Statistics for Sports Medicine


 Ralf Benson
 2 years ago
 Views:
Transcription
1 Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota Fellow s Research Conference July 2012: Philadelphia
2
3 GOALS Try not to bore you to death!! Try to teach you something useful Introduce concepts Give you a stats reference guide Encourage sports med research
4
5 QUIZ What is the appropriate stats test to apply?. 50 soccer players wore head gear & 40 did not. Players were followed for diagnosis of concussion over one season. 1. Paired two tailed ttest 2. ANOVA 3. Chisquare analysis 4. McNemar test
6 MY TOP 10 STATS TIP LIST
7 OVERVIEW Introduction Variables Normal distribution Hypothesis testing Comparing means Measuring association Scatterplots & Correlation Regression
8 PURPOSE Stats is just a tool to analyze data you collect Learn the basics Add to your foundation over time Lots of names of tests, just like Sports Medicine!! You wouldn t talk about a Jobe s test during a knee exam Mt Stats
9 PURPOSE Infer something about a population based on information from a sample of that population Use probability concepts Describe how reliable the conclusions are ie: You have all this data & is it useful in someway?
10 MY TOP 10 STATS TIP LIST
11 Variables Discrete Examples Gender (m/f); Fracture (y/n) Nominal or Ordinal Nominal: Set of categories, no ordering ie: m/f Ordinal: Ordering, but no meaning to differences in scores ie Compare 1 st & 2 nd place finishers (ranking) without using actual times Continuous Examples Weight, race time Differences between values has meaning
12 USE FOR FUTURE REFERENCE Variable Summary Statistics Comparing 2 groups Measuring Association Nominal Mode Chisquare Contingency Coefficient Ordinal Median Chisquare Nonparametric Kappa Spearman r Kendall s tao Continuous Mean Median & SD ttest Nonparametric Spearman r Pearson r
13 SAMPLE SIZE & POWER Important to calculate Do this prior to the study Avoid expenses, time, resources, etc. Calculations available in stats software Let s you know that you have enough subjects to detect a meaningful change
14 HYPOTHESIS TESTING Null hypothesis (H 0 ) No difference between groups (groups are the same) Alternative hypothesis (H 1 ) There is a difference between groups Type I error Saying groups are different when they aren t Type II error Saying groups are the same when they are different
15 MY TOP 10 STATS TIP LIST
16 Normal Distribution Applies to continuous variables Mean=median=mode Many stats tests assume nl distr ttest; ANOVA; regression Ways to test to see if a nl distribution Use nonparametric tests or transform data (ie log) if not a nl distribution Methods that assume nl distr Robust to moderate departures of nl distr assumption if n is large enough!
17 Normal Distribution Symmetrical about the mean BLUE= 68.2% of values w/in 1 SD BLUE+ BROWN= 95.4% of values w/in 2 SD BLUE + BROWN + GREEN= 99.7% of values w/in 3 SD
18 PValue = the probability of obtaining results by chance alone p=0.05 (5% chance) May not tell whole story Statistically significant Clinically significant Small or large n s Small n: Type II error Give both: pvalue & CI
19 MY TOP 10 STATS TIP LIST
20
21 Comparing 2 groups or rxs Type of Outcome Continuous Binary (y/n) Nl Distribution Paired Unpaired Paired ttest Yes Parametric Unpaired ttest Sign test No Nonparametric Paired Sign rank test McNemar s test Unpaired Wilcoxon rank sum test Yes Large Sample Size ChiSquared No Fischer s Exact Test
22 Comparing 3 or > groups Type of Outcome Continuous Binary (y/n) Nl Distribution Yes Parametric No Nonparametric Frequency Tables Chisquared Methods ANOVA Kruskal Wallis Test
23 Comparing 2 groups or rxs Type of Outcome Continuous Binary (y/n) Nl Distribution Yes No Parametric Nonparametric Paired Unpaired Paired Unpaired ttest ttest Sign test Sign rank test Wilcoxon rank sum test
24 Comparing Group Means ttest ANOVA Assumptions Data is continuous & nl distributed Methods 2 indep samples: 2 sample ttest Paired data: Paired ttest >2 indep samples: ANOVA Includes Confidence intervals Hypothesis testing
25 3 types 2 sample ttest Student s ttest ttests Independent samples ttest Paired samples ttest Paired data: 2 measurements on same subject or test unit One sample ttest Compare to a known (norm) value
26 ttests Onetailed vs twotailed Almost always use twotailed Results could be higher or lower not just one way
27 95% CI Confidence Intervals 95% confident that the true value falls in the interval. Wide CI suggests uncertainty about data Does the CI contain a value that implies no change or no effect? Mean: 0 Odds ratio: 1 Does the confidence interval lie partly or entirely within a range of clinical indifference?
28 Example: Confidence Intervals Survey 19 millionaires Mean income donation=15% +/ 2 SD CI: +/ 2.4% Interpretation We are 95% confident that millionaires donate between % of their income.
29 Comparing 2 groups or rxs Type of Outcome Continuous Binary (y/n) Nl Distribution Yes No Parametric Nonparametric Paired Unpaired Paired Unpaired ttest ttest Sign test Sign rank test Wilcoxon rank sum test
30 SIGN TEST Nonparametric test Not a nl distribution Alternative to paired ttest Good for small sample size Test the difference for matched pairs on before & after data Method: Calculate diffs Throwout zero diff Test for # of + diff H 1 is true: median does not = 0
31 WILCOXON SIGN RANK TEST Same application as Sign Test Uses the ranks & the signs of diff More powerful test than Sign Test Method: Calculate differences in pairs Throw away zero differences Rank from smallest to largest difference w/out regard to +/ Test: sum of ranks of + diff
32 Wilcoxon Rank Sum Test Also known as: MannWhitney U test Comparing 2 independent samples Not nl distribution Good for detecting changes in medians Method: Combine data from 2 gps Rank smallest to largest Add ranks in the gp with smaller sample size Add ranks in gp with larger N Test: sum of ranks for smaller gp compared to larger gp
33 EXAMPLE: RankSum Test Team Cheetah 5 team members Team Impala 7 team members Results TC: 3, 4, 7, 12, 13 (min) Results TI: 2, 5, 6, 8, 9, 10, 11 (min) Combine data & then rank: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Sum ranks of smaller gp = 34 Test if sum ranks of smaller gp is the same or different from other group
34 MY TOP 10 STATS TIP LIST
35 Comparing 3 or > groups Type of Outcome Continuous Binary (y/n) Nl Distribution Yes Parametric No Nonparametric Frequency Tables Chisquared Methods ANOVA Kruskal Wallis Test
36 ANOVA Analysis of variance Comparing means of >2 groups Assumes Continuous Nl distrib Same variance w/in each group Benefits compared to ttests Efficiency Avoids multiple testing problem Problem Sign F test tells you that at least 2 gps are different, but not which ones!
37 ANOVAProblem Multiple Comparisons Procedures Used to tell which groups differ Stricter levels for accepting/rejecting that the means are the same 4 methods Bonferroni Tukey NeumanKeuls Scheffe
38 KruskalWallis Test Nonparametric test Use for comparing 3 or > independent groups Think of as a nonparametric ANOVA test Good for detecting changes in median
39 MY TOP 10 STATS TIP LIST
40 Comparing 2 groups or rxs Type of Outcome Continuous Binary (y/n) Paired Unpaired McNemar s test Yes Large Sample Size No ChiSquared Fischer s Exact Test
41 Comparing Frequency Data Binary outcome (yes/no) Paired method McNemar s Test Nonpaired methods Pearson s Chisquare Fisher s Exact Test
42 Assumes Pearson s Chisquare Random samples from 2 groups Compares expected with observed All samples sizes are large enough All frequencies must be > 5 2x2 table: Standard New Helmet Helmet Concussion No Concussion TOTAL n 1 =25 n 2 =19 p 1 =18/25 =0.72 (72%) p 2 =6/19 =0.32 (32%)
43 Pearson s Chisquare OBSERVED Standard Helmet New Helmet TOTAL Concussion No Concussion 7 13 TOTAL n 1 =25 n 2 = X 2 =7.1 (p=0.0077) EXPECTED (if not different) Concussion No Concussion Standard Helmet 24/44 x 25 = /44 x 25 =11.36 New Helmet 24/44 x 19 = /44 x 19 =8.64
44 Fisher s Exact Test Use this test when 1 or more of frequencies is < 5
45 McNemar s Test Use for paired binary data Same subject before & after rx Crossover study
46 MY TOP 10 STATS TIP LIST
47 RISK Risk difference Absolute difference in risk proportions Can be difficult to interpret Relative Risk (RR) Also known as Risk Ratio Risk in 1 gp/risk in other gps Odds Ratio (OR) Probability or Odds of an event OR= odds of exposed gp/odds of control gp OR=1 means no difference
48 RELATIVE RISK Relative risk (RR) is the risk of an event relative to exposure. Risk of having a boy if mom took testosterone during pregnancy 75/100=75% Risk (probability) of having a boy= 51/100= 51% Risk Ratio=.75/.51=1.5 Easier to understand Risk ratio =0.5 =risk is half Risk ratio=2=risk is double
49 CALCULATING ODDS Odds of an event =# of events/# of nonevents 51 boys born for every 100 births Odds of any randomly chosen delivery being a boy=51/10051=1.04 Odds>1: Event is more likely to happen than not Odds of certain event= Odds<1: Event is not likely to happen Odds of an impossible event=0
50 ODDS RATIO Testosterone example 75/ /10051= 3/1.04= 2.9 The odds of having a boy is 2.9x higher in moms using testosterone vs mom s not using testosterone.
51 ODDS RATIO: Benefits No upper limit RR range varies depending on baseline prevalence When events are low (rare dz) OR approx RR OR ok to use with case control Don t use RR with case control
52 Calculating OR Cross Product Factor (Event) Group 1 Group 2 a b No Factor (No Event) c OR= a/c b/d d = a x d b x c Concussion No Concussion Standard New Helmet Helmet x 13 = x 7
53
54
55 MY TOP 10 STATS TIP LIST
56 SCATTERPLOT Can help answer the following Are variables X & Y related? Are X & Y linearly related? Are X & Y nonlinearly related? Does the variation in Y change depending on X? Are there outliers? 1. Linear relationship 2. Small scatter (strong correlation) 3. + slope (+ correlation)
57 SCATTERPLOTS No relationship 1. Linear 2. Small scatter (strong correlation) 3.  slope (neg correlation)
58 SCATTERPLOTS Outlier Nonlinear
59 CORRELATION: PEARSON Measures the strength of (linear) association between 2 variables Ranges from 1 to 1 1= 1= 0= Examples: r=0.8 r=0.3 r=0.7 perfect + correlation perfect correlation no correlation strong + correlation weak + correlation moderate correlation
60 MY TOP 10 STATS TIP LIST
61 REGRESSION A straight line that describes the dependence of one variable on another is called a regression line Y=response variable ie finishing time X=explanatory variable ie body fat percentage Is finishing time predicted by body fat percentage?
62 Linear REGRESSION TYPES Data: Normal distribution Simple or Multiple Logistical Data: binary (y/n) Simple or Multiple Multiple Regression Models Allow estimation of the indep effect of each X after controlling for other variables in the model.
63 Simple LINEAR REGRESSION Use to predict Y given X Determine best fitting equation Test whether there is a relationship between X & Y
64 Linear Regression R 2 value =% of variance in Y explained by X If R 2 =1 then x can predict y 100% of the time F test for significance If p >0.05 then no significant relationship (slope of line =zero) exists between x & Y
65 Multiple Linear Regression Model that explains how a single dependent variable (Y) relates to several independent variables (x). Example: Test if age, gender, body fat %, prior triathlon competitions, & occupation predict finishing time.
66 Multiple Linear Regression How many variables to use? Recommend that you have 1020x # of cases to variables tested. Test lots of variables Increase random chance of stat sign Model becomes unstable
67 Multiple Linear Regression Example cont: Model predicts 90% of variance in performance Now test for which variable or combinations of variables is most predictive Body fat %: 15% Age: 10% Gender: 30% Body fat & gender 35% Occupation 0% Prior triathlon 40%
68 MY TOP 10 STATS TIP LIST
69 QUIZ What is the appropriate stats test to apply?. 50 soccer players wore head gear & 40 did not. Players were followed for diagnosis of concussion over one season. 1. Paired two tailed ttest 2. ANOVA 3. Chisquare analysis 4. McNemar test
70 OTHER TIPS Stats support at Universities Usually charge per hour MS cheaper than PhD Authorship If stats person willing to: (International Committee of Medical Journal Editors (ICMJE) guidelines) Help design study Analyze data Format tables, graphs, etc Write a portion of article May be able to get small grant to cover $ of stats analysis Online support
71
72 REFERENCES 1. Applied Biostatistics in Clinical Research Course Book; CaseWestern Reserve General Clinical Research Center Biostatistics 100B Course Book; UCLA The Essentials of Clinical Investigation Course Book; UCLA Clinical Research Center Moore, McCabe, Craig (2009) Introduction to the Practice of Statistics, Sixth Edition. WH Freeman and Company, New York. ISBN13:
How to choose a statistical test. Francisco J. Candido dos Reis DGOFMRP University of São Paulo
How to choose a statistical test Francisco J. Candido dos Reis DGOFMRP University of São Paulo Choosing the right test One of the most common queries in stats support is Which analysis should I use There
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationAnalysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
More informationSome Critical Information about SOME Statistical Tests and Measures of Correlation/Association
Some Critical Information about SOME Statistical Tests and Measures of Correlation/Association This information is adapted from and draws heavily on: Sheskin, David J. 2000. Handbook of Parametric and
More informationThe Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
More informationUCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates
UCLA STAT 13 Statistical Methods  Final Exam Review Solutions Chapter 7 Sampling Distributions of Estimates 1. (a) (i) µ µ (ii) σ σ n is exactly Normally distributed. (c) (i) is approximately Normally
More informationSection 3 Part 1. Relationships between two numerical variables
Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationModule 9: Nonparametric Tests. The Applied Research Center
Module 9: Nonparametric Tests The Applied Research Center Module 9 Overview } Nonparametric Tests } Parametric vs. Nonparametric Tests } Restrictions of Nonparametric Tests } OneSample ChiSquare Test
More informationBiostatistics: Types of Data Analysis
Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS
More informationInferential Statistics
Inferential Statistics Sampling and the normal distribution Zscores Confidence levels and intervals Hypothesis testing Commonly used statistical methods Inferential Statistics Descriptive statistics are
More informationVariables and Data A variable contains data about anything we measure. For example; age or gender of the participants or their score on a test.
The Analysis of Research Data The design of any project will determine what sort of statistical tests you should perform on your data and how successful the data analysis will be. For example if you decide
More informationNonparametric tests I
Nonparametric tests I Objectives MannWhitney Wilcoxon Signed Rank Relation of Parametric to Nonparametric tests 1 the problem Our testing procedures thus far have relied on assumptions of independence,
More informationOutline of Topics. Statistical Methods I. Types of Data. Descriptive Statistics
Statistical Methods I Tamekia L. Jones, Ph.D. (tjones@cog.ufl.edu) Research Assistant Professor Children s Oncology Group Statistics & Data Center Department of Biostatistics Colleges of Medicine and Public
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationX X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
More informationCorrelation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2
Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables
More informationSpearman s correlation
Spearman s correlation Introduction Before learning about Spearman s correllation it is important to understand Pearson s correlation which is a statistical measure of the strength of a linear relationship
More information3. Nonparametric methods
3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests
More informationLesson 4 Part 1. Relationships between. two numerical variables. Correlation Coefficient. Relationship between two
Lesson Part Relationships between two numerical variables Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear between two numerical variables Relationship
More informationThe Statistics Tutor s
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence Stcpmarshallowen7 The Statistics Tutor s www.statstutor.ac.uk
More informationDr. Peter Tröger Hasso Plattner Institute, University of Potsdam. Software Profiling Seminar, Statistics 101
Dr. Peter Tröger Hasso Plattner Institute, University of Potsdam Software Profiling Seminar, 2013 Statistics 101 Descriptive Statistics Population Object Object Object Sample numerical description Object
More informationNonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
More informationUsing Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
More informationStatistics and research
Statistics and research Usaneya Perngparn Chitlada Areesantichai Drug Dependence Research Center (WHOCC for Research and Training in Drug Dependence) College of Public Health Sciences Chulolongkorn University,
More informationOverview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
More informationIntroduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
More informationEBM Cheat Sheet Measurements Card
EBM Cheat Sheet Measurements Card Basic terms: Prevalence = Number of existing cases of disease at a point in time / Total population. Notes: Numerator includes old and new cases Prevalence is crosssectional
More informationQuantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality
Quantitative Data Analysis: Choosing a statistical test Prepared by the Office of Planning, Assessment, Research and Quality 1 To help choose which type of quantitative data analysis to use either before
More informationSPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
More informationAMS7: WEEK 8. CLASS 1. Correlation Monday May 18th, 2015
AMS7: WEEK 8. CLASS 1 Correlation Monday May 18th, 2015 Type of Data and objectives of the analysis Paired sample data (Bivariate data) Determine whether there is an association between two variables This
More informationSPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stemandleaf plots and extensive descriptive statistics. To run the Explore procedure,
More informationData Analysis, Research Study Design and the IRB
Minding the pvalues p and Quartiles: Data Analysis, Research Study Design and the IRB Don AllensworthDavies, MSc Research Manager, Data Coordinating Center Boston University School of Public Health IRB
More informationChapter 21 Section D
Chapter 21 Section D Statistical Tests for Ordinal Data The ranksum test. You can perform the ranksum test in SPSS by selecting 2 Independent Samples from the Analyze/ Nonparametric Tests menu. The first
More informationThe Statistics Tutor s Quick Guide to
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcpmarshallowen7
More informationProjects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
More informationCome scegliere un test statistico
Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0195086074) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table
More informationUNIVERSITY OF NAIROBI
UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationTests of relationships between variables Chisquare Test Binomial Test Run Test for Randomness OneSample KolmogorovSmirnov Test.
N. Uttam Singh, Aniruddha Roy & A. K. Tripathi ICAR Research Complex for NEH Region, Umiam, Meghalaya uttamba@gmail.com, aniruddhaubkv@gmail.com, aktripathi2020@yahoo.co.in Non Parametric Tests: Hands
More information1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
More informationInferential Statistics. Probability. From Samples to Populations. Katie RommelEsham Education 504
Inferential Statistics Katie RommelEsham Education 504 Probability Probability is the scientific way of stating the degree of confidence we have in predicting something Tossing coins and rolling dice
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationAnalysis of numerical data S4
Basic medical statistics for clinical and experimental research Analysis of numerical data S4 Katarzyna Jóźwiak k.jozwiak@nki.nl 3rd November 2015 1/42 Hypothesis tests: numerical and ordinal data 1 group:
More informationStatistical Significance and Bivariate Tests
Statistical Significance and Bivariate Tests BUS 735: Business Decision Making and Research 1 1.1 Goals Goals Specific goals: Refamiliarize ourselves with basic statistics ideas: sampling distributions,
More informationTHE KRUSKAL WALLLIS TEST
THE KRUSKAL WALLLIS TEST TEODORA H. MEHOTCHEVA Wednesday, 23 rd April 08 THE KRUSKALWALLIS TEST: The nonparametric alternative to ANOVA: testing for difference between several independent groups 2 NON
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationRankBased NonParametric Tests
RankBased NonParametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
More informationYiming Peng, Department of Statistics. February 12, 2013
Regression Analysis Using JMP Yiming Peng, Department of Statistics February 12, 2013 2 Presentation and Data http://www.lisa.stat.vt.edu Short Courses Regression Analysis Using JMP Download Data to Desktop
More informationLecture 7: Binomial Test, Chisquare
Lecture 7: Binomial Test, Chisquare Test, and ANOVA May, 01 GENOME 560, Spring 01 Goals ANOVA Binomial test Chi square test Fisher s exact test Su In Lee, CSE & GS suinlee@uw.edu 1 Whirlwind Tour of One/Two
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationBIOSTATISTICS QUIZ ANSWERS
BIOSTATISTICS QUIZ ANSWERS 1. When you read scientific literature, do you know whether the statistical tests that were used were appropriate and why they were used? a. Always b. Mostly c. Rarely d. Never
More informationIntroduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
More informationNonparametric Statistics
1 14.1 Using the Binomial Table Nonparametric Statistics In this chapter, we will survey several methods of inference from Nonparametric Statistics. These methods will introduce us to several new tables
More informationStatistics: revision
NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 3 / 4 May 2005 Department of Experimental Psychology University of Cambridge Slides at pobox.com/~rudolf/psychology
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationAnalysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
More informationSection 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
More informationComparing two groups (t tests...)
Page 1 of 33 Comparing two groups (t tests...) You've measured a variable in two groups, and the means (and medians) are distinct. Is that due to chance? Or does it tell you the two groups are really different?
More informationWe are often interested in the relationship between two variables. Do people with more years of fulltime education earn higher salaries?
Statistics: Correlation Richard Buxton. 2008. 1 Introduction We are often interested in the relationship between two variables. Do people with more years of fulltime education earn higher salaries? Do
More informationA Guide for a Selection of SPSS Functions
A Guide for a Selection of SPSS Functions IBM SPSS Statistics 19 Compiled by Beth Gaedy, Math Specialist, Viterbo University  2012 Using documents prepared by Drs. Sheldon Lee, Marcus Saegrove, Jennifer
More information1. Why the hell do we need statistics?
1. Why the hell do we need statistics? There are three kind of lies: lies, damned lies, and statistics, British Prime Minister Benjamin Disraeli (as credited by Mark Twain): It is easy to lie with statistics,
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationDifference tests (2): nonparametric
NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge
More informationBasic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma siersma@sund.ku.dk The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
More informationSPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
More informationStatistiek I. ttests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. John Nerbonne 1/35
Statistiek I ttests John Nerbonne CLCG, Rijksuniversiteit Groningen http://wwwletrugnl/nerbonne/teach/statistieki/ John Nerbonne 1/35 ttests To test an average or pair of averages when σ is known, we
More informationStatistics. Measurement. Scales of Measurement 7/18/2012
Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does
More informationPermutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. JaeWan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
More informationAnalyzing Research Data Using Excel
Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial
More informationSimple Predictive Analytics Curtis Seare
Using Excel to Solve Business Problems: Simple Predictive Analytics Curtis Seare Copyright: Vault Analytics July 2010 Contents Section I: Background Information Why use Predictive Analytics? How to use
More informationResearch Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 2000: Page 1:
Research Methods 1 Handouts, Graham Hole,COGS  version 1.0, September 000: Page 1: NONPARAMETRIC TESTS: What are nonparametric tests? Statistical tests fall into two kinds: parametric tests assume that
More informationPrinciples of Hypothesis Testing for Public Health
Principles of Hypothesis Testing for Public Health Laura Lee Johnson, Ph.D. Statistician National Center for Complementary and Alternative Medicine johnslau@mail.nih.gov Fall 2011 Answers to Questions
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationAP Statistics 2002 Scoring Guidelines
AP Statistics 2002 Scoring Guidelines The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must be sought
More information11/20/2014. Correlational research is used to describe the relationship between two or more naturally occurring variables.
Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are highly extraverted people less afraid of rejection
More informationEPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeatedmeasures data if participants are assessed on two occasions or conditions
More informationTypes of Data, Descriptive Statistics, and Statistical Tests for Nominal Data. Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York . NONPARAMETRIC STATISTICS I. DEFINITIONS A. Parametric
More informationChapter 16 Appendix. Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators
The Wilcoxon Rank Sum Test Chapter 16 Appendix Nonparametric Tests with Excel, JMP, Minitab, SPSS, CrunchIt!, R, and TI83/84 Calculators These nonparametric tests make no assumption about Normality.
More informationPearson s correlation
Pearson s correlation Introduction Often several quantitative variables are measured on each member of a sample. If we consider a pair of such variables, it is frequently of interest to establish if there
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationA correlation exists between two variables when one of them is related to the other in some way.
Lecture #10 Chapter 10 Correlation and Regression The main focus of this chapter is to form inferences based on sample data that come in pairs. Given such paired sample data, we want to determine whether
More informationNonParametric Tests (I)
Lecture 5: NonParametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of DistributionFree Tests (ii) Median Test for Two Independent
More informationSimple Linear Regression
Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression Statistical model for linear regression Estimating
More informationSimple Linear Regression in SPSS STAT 314
Simple Linear Regression in SPSS STAT 314 1. Ten Corvettes between 1 and 6 years old were randomly selected from last year s sales records in Virginia Beach, Virginia. The following data were obtained,
More informationTechnology StepbyStep Using StatCrunch
Technology StepbyStep Using StatCrunch Section 1.3 Simple Random Sampling 1. Select Data, highlight Simulate Data, then highlight Discrete Uniform. 2. Fill in the following window with the appropriate
More informationUnivariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
More informationTesting Group Differences using Ttests, ANOVA, and Nonparametric Measures
Testing Group Differences using Ttests, ANOVA, and Nonparametric Measures Jamie DeCoster Department of Psychology University of Alabama 348 Gordon Palmer Hall Box 870348 Tuscaloosa, AL 354870348 Phone:
More informationResearch Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
More informationBowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition
Bowerman, O'Connell, Aitken Schermer, & Adcock, Business Statistics in Practice, Canadian edition Online Learning Centre Technology StepbyStep  Excel Microsoft Excel is a spreadsheet software application
More informationThe correlation coefficient
The correlation coefficient Clinical Biostatistics The correlation coefficient Martin Bland Correlation coefficients are used to measure the of the relationship or association between two quantitative
More informationTesting Hypotheses using SPSS
Is the mean hourly rate of male workers $2.00? TTest OneSample Statistics Std. Error N Mean Std. Deviation Mean 2997 2.0522 6.6282.2 OneSample Test Test Value = 2 95% Confidence Interval Mean of the
More informationStudy Design and Statistical Analysis
Study Design and Statistical Analysis Anny H Xiang, PhD Department of Preventive Medicine University of Southern California Outline Designing Clinical Research Studies Statistical Data Analysis Designing
More informationStatistical tests for SPSS
Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More informationOnce saved, if the file was zipped you will need to unzip it. For the files that I will be posting you need to change the preferences.
1 Commands in JMP and Statcrunch Below are a set of commands in JMP and Statcrunch which facilitate a basic statistical analysis. The first part concerns commands in JMP, the second part is for analysis
More informationCHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
More informationErik Parner 14 September 2016. Basic Biostatistics  Day 221 September, 2016 1
PhD course in Basic Biostatistics Day Erik Parner, Department of Biostatistics, Aarhus University Logtransformation of continuous data Exercise.+.4+Standard (Triglyceride) Logarithms and exponentials
More informationSTA201TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA201TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
More information