Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook"

Transcription

1 Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook Objectives Identify congruent figures and corresponding parts of closed plane figures. Prove that two triangles are congruent using definitions, properties, theorems, and postulates. Congruent Not Congruent *If two figures are congruent, then their corresponding parts are. In the diagram, ABC that are congruent. FED. Label the two triangles accordingly and mark all corresponding parts Congruence Statements: Example 1 Write a congruence statement for the triangles. Identify all pairs of corresponding congruent parts. Triangles Corresponding Angles Corresponding Sides

2 Example 2 In the diagram, DEFG SPQR. Find the value of x. Find the value of y. Example 3 In the diagram, a rectangular wall is divided into two sections. Are the sections congruent? Explain. Third Angles Theorem If two angles of one triangle are congruent to two angles of another triangles, then the third angles are Example 4 Find m<bdc. Example 5 Graph the triangle with vertices D(1, 2), E(7, 2), and F(5, 4). Then, graph a triangle congruent to DEF.

3 Example 6 Given: AD CB, DC BA, ACD CAB, CAD ACB Prove: ACD CAB Statements Reasons Given Given ACD CAB 5. Properties of Congruent Triangles Reflexive Property For any triangle ABC, Symmetric Property ABC. If ABC DEF, then. Transitive Property If ABC DEF and DEF JKL, then.

4

5 Unit 8: Congruent and Similar Triangles Lesson 8.2 Prove Triangles Congruent by SSS Lesson 4.3 from textbook Objectives Use the Side-Side-Side (SSS) Congruence Postulate to prove that two triangles are congruent, along with other definitions, properties, theorems, and postulates. Prove that two triangles are congruent in the coordinate plane using the Distance Formula and the SSS postulate. Side-Side-Side (SSS) Congruence Postulate If three sides of one triangle are congruent to three sides of a second triangle, then Example 1 Determine whether the congruence statement is true. Explain your reasoning. DFG HJK ACB CAD Example 2 Use the given coordinates to determine if ABC DEF. A(-3, -2), B(0, -2), C(-3, -8), D(10, 0), E(10, -3), F(4, 0) AB = CA = DE = FD = BC = EF =

6 Example 3 Explanation: Example 4 Example 5 Statements Reasons

7 Unit 8: Congruent and Similar Triangles Lesson 8.3 Prove Triangles Congruent by SAS and HL Lesson 4.4 from textbook Objectives Use the Side-Angle-Side (SAS) and Hypotenuse-Leg (HL) Congruence Postulate to prove that two triangles are congruent, along with other definitions, properties, theorems, and postulates. Use two-column proofs to justify statements about congruent triangles. Side-Angle-Side (SAS) Congruence Postulate If two sides and the included angle of one triangle are congruent to the corresponding to sides and corresponding and the corresponding included angle of a second triangle, then. Example 1 Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate. Hypotenuse-Leg Congruence Theorem If the leg and hypotenuse of a right triangle are congruent to the corresponding leg and hypotenuse of a second triangle, then. Example 2 State the third congruence that must be given to prove ABC DEF using indicated postulate. a) Given: AB DE, CB FE, (SSS Congruence Postulate) b) Given: A D, CA FD, (SAS Congruence Postulate) c) Given: B E, AB DE, (SAS Congruence Postulate)

8 Example 3 Statements Reasons Definition of perpendicular lines Definition of a right triangle Example 4 Statements Reasons

9 Unit 8: Congruent and Similar Triangles Lesson 8.4 Prove Triangles Congruent by ASA and AAS Lesson 4.5 from textbook Objectives Use the Angle-Side-Angle (ASA) and Angle-Angle-Side (AAS) Congruence Postulates to prove that two triangles are congruent, along with other definitions, properties, theorems, and postulates. Use two-column proofs to justify statements about congruent triangles. Angle-Side-Angle (ASA) Congruence Postulate Angle-Angle-Side (AAS) Congruence Theorem Example 1 Is it possible to prove that the two triangles are congruent? If so, state the postulate or theorem you would use.

10 Example 2 State the third congruence that must be given to prove ABC DEF using indicated postulate. a) Given: AB DE, A D, (AAS Congruence Postulate) b) Given: A D, CA FD, (ASA Congruence Postulate) Example 3 Tell whether you can use the given information to determine whether ABC reasoning. DEF. Explain your A D, AB DE, AC DF B E, C F, AC DE Example 4 Given: X is the midpoint of VY and WZ. Prove: VWX YZX Statements Reasons

11 Unit 8: Congruent and Similar Triangles Lesson 8.5 Using Congruent Triangles Lesson 4.6 from textbook Objectives Use congruent triangles to plan and write proofs about their corresponding parts. Corresponding Parts of Congruent Triangles are Congruent Theorem (CPCTC) If are congruent then the of the congruent triangles are also. Given congruent parts: ABC DEF by the Other corresponding congruent parts: Example 1 Tell which triangles you can show are congruent in order to prove the statement. What postulate or theorem would you use? A D GK HJ Example 2

12 Example 3 Given: Prove: Q S, RTQ RTS QT ST *FIRST PROVE TRIANGLES ARE CONGRUENT* Statements Reasons Example 4 Given: NM KM Prove: MLK MPN Statements Reasons Example 5 Use the diagram to write a plan for a proof: PLAN: Prove: A C

13 ACTIVITY: Unit 8: Congruent and Similar Triangles Lesson 8.6 Prove Triangles Similar by AA Lesson 6.4 from textbook Objectives Identify similar triangles using the Angle-Angle (AA) Similarity Postulate. Find measures of similar triangles using proportional reasoning. Question: What can you conclude about two triangles if you know two pairs of corresponding angles are congruent? 1. Draw EFG so that m<e = 40 o 2. Draw RST so that <R = 40 o and m<t = 50 o, and m<g = 50 o. and is not congruent to EFG. 3. Calculate m<f and m<s using Triangle Sum Theorem. 4. Measure and record the side lengths of both triangles. (to the nearest mm). 5. Are the triangles similar? Explain. 6. If all we know is that two angles in two different triangles are congruent, can we conclude that the triangles are similar? Angle-Angle (AA) Similarity Postulate If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

14 Example 1 Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning. Example 2 Use the diagram to complete the information. MON ~ MN? ON MO = =?? 16? 12? = = y x = y = Example 3 The A-frame building shown in the figure has a balcony that is 16 feet long, 16 feet high, and parallel to the ground. The building is 28 feet wide at its base. How tall is the A-frame building? Height =

15 Unit 8: Congruent and Similar Triangles Lesson 8.7 Prove Triangles Similar by SSS and SAS Lesson 6.5 from textbook Objectives Use the similarity theorems such as the Side-Side-Side (SSS) Similarity Theorem and the Side- Angle-Side (SAS) Similarity Theorem to determine whether two triangles are similar. Find measures of similar triangles using proportional reasoning. Side-Side-Side (SSS) Similarity Theorem If the corresponding side lengths of two triangles are proportional, then the triangles are similar Side-Angle-Side (SAS) Similarity Theorem If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent, then the triangles are similar. If If, then ABC ~ RST., then ABC ~ RST. Example 1 Determine which two of the three triangles are similar. Find the scale factor for the pair. State which theorem was used to support your answer. Similar Triangles Scale factor Theorem Example 2 Are the triangles similar? If so, state the similarity and the postulate or theorem that justifies your answer.

16 Example 3 Find the values of x that makes ABC ~ DEF. x = Example 4 A large tree has fallen against another tree and rests at an angle as shown in the figure. To estimate the length of the tree from the ground you make the measurements shown in the figure. What theorem or postulate can be used to show that the triangles in the figure are similar? Explain how you can use similar triangles to estimate the length of the tree. Then estimate the length. Example 5

17 Unit 8: Congruent and Similar Triangles Lesson 8.8 Use Proportionality Theorems Lesson 6.6 from textbook Objectives Use proportionality theorems to calculate segments lengths and to determine parallel lines. Apply proportions to solve problems involving missing lengths and angle measures in similar figures. Triangle Proportionality Theorem If a line parallel to one side of a triangle intersects the other two sides, then it divides the two sides proportionally Triangle Proportionality Converse Theorem If a line divides two sides of a triangle proportionally, then it is parallel to the third side If TU //QS, then Example 1 If RT = TQ RU US, then In the diagram, TU //QS, RS = 4, ST = 6, and QU = 9. What is the length of RQ? RQ = Example 2 Determine whether PS //QR. Explain. Example 3 Use the figure to find the length of each segment. GF = FC = ED = FE =

18 Example 4 Find the value of x. x = x = Example 5 The figure is a diagram of a cross section of the attic of a house. A vent pipe comes through the floor 6 feet from the edge of the house. What is the distance x on the roof, from the edge of the roof to the vent pipe? Example 6

Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each

More information

Testing for Congruent Triangles Examples

Testing for Congruent Triangles Examples Testing for Congruent Triangles Examples 1. Why is congruency important? In 1913, Henry Ford began producing automobiles using an assembly line. When products are mass-produced, each piece must be interchangeable,

More information

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester

Name: Chapter 4 Guided Notes: Congruent Triangles. Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester Name: Chapter 4 Guided Notes: Congruent Triangles Chapter Start Date: Chapter End Date: Test Day/Date: Geometry Fall Semester CH. 4 Guided Notes, page 2 4.1 Apply Triangle Sum Properties triangle polygon

More information

4.1 Apply Triangle Sum Properties

4.1 Apply Triangle Sum Properties 4.1 Apply Triangle Sum Properties Obj.: Classify triangles and find measures of their angles. Key Vocabulary Triangle - A triangle is a polygon w it h three sid es. A t r ian gle w it h ver t ices A, B,

More information

Triangles can be classified by angles and sides. Write a good definition of each term and provide a sketch: Classify triangles by angles:

Triangles can be classified by angles and sides. Write a good definition of each term and provide a sketch: Classify triangles by angles: Chapter 4: Congruent Triangles A. 4-1 Classifying Triangles Identify and classify triangles by angles. Identify and classify triangles by sides. Triangles appear often in construction. Roofs sit atop a

More information

Examples: 1. Write the angles in order from 2. Write the sides in order from

Examples: 1. Write the angles in order from 2. Write the sides in order from Lesson 1 Triangle Inequalities 17. I can apply the triangle inequalities theorems When considering triangles, two basic questions arise: Can any three sides form a triangle? What is the relationship between

More information

Chapter 4: Congruent Triangles

Chapter 4: Congruent Triangles Name: Chapter 4: Congruent Triangles Guided Notes Geometry Fall Semester 4.1 Apply Triangle Sum Properties CH. 4 Guided Notes, page 2 Term Definition Example triangle polygon sides vertices Classifying

More information

POTENTIAL REASONS: Definition of Congruence:

POTENTIAL REASONS: Definition of Congruence: Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

More information

Geo, Chap 4 Practice Test, EV Ver 1

Geo, Chap 4 Practice Test, EV Ver 1 Class: Date: Geo, Chap 4 Practice Test, EV Ver 1 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. (4-3) In each pair of triangles, parts are congruent as

More information

Chapter 4 Study guide

Chapter 4 Study guide Name: Class: Date: ID: A Chapter 4 Study guide Numeric Response 1. An isosceles triangle has a perimeter of 50 in. The congruent sides measure (2x + 3) cm. The length of the third side is 4x cm. What is

More information

Coordinate Algebra 1- Common Core Test -1. Diagnostic. Test. Revised 12/5/13 1:19 pm

Coordinate Algebra 1- Common Core Test -1. Diagnostic. Test. Revised 12/5/13 1:19 pm Coordinate Algebra 1- Common Core Test -1 Diagnostic Test Revised 12/5/13 1:19 pm 1. A B C is a dilation of triangle ABC by a scale factor of ½. The dilation is centered at the point ( 5, 5). Which statement

More information

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1

The common ratio in (ii) is called the scaled-factor. An example of two similar triangles is shown in Figure 47.1. Figure 47.1 47 Similar Triangles An overhead projector forms an image on the screen which has the same shape as the image on the transparency but with the size altered. Two figures that have the same shape but not

More information

6.1 Ratios, Proportions, and the Geometric Mean

6.1 Ratios, Proportions, and the Geometric Mean 6.1 Ratios, Proportions, and the Geometric Mean Obj.: Solve problems by writing and solving proportions. Key Vocabulary Ratio - If a and b are two numbers or quantities and b 0, then the ratio of a to

More information

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle. DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

More information

Proof Case #1 CD AE. AE is the altitude to BC. Given: CD is the altitude to AB. Prove: ABC is isosceles

Proof Case #1 CD AE. AE is the altitude to BC. Given: CD is the altitude to AB. Prove: ABC is isosceles Proof Case #1 B Given: CD is the altitude to AB AE is the altitude to BC CD AE Prove: ABC is isosceles D E A C Proof Case # 2 Given: AB CD DC bisects ADE Prove: ABD is isosceles Proof Case #3 Given: 1

More information

Test to see if ΔFEG is a right triangle.

Test to see if ΔFEG is a right triangle. 1. Copy the figure shown, and draw the common tangents. If no common tangent exists, state no common tangent. Every tangent drawn to the small circle will intersect the larger circle in two points. Every

More information

7-1 Ratio and Proportion

7-1 Ratio and Proportion 7-1 Ratio and Proportion Ratio 1) Find the slope of line m provided that points and lie on m. 2) The ratio of the angle measures in a triangle is 1:6:13. What is the measure of each angle? Proportion Cross

More information

Congruence of Triangles

Congruence of Triangles Congruence of Triangles You've probably heard about identical twins, but do you know there's such a thing as mirror image twins? One mirror image twin is right-handed while the other is left-handed. And

More information

Unit 7 - Test. Name: Class: Date: 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC?

Unit 7 - Test. Name: Class: Date: 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC? Class: Date: Unit 7 - Test 1. If BCDE is congruent to OPQR, then DE is congruent to?. A. PQ B. OR C. OP D. QR 2. BAC? A. PNM B. NPM C. NMP D. MNP 3. Given QRS TUV, QS = 3v + 2, and TV = 7v 6, find the

More information

NCERT. not to be republished TRIANGLES UNIT 6. (A) Main Concepts and Results

NCERT. not to be republished TRIANGLES UNIT 6. (A) Main Concepts and Results UNIT 6 TRIANGLES (A) Main Concepts and Results The six elements of a triangle are its three angles and the three sides. The line segment joining a vertex of a triangle to the mid point of its opposite

More information

Geometry Regents Review

Geometry Regents Review Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 1. If, find. A rhombus is a parallelogram with all four sides congruent. So, Then, is an isosceles triangle. Therefore, If a parallelogram

More information

Chapter Four. Congruent Triangles

Chapter Four. Congruent Triangles Chapter Four Congruent Triangles Objectives A. Use the terms defined in the chapter correctly. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply

More information

Math 311 Test III, Spring 2013 (with solutions)

Math 311 Test III, Spring 2013 (with solutions) Math 311 Test III, Spring 2013 (with solutions) Dr Holmes April 25, 2013 It is extremely likely that there are mistakes in the solutions given! Please call them to my attention if you find them. This exam

More information

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids

Algebra III. Lesson 33. Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Algebra III Lesson 33 Quadrilaterals Properties of Parallelograms Types of Parallelograms Conditions for Parallelograms - Trapezoids Quadrilaterals What is a quadrilateral? Quad means? 4 Lateral means?

More information

Chapter 1: Essentials of Geometry

Chapter 1: Essentials of Geometry Section Section Title 1.1 Identify Points, Lines, and Planes 1.2 Use Segments and Congruence 1.3 Use Midpoint and Distance Formulas Chapter 1: Essentials of Geometry Learning Targets I Can 1. Identify,

More information

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure.

6-5 Rhombi and Squares. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. ALGEBRA Quadrilateral ABCD is a rhombus. Find each value or measure. 3. PROOF Write a two-column proof to prove that if ABCD is a rhombus with diagonal. 1. If, find. A rhombus is a parallelogram with all

More information

Definitions, Postulates and Theorems

Definitions, Postulates and Theorems Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

More information

Warm Up. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. 4. Simplify.

Warm Up. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. 4. Simplify. Use A ( 2, 3) and B (1, 0) 1. Find the slope of AB. 2. Find the midpoint of AB. 3. Find the distance of AB. Warm Up 4. Simplify. 5. Draw an example of vertical angles. GOALS Develop and apply the

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

Geometry EOC Practice Test #4

Geometry EOC Practice Test #4 Class: Date: Geometry EOC Practice Test #4 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In the diagram below, which expression represents x, the degree

More information

Math 3372-College Geometry

Math 3372-College Geometry Math 3372-College Geometry Yi Wang, Ph.D., Assistant Professor Department of Mathematics Fairmont State University Fairmont, West Virginia Fall, 2004 Fairmont, West Virginia Copyright 2004, Yi Wang Contents

More information

INDEX. Arc Addition Postulate,

INDEX. Arc Addition Postulate, # 30-60 right triangle, 441-442, 684 A Absolute value, 59 Acute angle, 77, 669 Acute triangle, 178 Addition Property of Equality, 86 Addition Property of Inequality, 258 Adjacent angle, 109, 669 Adjacent

More information

Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math. Semester 1 Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

More information

Geometry in a Nutshell

Geometry in a Nutshell Geometry in a Nutshell Henry Liu, 26 November 2007 This short handout is a list of some of the very basic ideas and results in pure geometry. Draw your own diagrams with a pencil, ruler and compass where

More information

5-1 Perpendicular and Angle Bisectors

5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Holt 5-1 Perpendicular and Angle Bisectors Warm Up Construct each of the following. 1.

More information

Blue Pelican Geometry Theorem Proofs

Blue Pelican Geometry Theorem Proofs Blue Pelican Geometry Theorem Proofs Copyright 2013 by Charles E. Cook; Refugio, Tx (All rights reserved) Table of contents Geometry Theorem Proofs The theorems listed here are but a few of the total in

More information

6-3 Tests for Parallelograms. Determine whether each quadrilateral is a parallelogram. Justify your answer.

6-3 Tests for Parallelograms. Determine whether each quadrilateral is a parallelogram. Justify your answer. 1. Determine whether each quadrilateral is a Justify your answer. 3. KITES Charmaine is building the kite shown below. She wants to be sure that the string around her frame forms a parallelogram before

More information

Geometry review There are 2 restaurants in River City located at map points (2, 5) and (2, 9).

Geometry review There are 2 restaurants in River City located at map points (2, 5) and (2, 9). Geometry review 2 Name: ate: 1. There are 2 restaurants in River City located at map points (2, 5) and (2, 9). 2. Aleta was completing a puzzle picture by connecting ordered pairs of points. Her next point

More information

CHAPTER 8 QUADRILATERALS. 8.1 Introduction

CHAPTER 8 QUADRILATERALS. 8.1 Introduction CHAPTER 8 QUADRILATERALS 8.1 Introduction You have studied many properties of a triangle in Chapters 6 and 7 and you know that on joining three non-collinear points in pairs, the figure so obtained is

More information

5-1 Perpendicular and Angle Bisectors

5-1 Perpendicular and Angle Bisectors 5-1 Perpendicular and Angle Bisectors Warm Up Lesson Presentation Lesson Quiz Geometry Warm Up Construct each of the following. 1. A perpendicular bisector. 2. An angle bisector. 3. Find the midpoint and

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

More information

Study/Resource Guide for Students and Parents. Analytic Geometry

Study/Resource Guide for Students and Parents. Analytic Geometry Georgia Milestones Assessment System Study/Resource Guide for Students and Parents Analytic Geometry Study/Resource Guide The Study/Resource Guides are intended to serve as a resource for parents and students.

More information

Formal Geometry S1 (#2215)

Formal Geometry S1 (#2215) Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the Course Guides for the following course: Formal Geometry S1 (#2215)

More information

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4

http://www.castlelearning.com/review/teacher/assignmentprinting.aspx 5. 2 6. 2 1. 10 3. 70 2. 55 4. 180 7. 2 8. 4 of 9 1/28/2013 8:32 PM Teacher: Mr. Sime Name: 2 What is the slope of the graph of the equation y = 2x? 5. 2 If the ratio of the measures of corresponding sides of two similar triangles is 4:9, then the

More information

10-4 Inscribed Angles. Find each measure. 1.

10-4 Inscribed Angles. Find each measure. 1. Find each measure. 1. 3. 2. intercepted arc. 30 Here, is a semi-circle. So, intercepted arc. So, 66 4. SCIENCE The diagram shows how light bends in a raindrop to make the colors of the rainbow. If, what

More information

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points.

55 questions (multiple choice, check all that apply, and fill in the blank) The exam is worth 220 points. Geometry Core Semester 1 Semester Exam Preparation Look back at the unit quizzes and diagnostics. Use the unit quizzes and diagnostics to determine which topics you need to review most carefully. The unit

More information

Geometry Sample Problems

Geometry Sample Problems Geometry Sample Problems Sample Proofs Below are examples of some typical proofs covered in Jesuit Geometry classes. Shown first are blank proofs that can be used as sample problems, with the solutions

More information

How Do You Measure a Triangle? Examples

How Do You Measure a Triangle? Examples How Do You Measure a Triangle? Examples 1. A triangle is a three-sided polygon. A polygon is a closed figure in a plane that is made up of segments called sides that intersect only at their endpoints,

More information

ANALYTIC GEOMETRY. Study Guide. Georgia End-Of-Course Tests

ANALYTIC GEOMETRY. Study Guide. Georgia End-Of-Course Tests ANALYTIC GEOMETRY Study Guide Georgia End-Of-Course Tests TABLE OF CONTENTS INTRODUCTION...5 HOW TO USE THE STUDY GUIDE...6 OVERVIEW OF THE EOCT...8 PREPARING FOR THE EOCT...9 Study Skills...9 Time Management...10

More information

Triangle Congruence and Similarity: A Common-Core-Compatible Approach

Triangle Congruence and Similarity: A Common-Core-Compatible Approach Triangle Congruence and Similarity: A Common-Core-Compatible Approach The Common Core State Standards for Mathematics (CCSSM) include a fundamental change in the geometry curriculum in grades 8 to 10:

More information

Do Now Lesson Presentation Exit Ticket

Do Now Lesson Presentation Exit Ticket Do Now Lesson Presentation Exit Ticket Warm Up #7 1. Is DE DF? Explain. E 61 o D 58 o F Yes; m F = 61 o by Converse of the Isosceles Thrm. 2. What is the value of x? 3. Define an angle bisector in your

More information

Geometry Chapter 7. Ratios & Proportions Properties of Proportions Similar Polygons Similarity Proofs Triangle Angle Bisector Theorem

Geometry Chapter 7. Ratios & Proportions Properties of Proportions Similar Polygons Similarity Proofs Triangle Angle Bisector Theorem Geometry Chapter 7 Ratios & Proportions Properties of Proportions Similar Polygons Similarity Proofs Triangle Angle Bisector Theorem Name: Geometry Assignments Chapter 7 Date Due Similar Polygons Section

More information

4.3 Congruent Triangles Quiz

4.3 Congruent Triangles Quiz Name: Class: Date: ID: A 4.3 Congruent Triangles Quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Given: ABC MNO Identify all pairs of congruent corresponding

More information

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3

Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Geometry CP Lesson 5-1: Bisectors, Medians and Altitudes Page 1 of 3 Main ideas: Identify and use perpendicular bisectors and angle bisectors in triangles. Standard: 12.0 A perpendicular bisector of a

More information

Triangles. Triangle. a. What are other names for triangle ABC?

Triangles. Triangle. a. What are other names for triangle ABC? Triangles Triangle A triangle is a closed figure in a plane consisting of three segments called sides. Any two sides intersect in exactly one point called a vertex. A triangle is named using the capital

More information

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question. Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, June 19, :15 a.m. to 12:15 p.m., only. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 19, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Geometry, Final Review Packet

Geometry, Final Review Packet Name: Geometry, Final Review Packet I. Vocabulary match each word on the left to its definition on the right. Word Letter Definition Acute angle A. Meeting at a point Angle bisector B. An angle with a

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 16, 2012 8:30 to 11:30 a.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 16, 2012 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, :15 a.m. SAMPLE RESPONSE SET The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. SAMPLE RESPONSE SET Table of Contents Question 29................... 2 Question 30...................

More information

Geometry Essential Curriculum

Geometry Essential Curriculum Geometry Essential Curriculum Unit I: Fundamental Concepts and Patterns in Geometry Goal: The student will demonstrate the ability to use the fundamental concepts of geometry including the definitions

More information

Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1. Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

More information

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector:

POTENTIAL REASONS: Definition of Congruence: Definition of Midpoint: Definition of Angle Bisector: Sec 1.6 CC Geometry Triangle Proofs Name: POTENTIAL REASONS: Definition of Congruence: Having the exact same size and shape and there by having the exact same measures. Definition of Midpoint: The point

More information

8-1 Geometric Mean. or Find the geometric mean between each pair of numbers and 20. similar triangles in the figure.

8-1 Geometric Mean. or Find the geometric mean between each pair of numbers and 20. similar triangles in the figure. 8-1 Geometric Mean or 24.5 Find the geometric mean between each pair of numbers. 1. 5 and 20 4. Write a similarity statement identifying the three similar triangles in the figure. numbers a and b is given

More information

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

More information

SOLUTION: Since this is an isosceles triangle, two sides are congruent. Here, FG is 2a units long. Draw

SOLUTION: Since this is an isosceles triangle, two sides are congruent. Here, FG is 2a units long. Draw and Codinate Proof Position and label each triangle on the codinate plane 1 right with legs and so that is 2a units long and leg is 2b units long Since this is a right triangle, two sides can be located

More information

Algebraic Properties and Proofs

Algebraic Properties and Proofs Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

More information

Study Guide and Review

Study Guide and Review Choose the letter of the word or phrase that best completes each statement. a. ratio b. proportion c. means d. extremes e. similar f. scale factor g. AA Similarity Post h. SSS Similarity Theorem i. SAS

More information

Conjectures. Chapter 2. Chapter 3

Conjectures. Chapter 2. Chapter 3 Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

More information

Maths Toolkit Teacher s notes

Maths Toolkit Teacher s notes Angles turtle Year 7 Identify parallel and perpendicular lines; know the sum of angles at a point, on a straight line and in a triangle; recognise vertically opposite angles. Use a ruler and protractor

More information

Lesson 2: Circles, Chords, Diameters, and Their Relationships

Lesson 2: Circles, Chords, Diameters, and Their Relationships Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

More information

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent.

#2. Isosceles Triangle Theorem says that If a triangle is isosceles, then its BASE ANGLES are congruent. 1 Geometry Proofs Reference Sheet Here are some of the properties that we might use in our proofs today: #1. Definition of Isosceles Triangle says that If a triangle is isosceles then TWO or more sides

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

Triangle Congruence using SSS

Triangle Congruence using SSS Triangle Congruence using SSS CK12 Editor Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive

More information

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

This is a tentative schedule, date may change. Please be sure to write down homework assignments daily. Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz

More information

5-1 Reteaching ( ) Midsegments of Triangles

5-1 Reteaching ( ) Midsegments of Triangles 5-1 Reteaching Connecting the midpoints of two sides of a triangle creates a segment called a midsegment of the triangle. Point X is the midpoint of AB. Point Y is the midpoint of BC. Midsegments of Triangles

More information

Homework 9 Solutions and Test 4 Review

Homework 9 Solutions and Test 4 Review Homework 9 Solutions and Test 4 Review Dr. Holmes May 6, 2012 1 Homework 9 Solutions This is the homework solution set followed by some test review remarks (none of which should be surprising). My proofs

More information

Math 531, Exam 1 Information.

Math 531, Exam 1 Information. Math 531, Exam 1 Information. 9/21/11, LC 310, 9:05-9:55. Exam 1 will be based on: Sections 1A - 1F. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/531fa11/531.html)

More information

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

More information

Course 3 Benchmark Test Third Quarter

Course 3 Benchmark Test Third Quarter Course Benchmark Test Third Quarter 1. SHORT ANSWER Alfonso leans a 0-foot long ladder against a wall with the base of the ladder 6 feet from the wall. How far up the wall does the ladder reach? Round

More information

116 Chapter 6 Transformations and the Coordinate Plane

116 Chapter 6 Transformations and the Coordinate Plane 116 Chapter 6 Transformations and the Coordinate Plane Chapter 6-1 The Coordinates of a Point in a Plane Section Quiz [20 points] PART I Answer all questions in this part. Each correct answer will receive

More information

Unit 3: Triangle Bisectors and Quadrilaterals

Unit 3: Triangle Bisectors and Quadrilaterals Unit 3: Triangle Bisectors and Quadrilaterals Unit Objectives Identify triangle bisectors Compare measurements of a triangle Utilize the triangle inequality theorem Classify Polygons Apply the properties

More information

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240.

4-1 Classifying Triangles. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

More information

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd: GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

More information

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors

Isosceles triangles. Key Words: Isosceles triangle, midpoint, median, angle bisectors, perpendicular bisectors Isosceles triangles Lesson Summary: Students will investigate the properties of isosceles triangles. Angle bisectors, perpendicular bisectors, midpoints, and medians are also examined in this lesson. A

More information

Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning.

Classify each triangle as acute, equiangular, obtuse, or right. Explain your reasoning. ARCHITECTURE Classify each triangle as acute, equiangular, obtuse, or right. 1. Refer to the figure on page 240. One angle of the triangle measures 90, so it is a right angle. Since the triangle has a

More information

On Geometric Proofs: Base angles of an isosceles trapezoid are equal Perpendicular bisectors of a triangle meet at a common point

On Geometric Proofs: Base angles of an isosceles trapezoid are equal Perpendicular bisectors of a triangle meet at a common point On Geometric Proofs: Base angles of an isosceles trapezoid are equal Perpendicular bisectors of a triangle meet at a common point Before demonstrating the above proofs, we should review what sort of geometric

More information

Geometry FSA Mathematics Practice Test Answer Key

Geometry FSA Mathematics Practice Test Answer Key Geometry FSA Mathematics Practice Test Answer Key The purpose of these practice test materials is to orient teachers and students to the types of questions on paper-based FSA tests. By using these materials,

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m. GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, January 24, 2013 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

More information

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles

Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles Chapters 4 and 5 Notes: Quadrilaterals and Similar Triangles IMPORTANT TERMS AND DEFINITIONS parallelogram rectangle square rhombus A quadrilateral is a polygon that has four sides. A parallelogram is

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

More information

8-2 The Pythagorean Theorem and Its Converse. Find x.

8-2 The Pythagorean Theorem and Its Converse. Find x. Find x. 1. of the hypotenuse. The length of the hypotenuse is 13 and the lengths of the legs are 5 and x. 2. of the hypotenuse. The length of the hypotenuse is x and the lengths of the legs are 8 and 12.

More information

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem.

4. Prove the above theorem. 5. Prove the above theorem. 9. Prove the above corollary. 10. Prove the above theorem. 14 Perpendicularity and Angle Congruence Definition (acute angle, right angle, obtuse angle, supplementary angles, complementary angles) An acute angle is an angle whose measure is less than 90. A right

More information

5-1 Bisectors of Triangles. Find each measure. 1. XW SOLUTION: So LM = LP, by the Perpendicular Bisector Theorem.

5-1 Bisectors of Triangles. Find each measure. 1. XW SOLUTION: So LM = LP, by the Perpendicular Bisector Theorem. Find each measure 1 XW 14 3 LP Given that By the Perpendicular Bisector Theorem, XW = XY Therefore, XW = 12 12 Given that So LM = LP, by the Perpendicular Bisector Theorem Therefore, Solve for x 2 AC Substitute

More information

5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof 5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

More information

Quadrilaterals. Definition

Quadrilaterals. Definition Quadrilaterals Definition A quadrilateral is a four-sided closed figure in a plane that meets the following conditions: Each side has its endpoints in common with an endpoint of two adjacent sides. Consecutive

More information

Finding the Measure of Segments Examples

Finding the Measure of Segments Examples Finding the Measure of Segments Examples 1. In geometry, the distance between two points is used to define the measure of a segment. Segments can be defined by using the idea of betweenness. In the figure

More information

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition.

Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. 1. measures less than By the Exterior Angle Inequality Theorem, the exterior angle ( ) is larger than

More information