# Chapter 3. Inversion and Applications to Ptolemy and Euler

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Chapter 3. Inversion and Applications to Ptolemy and Euler

2 2 Power of a point with respect to a circle Let A be a point and C a circle (Figure 1). If A is outside C and T is a point of contact of a tangent from A to C, then for any secant from A with intersection points B 1, B 2 we have AT 2 = AB 1. AB 2. This is defined to be the power of A with respect to the circle C and denoted by Figure 1: ρ(a, C) = AT 2 Figure 2: Furthermore, if r is the radius of C, and O its centre, then ρ(a, C) = OA 2 r 2. Now if A is interior to C, then any two chords B 1 B 2 and C 1 C 2 intersecting at A (Figure 2) satisfy the property that B 1 A AB 2 = C 1 A AC 2 and if one of the chords goes through the centre O of C, this common value can be shown to be r 2 OA 2

3 This is defined to be the power of A with respect to C if A is interior to C. Obviously, if A lies on the circle then ρ(a, C) = 0 Inversion Let A be a point in the plane?p?. Then we define a mapping Inv : P\{A} P\{A} as follows. Let k be a positive, real number. Then a point B 2 is the image of a point B 1 under Inv (with respect to A and radius k) if B 2 lies along line joining A to B 1 and We denote this mapping as Geometric Construction AB 1. AB 2 = Inv(A, ) To construct images of points P under inversion Inv(A, ), one proceeds as follows. First suppose that AP < k; thus P lies interior to the circle centred at A and having radius k. Let the chord through P and perpendicular to the line AP meet the circle at points T 1 and T 2. At T 1 and T 2 draw 2 tangents meeting at P (Figure 3). Then AP AP = 3 This can be verified by observing that the triangle AT 1 P and AT 1 P are similar. Figure 3: Next suppose that AP > k; thus P lies outside the circle centred at A with radius k. Now draw a circle with AP as diameter and let it intersect the circle centred at A with radius k at the points T 1 and T 2 (Figure 4). Then P is the point of intersection of the lines T 1 T 2 and AP. To verify that AP. AP =, one again observes the triangles AP T 1 and

4 4 Figure 4: AP T 1 are similar. We now state some properties of inversion mappings which we will use later in proving the theorems of Ptolemy and Euler. Proposition 1 Let A be a point, k a positive number and Inv the mapping Inv(A, ). Then (a) if A belongs to a circle C(O, r) with centre O and radius r, then Inv(C(O, r)) is a line l which is perpendicular to OA. (b) if l is a line which does not pass through A, then Inv(l) is a circle such that l is perpendicular to the line joining A to the centre of the circle. (c) if A does not belong to a circle C(O, r) then Inv(C(O, r)) = C(O, r ) with r = r ρ(a, C(O, r)) (d) if Inv(B 1 ) = B 2 and Inv(C 1 ) = C 2 where B 1 and C 1 are two points in the plane, then B 2 C 2 = B 1 C 1. AB 1 AC 1

5 Remark Before discussing proofs of these properties of inversion, we explain the concept of antiparallel lines. Begin with a triangle ABC. Then there are two ways to choose points D and E on the sides AB and AC so that the triangles ADE and ABC are similar. In one case, the line DE is parallel to the side BC (Figure 5), and in 5 Figure 5: the other case, EDCB is a cyclic quadrilateral (Figure 6). We then say that Figure 6: the line segment DE is antiparallel to the side BC. In fact, a pair of opposite sides in any cyclic quadrilateral are said to be antiparallel to each other. Proof of proposition (a) Let A C(O, r), the circle with centre O and radius r. Let B 1 be a point on the other end of the diameter of C(O, r) containing A. Draw the line AB 1 through O and let B 2 be Figure 7:

6 6 image of B 1 under the inversion Inv(A, ) (Figure 7). Then AB 1 AB 2 =. Let C 1 be a point of C(O, r) distinct from B 1 and let C 2 = Inv(C 1 ). Thus AC 1. AC 2 =. From this, the triangles AC 1 B 1 and AC 2 B 2 are similar and then A B 2 C 2 = AĈ1B 1 = 90. Thus Inv(C(O, r)) is the line through B 2 and perpendicular to AO. Figure 8: (b) Let l be the line which does not include A (Figure 8). Drop a perpendicular from A to l meeting it at B 2. Let B 1 = Inv(B 2 ) and we now claim that the circle with AB 1 as diameter is the image of l under Inv. Let C 2 be another point on l, and let C 1 = Inv(C 2 ). Then since AC 1 AC 2 = AB 1 AB 2, the triangles AC 1 B 1 and AC 2 B 2 are similar. Thus AĈ1B 1 = A B 2 C 2 = 90, and so C 1 lies on the circle with AB 1 as diameter.

7 7 Remark: Note that if Inv(B 1 ) = B 2 and Inv(C 1 ) = C 2, then the line segments B 1 C 1 and B 2 C 2 are antiparallel. We prove (d) before (c) as (c) is derived (in part) from (d). (d) Let Inv be an inversion Inv(A, ) for some k, and let (Figure 9) Inv(B 1 ) = B 2 Inv(C 1 ) = C 2 Then B 1 C 1 is antiparallel to B 2 C 2 and the triangles AB 1 C 1 and AC 2 B 2 are similar. Thus B 2 C 2 B 1 C 1 = AB 2 AC 1 = AB 2 AC 1. AB 1 AB 1 = AB 1 AC 1, or B 2 C 2 = B 1 C 1 AB 1 AC 1 Figure 9: as required. Figure 10: (c) Let Inv be an inversion Inv(A, ) and let O be the centre of a circle C(O, r) with radius r and not passing through A (Figure 10). Let B 1 and C 1 be the points on the diameter of C(O, r) lying on the line AO and let

8 8 B 2 = Inv(B 1 ) and C 2 = Inv(C 1 ). Now choose a point P 1 on circle C(O, r). We claim that P 2 = Inv(P 1 ) lies on the circle with C 2 B 2 as diameter. Since B 2 P 2 is antiparallel to B 1 P 1, then B 2 P2 P 1 = A B 1 P 1, and since P 2 C 2 is antiparallel to P 1 C 1, then C 2 P2 P 1 = AĈ1P 1. Then C 2 P2 B 2 = P 1 P2 B 2 C 2 P2 P 1 = A B 1 P 1 AĈ1P 1 = (B 1 P1 C 1 + B 1 Ĉ 1 P 1 ) B 1 Ĉ 1 P 1 = B 1 P1 C 1 = 90. Thus P 2 lies on the circle with C 2 B 2 as diameter. Finally, from (d) (just proved), we have But Thus as required. Applications B 2 C 2 = B 1 C 1 AB 1 AC 1 = ρ(a, C(O, r)) B 2 C 2 = 2r and B 1 C 1 = 2r. r = r. ρ(a, C(O, r))

9 9 We can use the above results to first prove Ptolemy s theorem. Theorem 1 Let ABCD be a cyclic quadrilateral (Figure 11). Then AC BD = AB CD + AD BC Figure 11: Figure 12: Proof We take an inversion centred on A for some k > 0. Let B = Inv(B), C = Inv(C) and D = Inv(D) be the images (Figure 12). Since B, C and D lie on circle through A, the centre of the inversion mapping, then B C D are collinear, and furthermore from (d), we have But B C = BC AB. AC C D = CD AC. AD B D = BD AB. AD B D = B C + C D so BD AB AD = BC AB AC + CD AC AD Multiplying across by AB AC. AD, we get

10 10 as required. BD AC = BC AD + CD AB Another application is the theorem of Euler giving an expression for the distance between the circumcentre O and the incentre I of a triangle. Theorem 2 (Euler) Let ABC be a triangle with circumcentre O, circumradius R, incentre I and inradius r. Then IO 2 = R 2 2Rr Proof Let I denote the incentre of the triangle ABC, let X, Y, A be the points of contact of the incircle with the sides BC, CA and AB respectively and, finally, let A, B, C be the points of intersection of the lines joining I to the vertices and the sides of the triangle XY Z. The point A lies on the line segment IA and similarly for B and C (Figure 13). The triangle A B C is the medial triangle of the Figure 13: triangle XY Z so the circumcircle of the triangle A B C, C(A 1B C ) is the Euler circle of the triangle XY Z. Thus, if R A B C denotes the radius of the circle C(A 1B C ), then R A B C = r 2 where r is the radius of the incircle of the triangle ABC, i.e. the circumcircle of XY Z. The triangles IA Y and IAY are similar so IA IY = IY IA i.e. IY 2 = IA. IA or r 2 = IA IA Similarly, we can show that

11 11 r 2 = IB IB = IC IC. Now consider the Inversion mapping Inv = Inv(I, r 2 ). Then Inv(C(A B C )) is a circle through ABC, i.e. C(ABC). Furthermore, from (c) above r/2 R = r 2 ρ(i, C(ABC)) Since I is internal to the circumcircle C(ABC) with radius R, then Thus or ρ(i, C(ABC)) = R 2 OI 2. R 2 OI 2 = 2Rr OI 2 = R 2 2Rr as required. We get a similar result for enscribed circles. Theorem 3 Let ABC be a triangle and let C a be the enscribed circle of this triangle with centre I a, radius r a. Then OI a 2 = R 2 + 2Rr a where R is the radius of the circumcircle and O is its centre (Figure 14). Proof Let X, Y, Z be the points of contact of the circle C a with sides BC, AC(extended) and AB(extended) respectively. Figure 14: Let A, B, C be points where I a A and ZY intersect, I a B and XZ intersect, and I a C and XY intersect, respectively. Then A B C is the medial triangle of the triangle XY Z. Thus if R A B C is the radius of the circumcircle of A B C, then

12 12 R A B C = r a 2. We have r 2 a = I a A I a A = I a B I a B = I a C I a C. Now consider the inversion mapping Inv = Inv(I a, r 2 a), then and so r a /2 R Inv(C(ABC)) = C(A B C ) r 2 a = ρ(i a, C(ABC)) ra 2 = I a O 2 R 2 since I a is exterior to C(ABC). Thus as required. 2Rr a = I a O 2 R 2 or OA a 2 = R 2 + 2Rr a

### Inversion. Chapter 7. 7.1 Constructing The Inverse of a Point: If P is inside the circle of inversion: (See Figure 7.1)

Chapter 7 Inversion Goal: In this chapter we define inversion, give constructions for inverses of points both inside and outside the circle of inversion, and show how inversion could be done using Geometer

### Geometry in a Nutshell

Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

### Chapter 1. The Medial Triangle

Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the medial triangle. Let A 1 B 1 C 1 be the medial triangle of the triangle ABC

### Angle Bisectors in a Triangle

346/ ANGLE BISECTORS IN A TRIANGLE Angle Bisectors in a Triangle I. F. Sharygin In this article, we have collected some geometric facts which are directly or tangentially related to the angle bisectors

### 5. Orthic Triangle. Remarks There are several cyclic quadrilaterals

5. Orthic Triangle. Let ABC be a triangle with altitudes AA, BB and CC. The altitudes are concurrent and meet at the orthocentre H (Figure 1). The triangle formed by the feet of the altitudes, A B C is

### Projective Geometry - Part 2

Projective Geometry - Part 2 Alexander Remorov alexanderrem@gmail.com Review Four collinear points A, B, C, D form a harmonic bundle (A, C; B, D) when CA : DA CB DB = 1. A pencil P (A, B, C, D) is the

### Exercise Set 3. Similar triangles. Parallel lines

Exercise Set 3. Similar triangles Parallel lines Note: The exercises marked with are more difficult and go beyond the course/examination requirements. (1) Let ABC be a triangle with AB = AC. Let D be an

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### Projective Geometry. Stoienescu Paul. International Computer High School Of Bucharest,

Projective Geometry Stoienescu Paul International Computer High School Of Bucharest, paul98stoienescu@gmail.com Abstract. In this note, I will present some olympiad problems which can be solved using projective

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### 2. Equilateral Triangles

2. Equilateral Triangles Recall the well-known theorem of van Schooten. Theorem 1 If ABC is an equilateral triangle and M is a point on the arc BC of C(ABC) then MA = MB + MC. Proof Use Ptolemy on the

### Casey s Theorem and its Applications

Casey s Theorem and its Applications Luis González Maracaibo. Venezuela July 011 Abstract. We present a proof of the generalized Ptolemy s theorem, also known as Casey s theorem and its applications in

### INVERSION WITH RESPECT TO A CIRCLE

INVERSION WITH RESPECT TO A CIRCLE OLGA RADKO (DEPARTMENT OF MATHEMATICS, UCLA) 1. Introduction: transformations of the plane Transformation of the plane is a rule which specifies where each of the points

### 1. Determine all real numbers a, b, c, d that satisfy the following system of equations.

altic Way 1999 Reykjavík, November 6, 1999 Problems 1. etermine all real numbers a, b, c, d that satisfy the following system of equations. abc + ab + bc + ca + a + b + c = 1 bcd + bc + cd + db + b + c

### Chapter 6 Quiz. Section 6.1 Circles and Related Segments and Angles

Chapter 6 Quiz Section 6.1 Circles and Related Segments and Angles (1.) TRUE or FALSE: The center of a circle lies in the interior of the circle. For exercises 2 4, use the figure provided. (2.) In O,

### IMO Geomety Problems. (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition:

IMO Geomety Problems (IMO 1999/1) Determine all finite sets S of at least three points in the plane which satisfy the following condition: for any two distinct points A and B in S, the perpendicular bisector

### NCERT. Choose the correct answer from the given four options:

CIRCLES (A) Main Concepts and Results The meaning of a tangent and its point of contact on a circle. Tangent is perpendicular to the radius through the point of contact. Only two tangents can be drawn

### Lesson 13: Proofs in Geometry

211 Lesson 13: Proofs in Geometry Beginning with this lesson and continuing for the next few lessons, we will explore the role of proofs and counterexamples in geometry. To begin, recall the Pythagorean

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### 3. Lengths and areas associated with the circle including such questions as: (i) What happens to the circumference if the radius length is doubled?

1.06 Circle Connections Plan The first two pages of this document show a suggested sequence of teaching to emphasise the connections between synthetic geometry, co-ordinate geometry (which connects algebra

### Power of a Point Solutions

ower of a oint Solutions Yufei Zhao Trinity ollege, ambridge yufei.zhao@gmail.com pril 2011 ractice problems: 1. Let Γ 1 and Γ 2 be two intersecting circles. Let a common tangent to Γ 1 and Γ 2 touch Γ

### 4 Week Modular Course in Geometry and Trigonometry Strand 1. Module 1

4 Week Modular Course in Geometry and Trigonometry Strand 1 Module 1 Theorems: A Discovery Approach Theorems are full of potential for surprise and delight. Every theorem can be taught by considering the

### Geometry: Euclidean. Through a given external point there is at most one line parallel to a

Geometry: Euclidean MATH 3120, Spring 2016 The proofs of theorems below can be proven using the SMSG postulates and the neutral geometry theorems provided in the previous section. In the SMSG axiom list,

### 206 MATHEMATICS CIRCLES

206 MATHEMATICS 10.1 Introduction 10 You have studied in Class IX that a circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre). You have

### CIRCLE DEFINITIONS AND THEOREMS

DEFINITIONS Circle- The set of points in a plane equidistant from a given point(the center of the circle). Radius- A segment from the center of the circle to a point on the circle(the distance from the

### Section 8.8. 1. The given line has equations. x = 3 + t(13 3) = 3 + 10t, y = 2 + t(3 + 2) = 2 + 5t, z = 7 + t( 8 7) = 7 15t.

. The given line has equations Section 8.8 x + t( ) + 0t, y + t( + ) + t, z 7 + t( 8 7) 7 t. The line meets the plane y 0 in the point (x, 0, z), where 0 + t, or t /. The corresponding values for x and

### Class-10 th (X) Mathematics Chapter: Tangents to Circles

Class-10 th (X) Mathematics Chapter: Tangents to Circles 1. Q. AB is line segment of length 24 cm. C is its midpoint. On AB, AC and BC semicircles are described. Find the radius of the circle which touches

### Geometry Unit 7 (Textbook Chapter 9) Solving a right triangle: Find all missing sides and all missing angles

Geometry Unit 7 (Textbook Chapter 9) Name Objective 1: Right Triangles and Pythagorean Theorem In many geometry problems, it is necessary to find a missing side or a missing angle of a right triangle.

### Math 531, Exam 1 Information.

Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

### SIMSON S THEOREM MARY RIEGEL

SIMSON S THEOREM MARY RIEGEL Abstract. This paper is a presentation and discussion of several proofs of Simson s Theorem. Simson s Theorem is a statement about a specific type of line as related to a given

### BASIC GEOMETRY GLOSSARY

BASIC GEOMETRY GLOSSARY Acute angle An angle that measures between 0 and 90. Examples: Acute triangle A triangle in which each angle is an acute angle. Adjacent angles Two angles next to each other that

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

### 1 Solution of Homework

Math 3181 Dr. Franz Rothe February 4, 2011 Name: 1 Solution of Homework 10 Problem 1.1 (Common tangents of two circles). How many common tangents do two circles have. Informally draw all different cases,

### ABC is the triangle with vertices at points A, B and C

Euclidean Geometry Review This is a brief review of Plane Euclidean Geometry - symbols, definitions, and theorems. Part I: The following are symbols commonly used in geometry: AB is the segment from the

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Collinearity and concurrence

Collinearity and concurrence Po-Shen Loh 23 June 2008 1 Warm-up 1. Let I be the incenter of ABC. Let A be the midpoint of the arc BC of the circumcircle of ABC which does not contain A. Prove that the

### SMT 2014 Geometry Test Solutions February 15, 2014

SMT 014 Geometry Test Solutions February 15, 014 1. The coordinates of three vertices of a parallelogram are A(1, 1), B(, 4), and C( 5, 1). Compute the area of the parallelogram. Answer: 18 Solution: Note

### Triangle Centers MOP 2007, Black Group

Triangle Centers MOP 2007, Black Group Zachary Abel June 21, 2007 1 A Few Useful Centers 1.1 Symmedian / Lemmoine Point The Symmedian point K is defined as the isogonal conjugate of the centroid G. Problem

### Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

### MATHEMATICS Grade 12 EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014

EUCLIDEAN GEOMETRY: CIRCLES 02 JULY 2014 Checklist Make sure you learn proofs of the following theorems: The line drawn from the centre of a circle perpendicular to a chord bisects the chord The angle

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Angles in a Circle and Cyclic Quadrilateral

130 Mathematics 19 Angles in a Circle and Cyclic Quadrilateral 19.1 INTRODUCTION You must have measured the angles between two straight lines, let us now study the angles made by arcs and chords in a circle

### Geometry A Solutions. Written by Ante Qu

Geometry A Solutions Written by Ante Qu 1. [3] Three circles, with radii of 1, 1, and, are externally tangent to each other. The minimum possible area of a quadrilateral that contains and is tangent to

### 61. Pascal s Hexagon Theorem.

. Pascal s Hexagon Theorem. Prove that the three points of intersection of the opposite sides of a hexagon inscribed in a conic section lie on a straight line. Hexagon has opposite sides,;, and,. Pascal

### San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS

San Jose Math Circle April 25 - May 2, 2009 ANGLE BISECTORS Recall that the bisector of an angle is the ray that divides the angle into two congruent angles. The most important results about angle bisectors

### Let s Talk About Symmedians!

Let s Talk bout Symmedians! Sammy Luo and osmin Pohoata bstract We will introduce symmedians from scratch and prove an entire collection of interconnected results that characterize them. Symmedians represent

### Circle Theorems. This circle shown is described an OT. As always, when we introduce a new topic we have to define the things we wish to talk about.

Circle s circle is a set of points in a plane that are a given distance from a given point, called the center. The center is often used to name the circle. T This circle shown is described an OT. s always,

### The Inversion Transformation

The Inversion Transformation A non-linear transformation The transformations of the Euclidean plane that we have studied so far have all had the property that lines have been mapped to lines. Transformations

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### The measure of an arc is the measure of the central angle that intercepts it Therefore, the intercepted arc measures

8.1 Name (print first and last) Per Date: 3/24 due 3/25 8.1 Circles: Arcs and Central Angles Geometry Regents 2013-2014 Ms. Lomac SLO: I can use definitions & theorems about points, lines, and planes to

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Circle geometry theorems

Circle geometry theorems http://topdrawer.aamt.edu.au/geometric-reasoning/big-ideas/circlegeometry/angle-and-chord-properties Theorem Suggested abbreviation Diagram 1. When two circles intersect, the line

### A Nice Theorem on Mixtilinear Incircles

A Nice Theorem on Mixtilinear Incircles Khakimboy Egamberganov Abstract There are three mixtilinear incircles and three mixtilinear excircles in an arbitrary triangle. In this paper, we will present many

### Logic Rule 0 No unstated assumptions may be used in a proof. Logic Rule 1 Allowable justifications.

Definitions, Axioms, Postulates, Propositions, and Theorems from Euclidean and Non-Euclidean Geometries, 4th Ed by Marvin Jay Greenberg (Revised: 18 Feb 2011) Logic Rule 0 No unstated assumptions may be

### Most popular response to

Class #33 Most popular response to What did the students want to prove? The angle bisectors of a square meet at a point. A square is a convex quadrilateral in which all sides are congruent and all angles

### Higher Geometry Problems

Higher Geometry Problems ( Look up Eucidean Geometry on Wikipedia, and write down the English translation given of each of the first four postulates of Euclid. Rewrite each postulate as a clear statement

### IMO Training 2008 Circles Yufei Zhao. Circles. Yufei Zhao.

ircles Yufei Zhao yufeiz@mit.edu 1 Warm up problems 1. Let and be two segments, and let lines and meet at X. Let the circumcircles of X and X meet again at O. Prove that triangles O and O are similar.

### 1916 New South Wales Leaving Certificate

1916 New South Wales Leaving Certificate Typeset by AMS-TEX New South Wales Department of Education PAPER I Time Allowed: Hours 1. Prove that the radical axes of three circles taken in pairs are concurrent.

### Geometry Unit 1. Basics of Geometry

Geometry Unit 1 Basics of Geometry Using inductive reasoning - Looking for patterns and making conjectures is part of a process called inductive reasoning Conjecture- an unproven statement that is based

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### BC AB = AB. The first proportion is derived from similarity of the triangles BDA and ADC. These triangles are similar because

150 hapter 3. SIMILRITY 397. onstruct a triangle, given the ratio of its altitude to the base, the angle at the vertex, and the median drawn to one of its lateral sides 398. Into a given disk segment,

### 0810ge. Geometry Regents Exam 0810

0810ge 1 In the diagram below, ABC XYZ. 3 In the diagram below, the vertices of DEF are the midpoints of the sides of equilateral triangle ABC, and the perimeter of ABC is 36 cm. Which two statements identify

### Congruence. Set 5: Bisectors, Medians, and Altitudes Instruction. Student Activities Overview and Answer Key

Instruction Goal: To provide opportunities for students to develop concepts and skills related to identifying and constructing angle bisectors, perpendicular bisectors, medians, altitudes, incenters, circumcenters,

### STRAIGHT LINES. , y 1. tan. and m 2. 1 mm. If we take the acute angle between two lines, then tan θ = = 1. x h x x. x 1. ) (x 2

STRAIGHT LINES Chapter 10 10.1 Overview 10.1.1 Slope of a line If θ is the angle made by a line with positive direction of x-axis in anticlockwise direction, then the value of tan θ is called the slope

### Test on Circle Geometry (Chapter 15)

Test on Circle Geometry (Chapter 15) Chord Properties of Circles A chord of a circle is any interval that joins two points on the curve. The largest chord of a circle is its diameter. 1. Chords of equal

### 39 Symmetry of Plane Figures

39 Symmetry of Plane Figures In this section, we are interested in the symmetric properties of plane figures. By a symmetry of a plane figure we mean a motion of the plane that moves the figure so that

### 11 th Annual Harvard-MIT Mathematics Tournament

11 th nnual Harvard-MIT Mathematics Tournament Saturday February 008 Individual Round: Geometry Test 1. [] How many different values can take, where,, are distinct vertices of a cube? nswer: 5. In a unit

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Question 29................... 2 Question 30...................

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### What is inversive geometry?

What is inversive geometry? Andrew Krieger July 18, 2013 Throughout, Greek letters (,,...) denote geometric objects like circles or lines; small Roman letters (a, b,... ) denote distances, and large Roman

### Analytical Geometry (4)

Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

### MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem

MA 323 Geometric Modelling Course Notes: Day 02 Model Construction Problem David L. Finn November 30th, 2004 In the next few days, we will introduce some of the basic problems in geometric modelling, and

### On Mixtilinear Incircles and Excircles

Forum Geometricorum Volume 6 (2006) 1 16. FORUM GEOM ISSN 1534-1178 On Mixtilinear Incircles and Excircles Khoa Lu Nguyen and Juan arlos Salazar bstract. mixtilinear incircle (respectively excircle) of

### Chapter 12. The Straight Line

302 Chapter 12 (Plane Analytic Geometry) 12.1 Introduction: Analytic- geometry was introduced by Rene Descartes (1596 1650) in his La Geometric published in 1637. Accordingly, after the name of its founder,

### 16. Let S denote the set of positive integers 18. Thus S = {1, 2,..., 18}. How many subsets of S have sum greater than 85? (You may use symbols such

æ. Simplify 2 + 3 + 4. 2. A quart of liquid contains 0% alcohol, and another 3-quart bottle full of liquid contains 30% alcohol. They are mixed together. What is the percentage of alcohol in the mixture?

### 10-4 Inscribed Angles. Find each measure. 1.

Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

### Cevians, Symmedians, and Excircles. MA 341 Topics in Geometry Lecture 16

Cevians, Symmedians, and Excircles MA 341 Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Unit 3: Circles and Volume

Unit 3: Circles and Volume This unit investigates the properties of circles and addresses finding the volume of solids. Properties of circles are used to solve problems involving arcs, angles, sectors,

### CIRCLE COORDINATE GEOMETRY

CIRCLE COORDINATE GEOMETRY (EXAM QUESTIONS) Question 1 (**) A circle has equation x + y = 2x + 8 Determine the radius and the coordinates of the centre of the circle. r = 3, ( 1,0 ) Question 2 (**) A circle

### Geometry SOL G.11 G.12 Circles Study Guide

Geometry SOL G.11 G.1 Circles Study Guide Name Date Block Circles Review and Study Guide Things to Know Use your notes, homework, checkpoint, and other materials as well as flashcards at quizlet.com (http://quizlet.com/4776937/chapter-10-circles-flashcardsflash-cards/).

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### CONSTRUCTIONS MODULE - 3 OBJECTIVES. Constructions. Geometry. Notes

MODULE - 3 Constructions 18 CONSTRUCTIONS One of the aims of studying is to acquire the skill of drawing figures accurately. You have learnt how to construct geometrical figures namely triangles, squares

### Math 3372-College Geometry

Math 3372-College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

### 4.1 Euclidean Parallelism, Existence of Rectangles

Chapter 4 Euclidean Geometry Based on previous 15 axioms, The parallel postulate for Euclidean geometry is added in this chapter. 4.1 Euclidean Parallelism, Existence of Rectangles Definition 4.1 Two distinct

### Inversion in a Circle

Inversion in a Circle Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles March 23, 2011 Abstract This article will describe the geometric tool of inversion in a circle, and will demonstrate

dvanced Euclidean Geometry What is the center of a triangle? ut what if the triangle is not equilateral?? Circumcenter Equally far from the vertices? P P Points are on the perpendicular bisector of a line

### www.sakshieducation.com

LENGTH OF THE PERPENDICULAR FROM A POINT TO A STRAIGHT LINE AND DISTANCE BETWEEN TWO PAPALLEL LINES THEOREM The perpendicular distance from a point P(x 1, y 1 ) to the line ax + by + c 0 is ax1+ by1+ c

### 15. Appendix 1: List of Definitions

page 321 15. Appendix 1: List of Definitions Definition 1: Interpretation of an axiom system (page 12) Suppose that an axiom system consists of the following four things an undefined object of one type,

### Plane transformations and isometries

Plane transformations and isometries We have observed that Euclid developed the notion of congruence in the plane by moving one figure on top of the other so that corresponding parts coincided. This notion

### HYPERBOLIC TRIGONOMETRY

HYPERBOLIC TRIGONOMETRY STANISLAV JABUKA Consider a hyperbolic triangle ABC with angle measures A) = α, B) = β and C) = γ. The purpose of this note is to develop formulae that allow for a computation of

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### Geometry Course for Post-primary School Mathematics

Geometry Course for Post-primary School Mathematics September 2010 1 Introduction The Junior Certificate and Leaving Certificate mathematics course committees of the National Council for Curriculum and

### Vertex : is the point at which two sides of a polygon meet.

POLYGONS A polygon is a closed plane figure made up of several line segments that are joined together. The sides do not cross one another. Exactly two sides meet at every vertex. Vertex : is the point

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Axiom A.1. Lines, planes and space are sets of points. Space contains all points.

73 Appendix A.1 Basic Notions We take the terms point, line, plane, and space as undefined. We also use the concept of a set and a subset, belongs to or is an element of a set. In a formal axiomatic approach