UNIVERSITY OF NAIROBI


 Cynthia Hart
 7 years ago
 Views:
Transcription
1 UNIVERSITY OF NAIROBI MASTERS IN PROJECT PLANNING AND MANAGEMENT NAME: SARU CAROLYNN ELIZABETH REGISTRATION NO: L50/61646/2013 COURSE CODE: LDP 603 COURSE TITLE: RESEARCH METHODS LECTURER: GAKUU CHRISTOPHER ASSIGNMENT TOPIC: DIFFERENCIATE BETWEEN PARAMETRIC AND NON PARAMETIC TOOLS OF ANALYSIS THIS GROUP WORK ASSIGNMEMNT IS SUBMITTED IN PARTIAL FULLFILMENT OF THE REQUIREMENT FOR THE AWARD OF A MASTERS OF ART DEGREE IN PROJECT PLANNING AND MANAGEMENT.
2 INTRODUCTION In the literal meaning of the terms, a parametric statistical test is one that makes assumptions about the parameters (defining properties) of the population distribution(s) from which one's data are drawn, while a nonparametric test is one that makes no such assumptions. In this strict sense, "nonparametric" is essentially a null category, since virtually all statistical tests assume one thing or another about the properties of the source population(s). A potential source of confusion in working out what statistics to use in analyzing data is whether your data allows for parametric or nonparametric statistics. The importance of this issue cannot be underestimated! The basic distinction for parametric versus nonparametric is: If your measurement scale is nominal or ordinal then you use nonparametric statistics If you are using interval or ratio scales you use parametric statistics. There are four basic types of data you can use: nominal, ordinal, interval and ratio. Depending on the experiment, these can be increasingly difficult to collect, but they give increasing rewards in what may be concluded. Interval and ratio data are parametric, and are used with parametric tools in which distributions are predictable (and often Normal). Nominal and ordinal data are nonparametric, and do not assume any particular distribution. They are used with nonparametric tools such as the Histogram. 1
3 Parametric Statistics Parametric statistics assume more about the quality of the data, but in return they can tell us more about what is going on with those data. The most common parametric statistics assume the General Linear Model that is, they assume that the true, underlying distribution of the data can be described by a straight line (or one of its variants). The two major ones are correlation and analysis of variance. Correlation is the statistical tool which most clearly expresses the general linear model. To perform a correlation, you must have observations of two characteristics for each case you wish to include, and the observation must both be measured on interval scales. You must further be willing to assume that the distribution underlying the observations is normal, or balanced about the mean. Analysis of variance applies the general linear model to situations in which one of the variables is measured on an interval scale, but the other variable (the x, or causal variable) is membership in a group. For example, a neighborhood group might be complaining that they are not getting their fair share of the city s park & recreation money. ANOVA will allow you to determine whether there is merit to such a claim. An advantage of ANOVA over correlation is that no assumption need be made that the relationship between the two variables is a straight line. Analysis of variance will work with Ushaped or other curvilinear relationships. Nonparametric statistics Nonparametric is a statistical method wherein the data is not required to fit a normal distribution. Nonparametric statistics uses data that is often ordinal, meaning it does not rely on numbers, but rather a ranking or order of sorts. For example, a survey conveying consumer preferences ranging from like to dislike would be considered ordinal data. Spearman's rho is a measure of the linear relationship between two variables. It assesses how well the relationship between two variables can be described using a monotonic function. If there are no repeated data values, a perfect Spearman correlation of +1 or 1 occurs when each of the variables is a perfect monotone function of the other. Kendall's Tau is a statistic used to measure the association between two measured quantities. A tau test is a nonparametric hypothesis test for statistical dependence based on the tau coefficient. Chi Square is the distribution of a sum of the squares of k independent standard normal random variables. It is one of the most widely used probability distributions in inferential statistics 2
4 Parametric tests and analogous nonparametric procedures It is sometimes easier to list examples of each type of procedure than to define the terms. The table below contains the names of several statistical procedures categorizes each one as parametric or nonparametric. All of the parametric procedures listed in the table below rely on an assumption of approximate normality. Analysis Type Example Parametric Procedure Nonparametric Procedure Compare means between two distinct/independent groups Is the mean systolic blood pressure (at baseline) for patients assigned to placebo different from the mean for patients assigned to the treatment group? Twosample ttest Wilcoxon ranksum test Compare two quantitative measurements taken from the same individual Was there a significant change in systolic blood pressure between baseline and the sixmonth follow up measurement in the treatment group? Paired ttest Wilcoxon signedrank test Compare means between three or more distinct/independent groups If our experiment had three groups (e.g., placebo, new drug #1, new drug #2), we might want to know whether the mean systolic Analysis of variance (ANOVA) KruskalWallis test blood pressure at baseline differed 3
5 among the three groups? Estimate the degree of association between two quantitative variables Is systolic blood pressure associated with the patient s age? Pearson coefficient of correlation Spearman s rank correlation Differences between parametric and Nonparametric tools of analysis In summary, the differences between parametric and nonparametric tools of analysis are as follows: Generally, parametric statistics (summaries, tests and models) involve more assumptions than nonparametric statistics. These assumptions are most often regarding the distribution of the data (that a variable is normally distributed, or that the relationship between two variables is linear, to give two examples). Frequently, the statistician is faced with deciding whether there is sufficient evidence to conclude that the difference between two summaries (average SATs for two high schools, median household income of two counties, proportion of medical patients experiencing relief from drug X versus those given a placebo, etc.) are different. There are a wide variety of parametric statistics for deciding such things, but they all have in common a process of making assumptions about data distributions and testing against those theoretical distributions. Such questions might be resolved in nonparametric statistics, for instance, by performing bootstrap analysis, which does not involve such assumptions. Parametric statistical tests assume that the data belong to some type of probability distribution. The normal distribution is probably the most common. That is, when graphed, the data follow a "bell shaped curve". On the other hand, nonparametric statistical tests are often called distribution free tests since they don't make any assumptions about the distribution of data. They are often used in place of parametric tests when one feels that the assumptions have been violated such as skewed data. 4
6 Nonparametric statistical procedures are less powerful because they use less information in their calculation. For example, a parametric correlation uses information about the mean and deviation from the mean, while a nonparametric correlation will use only the ordinal position of pairs of scores. The parametric assumption of normality is particularly worrisome for small sample sizes (n < 30). Nonparametric tests are often a good option for these data. Nonparametric procedures generally have less power for the same sample size than the corresponding parametric procedure if the data is truly normal. Interpretation of nonparametric procedures can also be more difficult than for parametric procedures. Nonparametric testing is lower than parametric testing. However as the decision maker or researcher does not have misinterpretation about the usage degree of nonparametric statistics that is lower than parametric statistics method. Of course not really like that, every method is made with specific usage related to the type of data that can be used. Increasing the accuracy level of nonparametric statistics can be done by adding the number of samples. However, as we know that adding the number of samples could also lead to an impact to the increasing of cost, time, and other measurements survey. In parametric tests, hypotheses are usually made about numerical values, especially the mean, while in nonparametric tests; hypotheses are posed regarding ranks, medians or frequencies of data. 5
7 References 1. Walsh, J.E. (1962), Handbook of Nonparametric Statistics, New York: D.V. Nostrand. 2. Conover, W.J. (1980), Practical Nonparametric Statistics, New York: Wiley & Sons. 3. Zimmerman DW, Zumbo BD: The effect of outliers on the relative power of parametric and nonparametric statistical tests. Perceptual and Motor Skills 1990, 71:
Parametric and Nonparametric: Demystifying the Terms
Parametric and Nonparametric: Demystifying the Terms By Tanya Hoskin, a statistician in the Mayo Clinic Department of Health Sciences Research who provides consultations through the Mayo Clinic CTSA BERD
More informationRankBased NonParametric Tests
RankBased NonParametric Tests Reminder: Student Instructional Rating Surveys You have until May 8 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs
More informationAdditional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm
Mgt 540 Research Methods Data Analysis 1 Additional sources Compilation of sources: http://lrs.ed.uiuc.edu/tseportal/datacollectionmethodologies/jintselink/tselink.htm http://web.utk.edu/~dap/random/order/start.htm
More informationII. DISTRIBUTIONS distribution normal distribution. standard scores
Appendix D Basic Measurement And Statistics The following information was developed by Steven Rothke, PhD, Department of Psychology, Rehabilitation Institute of Chicago (RIC) and expanded by Mary F. Schmidt,
More informationDescriptive Statistics
Descriptive Statistics Primer Descriptive statistics Central tendency Variation Relative position Relationships Calculating descriptive statistics Descriptive Statistics Purpose to describe or summarize
More informationDESCRIPTIVE STATISTICS. The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses.
DESCRIPTIVE STATISTICS The purpose of statistics is to condense raw data to make it easier to answer specific questions; test hypotheses. DESCRIPTIVE VS. INFERENTIAL STATISTICS Descriptive To organize,
More informationDATA ANALYSIS. QEM Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University
DATA ANALYSIS QEM Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. Howard University Quantitative Research What is Statistics? Statistics (as a subject) is the science
More informationIntroduction to Quantitative Methods
Introduction to Quantitative Methods October 15, 2009 Contents 1 Definition of Key Terms 2 2 Descriptive Statistics 3 2.1 Frequency Tables......................... 4 2.2 Measures of Central Tendencies.................
More informationX X X a) perfect linear correlation b) no correlation c) positive correlation (r = 1) (r = 0) (0 < r < 1)
CORRELATION AND REGRESSION / 47 CHAPTER EIGHT CORRELATION AND REGRESSION Correlation and regression are statistical methods that are commonly used in the medical literature to compare two or more variables.
More informationProjects Involving Statistics (& SPSS)
Projects Involving Statistics (& SPSS) Academic Skills Advice Starting a project which involves using statistics can feel confusing as there seems to be many different things you can do (charts, graphs,
More informationBiostatistics: Types of Data Analysis
Biostatistics: Types of Data Analysis Theresa A Scott, MS Vanderbilt University Department of Biostatistics theresa.scott@vanderbilt.edu http://biostat.mc.vanderbilt.edu/theresascott Theresa A Scott, MS
More informationIntroduction to Statistics and Quantitative Research Methods
Introduction to Statistics and Quantitative Research Methods Purpose of Presentation To aid in the understanding of basic statistics, including terminology, common terms, and common statistical methods.
More informationStatistics. Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples
Statistics Onetwo sided test, Parametric and nonparametric test statistics: one group, two groups, and more than two groups samples February 3, 00 Jobayer Hossain, Ph.D. & Tim Bunnell, Ph.D. Nemours
More informationMASTER COURSE SYLLABUSPROTOTYPE PSYCHOLOGY 2317 STATISTICAL METHODS FOR THE BEHAVIORAL SCIENCES
MASTER COURSE SYLLABUSPROTOTYPE THE PSYCHOLOGY DEPARTMENT VALUES ACADEMIC FREEDOM AND THUS OFFERS THIS MASTER SYLLABUSPROTOTYPE ONLY AS A GUIDE. THE INSTRUCTORS ARE FREE TO ADAPT THEIR COURSE SYLLABI
More informationNursing Journal Toolkit: Critiquing a Quantitative Research Article
A Virtual World Consortium: Using Second Life to Facilitate Nursing Journal Clubs Nursing Journal Toolkit: Critiquing a Quantitative Research Article 1. Guidelines for Critiquing a Quantitative Research
More informationResearch Methods & Experimental Design
Research Methods & Experimental Design 16.422 Human Supervisory Control April 2004 Research Methods Qualitative vs. quantitative Understanding the relationship between objectives (research question) and
More informationOverview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS
Overview of NonParametric Statistics PRESENTER: ELAINE EISENBEISZ OWNER AND PRINCIPAL, OMEGA STATISTICS About Omega Statistics Private practice consultancy based in Southern California, Medical and Clinical
More informationStatistical tests for SPSS
Statistical tests for SPSS Paolo Coletti A.Y. 2010/11 Free University of Bolzano Bozen Premise This book is a very quick, rough and fast description of statistical tests and their usage. It is explicitly
More informationNonParametric Tests (I)
Lecture 5: NonParametric Tests (I) KimHuat LIM lim@stats.ox.ac.uk http://www.stats.ox.ac.uk/~lim/teaching.html Slide 1 5.1 Outline (i) Overview of DistributionFree Tests (ii) Median Test for Two Independent
More informationThe Statistics Tutor s Quick Guide to
statstutor community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence The Statistics Tutor s Quick Guide to Stcpmarshallowen7
More informationStatistics. Measurement. Scales of Measurement 7/18/2012
Statistics Measurement Measurement is defined as a set of rules for assigning numbers to represent objects, traits, attributes, or behaviors A variableis something that varies (eye color), a constant does
More informationIntroduction to Minitab and basic commands. Manipulating data in Minitab Describing data; calculating statistics; transformation.
Computer Workshop 1 Part I Introduction to Minitab and basic commands. Manipulating data in Minitab Describing data; calculating statistics; transformation. Outlier testing Problem: 1. Five months of nickel
More informationSPSS Explore procedure
SPSS Explore procedure One useful function in SPSS is the Explore procedure, which will produce histograms, boxplots, stemandleaf plots and extensive descriptive statistics. To run the Explore procedure,
More informationSCHOOL OF HEALTH AND HUMAN SCIENCES DON T FORGET TO RECODE YOUR MISSING VALUES
SCHOOL OF HEALTH AND HUMAN SCIENCES Using SPSS Topics addressed today: 1. Differences between groups 2. Graphing Use the s4data.sav file for the first part of this session. DON T FORGET TO RECODE YOUR
More informationCorrelational Research. Correlational Research. Stephen E. Brock, Ph.D., NCSP EDS 250. Descriptive Research 1. Correlational Research: Scatter Plots
Correlational Research Stephen E. Brock, Ph.D., NCSP California State University, Sacramento 1 Correlational Research A quantitative methodology used to determine whether, and to what degree, a relationship
More informationSTA201TE. 5. Measures of relationship: correlation (5%) Correlation coefficient; Pearson r; correlation and causation; proportion of common variance
Principles of Statistics STA201TE This TECEP is an introduction to descriptive and inferential statistics. Topics include: measures of central tendency, variability, correlation, regression, hypothesis
More informationMEASURES OF LOCATION AND SPREAD
Paper TU04 An Overview of Nonparametric Tests in SAS : When, Why, and How Paul A. Pappas and Venita DePuy Durham, North Carolina, USA ABSTRACT Most commonly used statistical procedures are based on the
More informationStatistics for Sports Medicine
Statistics for Sports Medicine Suzanne Hecht, MD University of Minnesota (suzanne.hecht@gmail.com) Fellow s Research Conference July 2012: Philadelphia GOALS Try not to bore you to death!! Try to teach
More informationAnalysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk
Analysing Questionnaires using Minitab (for SPSS queries contact ) Graham.Currell@uwe.ac.uk Structure As a starting point it is useful to consider a basic questionnaire as containing three main sections:
More informationDifference tests (2): nonparametric
NST 1B Experimental Psychology Statistics practical 3 Difference tests (): nonparametric Rudolf Cardinal & Mike Aitken 10 / 11 February 005; Department of Experimental Psychology University of Cambridge
More informationData analysis process
Data analysis process Data collection and preparation Collect data Prepare codebook Set up structure of data Enter data Screen data for errors Exploration of data Descriptive Statistics Graphs Analysis
More informationAnalysis of Data. Organizing Data Files in SPSS. Descriptive Statistics
Analysis of Data Claudia J. Stanny PSY 67 Research Design Organizing Data Files in SPSS All data for one subject entered on the same line Identification data Betweensubjects manipulations: variable to
More informationSPSS Tests for Versions 9 to 13
SPSS Tests for Versions 9 to 13 Chapter 2 Descriptive Statistic (including median) Choose Analyze Descriptive statistics Frequencies... Click on variable(s) then press to move to into Variable(s): list
More informationSection 3 Part 1. Relationships between two numerical variables
Section 3 Part 1 Relationships between two numerical variables 1 Relationship between two variables The summary statistics covered in the previous lessons are appropriate for describing a single variable.
More informationDATA INTERPRETATION AND STATISTICS
PholC60 September 001 DATA INTERPRETATION AND STATISTICS Books A easy and systematic introductory text is Essentials of Medical Statistics by Betty Kirkwood, published by Blackwell at about 14. DESCRIPTIVE
More informationResearch Methodology: Tools
MSc Business Administration Research Methodology: Tools Applied Data Analysis (with SPSS) Lecture 11: Nonparametric Methods May 2014 Prof. Dr. Jürg Schwarz Lic. phil. Heidi Bruderer Enzler Contents Slide
More informationQUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS
QUANTITATIVE METHODS BIOLOGY FINAL HONOUR SCHOOL NONPARAMETRIC TESTS This booklet contains lecture notes for the nonparametric work in the QM course. This booklet may be online at http://users.ox.ac.uk/~grafen/qmnotes/index.html.
More informationEPS 625 INTERMEDIATE STATISTICS FRIEDMAN TEST
EPS 625 INTERMEDIATE STATISTICS The Friedman test is an extension of the Wilcoxon test. The Wilcoxon test can be applied to repeatedmeasures data if participants are assessed on two occasions or conditions
More informationAnalysis of Questionnaires and Qualitative Data Nonparametric Tests
Analysis of Questionnaires and Qualitative Data Nonparametric Tests JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Lecture SE 2013, Poznań Recalling Basics Measurment Scales Four scales
More informationSPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011
SPSS ADVANCED ANALYSIS WENDIANN SETHI SPRING 2011 Statistical techniques to be covered Explore relationships among variables Correlation Regression/Multiple regression Logistic regression Factor analysis
More informationNONPARAMETRIC STATISTICS 1. depend on assumptions about the underlying distribution of the data (or on the Central Limit Theorem)
NONPARAMETRIC STATISTICS 1 PREVIOUSLY parametric statistics in estimation and hypothesis testing... construction of confidence intervals computing of pvalues classical significance testing depend on assumptions
More informationPermutation Tests for Comparing Two Populations
Permutation Tests for Comparing Two Populations Ferry Butar Butar, Ph.D. JaeWan Park Abstract Permutation tests for comparing two populations could be widely used in practice because of flexibility of
More informationIntro to Parametric & Nonparametric Statistics
Intro to Parametric & Nonparametric Statistics Kinds & definitions of nonparametric statistics Where parametric stats come from Consequences of parametric assumptions Organizing the models we will cover
More informationStudy Guide for the Final Exam
Study Guide for the Final Exam When studying, remember that the computational portion of the exam will only involve new material (covered after the second midterm), that material from Exam 1 will make
More informationDATA COLLECTION AND ANALYSIS
DATA COLLECTION AND ANALYSIS Quality Education for Minorities (QEM) Network HBCUUP Fundamentals of Education Research Workshop Gerunda B. Hughes, Ph.D. August 23, 2013 Objectives of the Discussion 2 Discuss
More informationUsing Excel for inferential statistics
FACT SHEET Using Excel for inferential statistics Introduction When you collect data, you expect a certain amount of variation, just caused by chance. A wide variety of statistical tests can be applied
More informationCOMPARING DATA ANALYSIS TECHNIQUES FOR EVALUATION DESIGNS WITH NON NORMAL POFULP_TIOKS Elaine S. Jeffers, University of Maryland, Eastern Shore*
COMPARING DATA ANALYSIS TECHNIQUES FOR EVALUATION DESIGNS WITH NON NORMAL POFULP_TIOKS Elaine S. Jeffers, University of Maryland, Eastern Shore* The data collection phases for evaluation designs may involve
More informationAnalyzing Research Data Using Excel
Analyzing Research Data Using Excel Fraser Health Authority, 2012 The Fraser Health Authority ( FH ) authorizes the use, reproduction and/or modification of this publication for purposes other than commercial
More informationRecall this chart that showed how most of our course would be organized:
Chapter 4 OneWay ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
More informationCHAPTER 14 NONPARAMETRIC TESTS
CHAPTER 14 NONPARAMETRIC TESTS Everything that we have done up until now in statistics has relied heavily on one major fact: that our data is normally distributed. We have been able to make inferences
More informationIntroduction to Analysis of Variance (ANOVA) Limitations of the ttest
Introduction to Analysis of Variance (ANOVA) The Structural Model, The Summary Table, and the One Way ANOVA Limitations of the ttest Although the ttest is commonly used, it has limitations Can only
More informationMathematics within the Psychology Curriculum
Mathematics within the Psychology Curriculum Statistical Theory and Data Handling Statistical theory and data handling as studied on the GCSE Mathematics syllabus You may have learnt about statistics and
More informationStatistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
More informationINTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA)
INTERPRETING THE ONEWAY ANALYSIS OF VARIANCE (ANOVA) As with other parametric statistics, we begin the oneway ANOVA with a test of the underlying assumptions. Our first assumption is the assumption of
More informationChapter 12 Nonparametric Tests. Chapter Table of Contents
Chapter 12 Nonparametric Tests Chapter Table of Contents OVERVIEW...171 Testing for Normality...... 171 Comparing Distributions....171 ONESAMPLE TESTS...172 TWOSAMPLE TESTS...172 ComparingTwoIndependentSamples...172
More informationTutorial 5: Hypothesis Testing
Tutorial 5: Hypothesis Testing Rob Nicholls nicholls@mrclmb.cam.ac.uk MRC LMB Statistics Course 2014 Contents 1 Introduction................................ 1 2 Testing distributional assumptions....................
More informationbusiness statistics using Excel OXFORD UNIVERSITY PRESS Glyn Davis & Branko Pecar
business statistics using Excel Glyn Davis & Branko Pecar OXFORD UNIVERSITY PRESS Detailed contents Introduction to Microsoft Excel 2003 Overview Learning Objectives 1.1 Introduction to Microsoft Excel
More informationPosthoc comparisons & twoway analysis of variance. Twoway ANOVA, II. Posthoc testing for main effects. Posthoc testing 9.
Twoway ANOVA, II Posthoc comparisons & twoway analysis of variance 9.7 4/9/4 Posthoc testing As before, you can perform posthoc tests whenever there s a significant F But don t bother if it s a main
More informationChapter G08 Nonparametric Statistics
G08 Nonparametric Statistics Chapter G08 Nonparametric Statistics Contents 1 Scope of the Chapter 2 2 Background to the Problems 2 2.1 Parametric and Nonparametric Hypothesis Testing......................
More informationEight things you need to know about interpreting correlations:
Research Skills One, Correlation interpretation, Graham Hole v.1.0. Page 1 Eight things you need to know about interpreting correlations: A correlation coefficient is a single number that represents the
More informationCome scegliere un test statistico
Come scegliere un test statistico Estratto dal Capitolo 37 of Intuitive Biostatistics (ISBN 0195086074) by Harvey Motulsky. Copyright 1995 by Oxfd University Press Inc. (disponibile in Iinternet) Table
More informationNonparametric Statistics
Nonparametric Statistics References Some good references for the topics in this course are 1. Higgins, James (2004), Introduction to Nonparametric Statistics 2. Hollander and Wolfe, (1999), Nonparametric
More informationSTATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE
STATISTICAL ANALYSIS WITH EXCEL COURSE OUTLINE Perhaps Microsoft has taken pains to hide some of the most powerful tools in Excel. These addins tools work on top of Excel, extending its power and abilities
More informationBusiness Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGrawHill/Irwin, 2008, ISBN: 9780073319889. Required Computing
More informationParametric and nonparametric statistical methods for the life sciences  Session I
Why nonparametric methods What test to use? Rank Tests Parametric and nonparametric statistical methods for the life sciences  Session I Liesbeth Bruckers Geert Molenberghs Interuniversity Institute
More informationCourse Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGrawHill/Irwin, 2010, ISBN: 9780077384470 [This
More informationUNDERSTANDING THE TWOWAY ANOVA
UNDERSTANDING THE e have seen how the oneway ANOVA can be used to compare two or more sample means in studies involving a single independent variable. This can be extended to two independent variables
More informationNonparametric Statistics
Nonparametric Statistics J. Lozano University of Goettingen Department of Genetic Epidemiology Interdisciplinary PhD Program in Applied Statistics & Empirical Methods Graduate Seminar in Applied Statistics
More informationIntroduction to Statistics Used in Nursing Research
Introduction to Statistics Used in Nursing Research Laura P. Kimble, PhD, RN, FNPC, FAAN Professor and Piedmont Healthcare Endowed Chair in Nursing Georgia Baptist College of Nursing Of Mercer University
More informationFirstyear Statistics for Psychology Students Through Worked Examples. 3. Analysis of Variance
Firstyear Statistics for Psychology Students Through Worked Examples 3. Analysis of Variance by Charles McCreery, D.Phil Formerly Lecturer in Experimental Psychology Magdalen College Oxford Copyright
More informationCHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA
CHAPTER 14 ORDINAL MEASURES OF CORRELATION: SPEARMAN'S RHO AND GAMMA Chapter 13 introduced the concept of correlation statistics and explained the use of Pearson's Correlation Coefficient when working
More informationFairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
More informationGuided Reading 9 th Edition. informed consent, protection from harm, deception, confidentiality, and anonymity.
Guided Reading Educational Research: Competencies for Analysis and Applications 9th Edition EDFS 635: Educational Research Chapter 1: Introduction to Educational Research 1. List and briefly describe the
More information1 Nonparametric Statistics
1 Nonparametric Statistics When finding confidence intervals or conducting tests so far, we always described the population with a model, which includes a set of parameters. Then we could make decisions
More informationIntroduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
More informationT O P I C 1 2 Techniques and tools for data analysis Preview Introduction In chapter 3 of Statistics In A Day different combinations of numbers and types of variables are presented. We go through these
More informationWhen to Use a Particular Statistical Test
When to Use a Particular Statistical Test Central Tendency Univariate Descriptive Mode the most commonly occurring value 6 people with ages 21, 22, 21, 23, 19, 21  mode = 21 Median the center value the
More informationThe Dummy s Guide to Data Analysis Using SPSS
The Dummy s Guide to Data Analysis Using SPSS Mathematics 57 Scripps College Amy Gamble April, 2001 Amy Gamble 4/30/01 All Rights Rerserved TABLE OF CONTENTS PAGE Helpful Hints for All Tests...1 Tests
More informationNormality Testing in Excel
Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com
More informationComparing Means in Two Populations
Comparing Means in Two Populations Overview The previous section discussed hypothesis testing when sampling from a single population (either a single mean or two means from the same population). Now we
More informationCorrelation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables 2
Lesson 4 Part 1 Relationships between two numerical variables 1 Correlation Coefficient The correlation coefficient is a summary statistic that describes the linear relationship between two numerical variables
More informationOutline. Definitions Descriptive vs. Inferential Statistics The ttest  Onesample ttest
The ttest Outline Definitions Descriptive vs. Inferential Statistics The ttest  Onesample ttest  Dependent (related) groups ttest  Independent (unrelated) groups ttest Comparing means Correlation
More informationMeasurement & Data Analysis. On the importance of math & measurement. Steps Involved in Doing Scientific Research. Measurement
Measurement & Data Analysis Overview of Measurement. Variability & Measurement Error.. Descriptive vs. Inferential Statistics. Descriptive Statistics. Distributions. Standardized Scores. Graphing Data.
More informationTtest & factor analysis
Parametric tests Ttest & factor analysis Better than non parametric tests Stringent assumptions More strings attached Assumes population distribution of sample is normal Major problem Alternatives Continue
More informationSAS/STAT. 9.2 User s Guide. Introduction to. Nonparametric Analysis. (Book Excerpt) SAS Documentation
SAS/STAT Introduction to 9.2 User s Guide Nonparametric Analysis (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation
More informationMEASURES OF VARIATION
NORMAL DISTRIBTIONS MEASURES OF VARIATION In statistics, it is important to measure the spread of data. A simple way to measure spread is to find the range. But statisticians want to know if the data are
More informationAn introduction to IBM SPSS Statistics
An introduction to IBM SPSS Statistics Contents 1 Introduction... 1 2 Entering your data... 2 3 Preparing your data for analysis... 10 4 Exploring your data: univariate analysis... 14 5 Generating descriptive
More informationTHE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS. Fall 2013
THE UNIVERSITY OF TEXAS AT TYLER COLLEGE OF NURSING 1 COURSE SYLLABUS NURS 5317 STATISTICS FOR HEALTH PROVIDERS Fall 2013 & Danice B. Greer, Ph.D., RN, BC dgreer@uttyler.edu Office BRB 1115 (903) 5655766
More informationTypes of Data, Descriptive Statistics, and Statistical Tests for Nominal Data. Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York
Types of Data, Descriptive Statistics, and Statistical Tests for Nominal Data Patrick F. Smith, Pharm.D. University at Buffalo Buffalo, New York . NONPARAMETRIC STATISTICS I. DEFINITIONS A. Parametric
More informationCALCULATIONS & STATISTICS
CALCULATIONS & STATISTICS CALCULATION OF SCORES Conversion of 15 scale to 0100 scores When you look at your report, you will notice that the scores are reported on a 0100 scale, even though respondents
More informationStatistics I for QBIC. Contents and Objectives. Chapters 1 7. Revised: August 2013
Statistics I for QBIC Text Book: Biostatistics, 10 th edition, by Daniel & Cross Contents and Objectives Chapters 1 7 Revised: August 2013 Chapter 1: Nature of Statistics (sections 1.11.6) Objectives
More informationSection Format Day Begin End Building Rm# Instructor. 001 Lecture Tue 6:45 PM 8:40 PM Silver 401 Ballerini
NEW YORK UNIVERSITY ROBERT F. WAGNER GRADUATE SCHOOL OF PUBLIC SERVICE Course Syllabus Spring 2016 Statistical Methods for Public, Nonprofit, and Health Management Section Format Day Begin End Building
More informationNonparametric TwoSample Tests. Nonparametric Tests. Sign Test
Nonparametric TwoSample Tests Sign test MannWhitney Utest (a.k.a. Wilcoxon twosample test) KolmogorovSmirnov Test Wilcoxon SignedRank Test TukeyDuckworth Test 1 Nonparametric Tests Recall, nonparametric
More informationData Analysis, Research Study Design and the IRB
Minding the pvalues p and Quartiles: Data Analysis, Research Study Design and the IRB Don AllensworthDavies, MSc Research Manager, Data Coordinating Center Boston University School of Public Health IRB
More informationNCSS Statistical Software
Chapter 06 Introduction This procedure provides several reports for the comparison of two distributions, including confidence intervals for the difference in means, twosample ttests, the ztest, the
More informationTRAINING PROGRAM INFORMATICS
MEDICAL UNIVERSITY SOFIA MEDICAL FACULTY DEPARTMENT SOCIAL MEDICINE AND HEALTH MANAGEMENT SECTION BIOSTATISTICS AND MEDICAL INFORMATICS TRAINING PROGRAM INFORMATICS FOR DENTIST STUDENTS  I st COURSE,
More informationtraining programme in pharmaceutical medicine Clinical Data Management and Analysis
training programme in pharmaceutical medicine Clinical Data Management and Analysis 1921 may 2011 Clinical Data Management and Analysis 19 21 MAY 2011 LocaL: University of Aveiro, Campus Universitário
More informationList of Examples. Examples 319
Examples 319 List of Examples DiMaggio and Mantle. 6 Weed seeds. 6, 23, 37, 38 Vole reproduction. 7, 24, 37 Wooly bear caterpillar cocoons. 7 Homophone confusion and Alzheimer s disease. 8 Gear tooth strength.
More informationChapter 13 Introduction to Linear Regression and Correlation Analysis
Chapter 3 Student Lecture Notes 3 Chapter 3 Introduction to Linear Regression and Correlation Analsis Fall 2006 Fundamentals of Business Statistics Chapter Goals To understand the methods for displaing
More information