Volume One Ttest P.Y. Cheng
Interpretation of Computer Analysis Output for Fundamental Statistical Tests Volume One Ttest P.Y. Cheng Preface When I firstly came to the department in 1985, PC computers were still not common at all.
More informationC. The null hypothesis is not rejected when the alternative hypothesis is true. A. population parameters.
Sample Multiple Choice Questions for the material since Midterm 2. Sample questions from Midterms and 2 are also representative of questions that may appear on the final exam.. A randomly selected sample
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationChris Slaughter, DrPH. GI Research Conference June 19, 2008
Chris Slaughter, DrPH Assistant Professor, Department of Biostatistics Vanderbilt University School of Medicine GI Research Conference June 19, 2008 Outline 1 2 3 Factors that Impact Power 4 5 6 Conclusions
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationfifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson
fifty Fathoms Statistics Demonstrations for Deeper Understanding Tim Erickson Contents What Are These Demos About? How to Use These Demos If This Is Your First Time Using Fathom Tutorial: An Extended Example
More information6 Comparison of differences between 2 groups: Student s Ttest, MannWhitney UTest, Paired Samples Ttest and Wilcoxon Test
6 Comparison of differences between 2 groups: Student s Ttest, MannWhitney UTest, Paired Samples Ttest and Wilcoxon Test Having finally arrived at the bottom of our decision tree, we are now going
More informationSimple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
More informationThe Wilcoxon RankSum Test
1 The Wilcoxon RankSum Test The Wilcoxon ranksum test is a nonparametric alternative to the twosample ttest which is based solely on the order in which the observations from the two samples fall. We
More informationCHAPTER 11 CHISQUARE AND F DISTRIBUTIONS
CHAPTER 11 CHISQUARE AND F DISTRIBUTIONS CHISQUARE TESTS OF INDEPENDENCE (SECTION 11.1 OF UNDERSTANDABLE STATISTICS) In chisquare tests of independence we use the hypotheses. H0: The variables are independent
More informationChiSquare P216; 269
ChiSquare P16; 69 Confidence intervals CI: % confident that interval contains population mean (µ) % is determined by researcher (e.g. 85, 90, 95%) Formula for ztest and ttest: CI = M +/ z*(σ M ) CI
More informationBA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394
BA 275 Review Problems  Week 5 (10/23/0610/27/06) CD Lessons: 48, 49, 50, 51, 52 Textbook: pp. 380394 1. Does vigorous exercise affect concentration? In general, the time needed for people to complete
More informationGeneral Method: Difference of Means. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n 1, n 2 ) 1.
General Method: Difference of Means 1. Calculate x 1, x 2, SE 1, SE 2. 2. Combined SE = SE1 2 + SE2 2. ASSUMES INDEPENDENT SAMPLES. 3. Calculate df: either WelchSatterthwaite formula or simpler df = min(n
More informationInferences About Differences Between Means Edpsy 580
Inferences About Differences Between Means Edpsy 580 Carolyn J. Anderson Department of Educational Psychology University of Illinois at UrbanaChampaign Inferences About Differences Between Means Slide
More informationTutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrclmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
More informationStatistics 641  EXAM II  1999 through 2003
Statistics 641  EXAM II  1999 through 2003 December 1, 1999 I. (40 points ) Place the letter of the best answer in the blank to the left of each question. (1) In testing H 0 : µ 5 vs H 1 : µ > 5, the
More informationChapter 11: Linear Regression  Inference in Regression Analysis  Part 2
Chapter 11: Linear Regression  Inference in Regression Analysis  Part 2 Note: Whether we calculate confidence intervals or perform hypothesis tests we need the distribution of the statistic we will use.
More information