# This is a tentative schedule, date may change. Please be sure to write down homework assignments daily.

Size: px
Start display at page:

Download "This is a tentative schedule, date may change. Please be sure to write down homework assignments daily."

Transcription

1 Mon Tue Wed Thu Fri Aug 26 Aug 27 Aug 28 Aug 29 Aug 30 Introductions, Expectations, Course Outline and Carnegie Review summer packet Topic: (1-1) Points, Lines, & Planes Topic: (1-2) Segment Measure Quiz on summer packet HW HW Sept 2 Sept 3 Sept 4 Sept 5 (Two-Hour Delay) Sept 6 Topic: (1-3) Segment Measure Topic: (1-2 & 1-3) Segment Measure Quiz 1-1 through 1-3 Topic: (1-4) Angle Measure Carnegie Day HW HW HW Sept 9 Sept 10 Sept 11 Sept 12 Sept 13 Topic: (1-4) Angle Measure Topic: (1-5) Angle Pairs Topic: (1-5) Angle Pairs Quiz 1-4 & 1-5 Carnegie Day HW HW HW Sept 16 Study Guide Sept 17 Unit 1 Test Sept 18 Sept 19 Sept 20 Carnegie Day This is a tentative schedule, date may change. Please be sure to write down homework assignments daily. 1

2 Topic: Unit 1(12 days) - (Chapter 1) Key Learning(s): Students will learn the basic geometry terms and there use for continuing geometry. Optional Instructional Tools Ruler, protractor, graph/number line paper Unit Essential Question(s): Why is it important to learn the basic geometry terms and concepts before continuing the course? Concept: Points, Lines & Planes (1.1 1 days) Lesson EQ s: What are the basic terms and their importance to Geometry? Vocabulary: Point, line, plane, collinear, coplanar, space Concept: Segment Measure (1.2, days) Concept: Angle Measure (1.4 2 days) Concept: Angle Pairs (1.5 2 days) Lesson EQ s: How are the lengths of segments used in everyday life? Lesson EQ s: Why do we need to understand and use angles in Geometry? Lesson EQ s: How are the pairs of angles classified? Vocabulary: Line segment, segment addition postulate, between, congruent, precision, constructions, midpoint, segment bisector, distance Vocabulary: Degree, vertex, ray, opposite ray, angles, sides, interior, exterior, acute angle, obtuse angle, right angle Vocabulary: Vertical angles, linear angles, adjacent angles, complementary angles, supplementary angles Standards: Standards: M11.C Calculate the distance and/or midpoint between 2 points on a number line or on a coordinate plane G Calculate the distance and/or midpoint between two points on a number line or on a coordinate plane Standards: M11.B Measure and/or compare angles in degrees (up to 360) (protractor must be provided or drawn). Standards: M11.B Measure and/or compare angles in degrees (up to 360) (protractor must be provided or drawn). 2

3 Point Line Plane Segment Ray Angle Model Drawn Named By Facts Words/ Symbol 3

4 Define the following: Space- Collinear- Coplanar- Naming Lines and Planes (See Chart) Picture Figure to name How did you label it? A point on the plane. D E F G N H A line that contains point G A plane A point not on the plane. 4

5 Drawing a Geometric Figure 1. Together: a. TU lies in the plane Q and contains the point R. 2. Check Your Progress (On Your Own) a. Draw and label a figure in which points A, B, and C are coplanar and B and C are collinear. G Interpret Drawings: F 1. Together, we will answer questions based on the picture to right: D a. How many planes appear in this figure? b. Name three collinear points. c. Are points G, A, B, and D coplanar? A E B C P d. Where does EF and AB intersect? e. Name the intersection of plane GCD and plane P. Reflection: What types of everyday objects could we use to represent these types of undefined terms? Points Lines Planes 5

6 6

7 Define the following vocabulary words: Be sure to use complete sentences Include an example or picture Relate it to real life Word Definition Picture/Example Real Life Connection Segment Congruent Midpoint Segment Bisector Segment Addition Postulate Distance 7

8 Definition: Example 2: Find x and KL 5x 10 J 2x x + 2 K L Example 1: Find the value of x and KL 27 J 3x 6x K L Example 3: Find the value of x and ST if S is between R and T and: RS = 7, ST = 3x, and RT = Segment Addition Postulate Example 4: Find x and LM 30 N 6x 5 2x + 3 L M 8

9 9

10 Given the coordinate plane (Two ordered pairs) Find the Distance Given a number line Step 1: Write formula from Formula Sheet Step 2: Substitute x and y from the two given points Count the spaces between the two given points. Step 3: Evaluate GUIDED PRACTICE Example: Find the distance between (2, 3) and (6,6) Example: Find the distance between A and B d ( x y x1 ) ( y2 1) A C B Example: Find the distance between (1, 4) and (6,8) Example: Find the distance between D and F d ( x y x1 ) ( y2 1) D F E 10

11 Given the coordinate plane (Two ordered pairs) Find the Midpoint Given a number line Step 1: Write formula from Formula Sheet Step 2: Substitute x and y from the two given points Step 3: Evaluate Count the spaces between the two given points. Divide by 2 GUIDED PRACTICE Example: Find the midpoint between (2, 3) and (6,6) Example: Find the midpoint between A and B x x1 y, y1 A C B Example: Find the midpoint between (1, 4) and (6,8) Example: Find the midpoint between D and F x x1 y, y1 D F E 11

12 A B C D E F G H J K L M Find the length of each segment using the number line above: 1. AD 2. HL 3. EJ 4. CG Find the midpoint of the given segments using the number line above 5. AC 6. JM 7. DF 8. BG Find the length of each segment given the two endpoints from the number line above and and and -2 Distance formula: Midpoint formula: Find the distance between the two points 1. (5, 1) (-3, -3) 2. (3, -4) (-2, -10) 3. (-5, 6) (8, -4) Find the midpoint between the two points 4. (5, -2) (-1, 6) 5. (5, 12) (-4, 8) 6. Given J(-5, 10) and the midpoint of JK is (-8, 6) find the coordinate for K 12

13 Homework

14 Define the following vocabulary words: Be sure to use complete sentences Include an example or picture Relate it to real life Word Definition Picture/Example Real Life Connection Vertex Rays (Sides) Straight Angle Angle Right Angle Acute Angle Obtuse Angle 14

15 A C B Angles and Their Parts 1. Together, we are going to identify parts using the diagram to the right a. Name 3 angles that have W as a vertex. b. Name all the sides of 1. c. Write another name for WYZ. d. Name a pair of opposite rays. X W V Z Y E B A How to read a protractor: 1. Put the dot in the center on the vertex D C 2. Line up the protractor with one of the rays crossing the 0 3. Read where the arrow crosses and use the correct number. (Big Angle Big #, Small Angle Small #) Find: m ADC = m BDC = m BDA = (challenge problem) 15

16 How to draw angles using a protractor: 1. Draw a ray 2. Place protractor with center dot at endpoint on ray 3. Using the numbers carefully mark the number you need on the outside of the protractor 4. Draw a new ray from the endpoint to the mark you made 80 o 95 o 120 o 100 o 16

17 22 o 168 o 51 o 107 o 17

18 Opposite Rays - The rays that form an angle are called the. The common endpoint is the. The is the points inside the angle. The is the points outside the angle. Angles can be classified by their measures Straight Right Acute Obtuse Classify each angle:

19 19

20 Define the following vocabulary words: Be sure to use complete sentences Include an example or picture Relate it to real life Word Definition Picture/Example Real Life Connection Vertical Angles Linear Angles Adjacent Angles Complementary Angles Supplementary Angles 20

21 Using Algebra with Angles 1. Together we will solve for: a. Suppose ABC DBF as shown, find the actual measure of each angle. A (6x+2) o B C D (8x 14) o E b. Suppose QP and QR are opposite rays, and QT bisects RQS. If RQT = 6x + 5 and SQT = 7x 2. Find the measure of RQT. 2. Check Your Progress (On Your Own) i. Hint Draw a Diagram to help you visualize. a. Suppose JKL MKN. If JKL = 5x + 4 and MKN = 3x Find the actual measure of each angle. b. Suppose QP and QR are opposite rays, and QT bisects RQS. If RQS = 22a 11 and RQT = 12a 8. Find the measure of TQS. 21

22 22

23 23

24 24

25 Angle Practice: Look at the picture, then determine what type of angles you have and how to find their measure using the boxes provided. Then SOLVE for x, and find the measurement of each angle! Circle the type of angle you have and the measurement: Solution: 3x x + 56 Vertical Complementary Supplementary Are they equal to? Each other Ninety Degrees One hundred Eighty Circle the type of angle you have and the measurement: 4x x + 20 Vertical Complementary Supplementary Are they equal to? Solution: Each other Ninety Degrees One hundred Eighty Circle the type of angle you have and the measurement: Vertical Complementary Supplementary Solution: 5x 4x Are they equal to? Each other Ninety Degrees One hundred Eighty 25

26 Circle the type of angle you have and the measurement: Solution: 3x x 56 Vertical Complementary Supplementary Are they equal to? Each other Ninety Degrees One hundred Eighty Circle the type of angle you have and the measurement: x x + 20 Vertical Complementary Supplementary Are they equal to? Solution: Each other Ninety Degrees One hundred Eighty Circle the type of angle you have and the measurement: Vertical Complementary Supplementary Solution: 3x 7x Are they equal to? Each other Ninety Degrees One hundred Eighty 26

27 Angle Homework: Look at the picture, then determine what type of angles you have and how to find their measure using the boxes provided. Then SOLVE for x, and find the measurement of each angle! Solution: 2x x 15 Circle the type of angle you have and the measurement: Vertical Complementary Supplementary Are they equal to? Each other Ninety Degrees One hundred Eighty Circle the type of angle you have and the measurement: 3x x Vertical Complementary Supplementary Are they equal to? Solution: Each other Ninety Degrees One hundred Eighty 30 3x Circle the type of angle you have and the measurement: Vertical Complementary Supplementary Are they equal to? Each other Ninety Degrees One hundred Eighty Solution: 27

28 28

### Geometry Chapter 1. 1.1 Point (pt) 1.1 Coplanar (1.1) 1.1 Space (1.1) 1.2 Line Segment (seg) 1.2 Measure of a Segment

Geometry Chapter 1 Section Term 1.1 Point (pt) Definition A location. It is drawn as a dot, and named with a capital letter. It has no shape or size. undefined term 1.1 Line A line is made up of points

### Chapter 3.1 Angles. Geometry. Objectives: Define what an angle is. Define the parts of an angle.

Chapter 3.1 Angles Define what an angle is. Define the parts of an angle. Recall our definition for a ray. A ray is a line segment with a definite starting point and extends into infinity in only one direction.

### GEOMETRY. Chapter 1: Foundations for Geometry. Name: Teacher: Pd:

GEOMETRY Chapter 1: Foundations for Geometry Name: Teacher: Pd: Table of Contents Lesson 1.1: SWBAT: Identify, name, and draw points, lines, segments, rays, and planes. Pgs: 1-4 Lesson 1.2: SWBAT: Use

### Geometry: Unit 1 Vocabulary TERM DEFINITION GEOMETRIC FIGURE. Cannot be defined by using other figures.

Geometry: Unit 1 Vocabulary 1.1 Undefined terms Cannot be defined by using other figures. Point A specific location. It has no dimension and is represented by a dot. Line Plane A connected straight path.

### Final Review Geometry A Fall Semester

Final Review Geometry Fall Semester Multiple Response Identify one or more choices that best complete the statement or answer the question. 1. Which graph shows a triangle and its reflection image over

### 1. A student followed the given steps below to complete a construction. Which type of construction is best represented by the steps given above?

1. A student followed the given steps below to complete a construction. Step 1: Place the compass on one endpoint of the line segment. Step 2: Extend the compass from the chosen endpoint so that the width

### 3.1. Angle Pairs. What s Your Angle? Angle Pairs. ACTIVITY 3.1 Investigative. Activity Focus Measuring angles Angle pairs

SUGGESTED LEARNING STRATEGIES: Think/Pair/Share, Use Manipulatives Two rays with a common endpoint form an angle. The common endpoint is called the vertex. You can use a protractor to draw and measure

### Incenter Circumcenter

TRIANGLE: Centers: Incenter Incenter is the center of the inscribed circle (incircle) of the triangle, it is the point of intersection of the angle bisectors of the triangle. The radius of incircle is

### 2.1. Inductive Reasoning EXAMPLE A

CONDENSED LESSON 2.1 Inductive Reasoning In this lesson you will Learn how inductive reasoning is used in science and mathematics Use inductive reasoning to make conjectures about sequences of numbers

### GEOMETRY. Constructions OBJECTIVE #: G.CO.12

GEOMETRY Constructions OBJECTIVE #: G.CO.12 OBJECTIVE Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic

### DEFINITIONS. Perpendicular Two lines are called perpendicular if they form a right angle.

DEFINITIONS Degree A degree is the 1 th part of a straight angle. 180 Right Angle A 90 angle is called a right angle. Perpendicular Two lines are called perpendicular if they form a right angle. Congruent

### Mathematics Geometry Unit 1 (SAMPLE)

Review the Geometry sample year-long scope and sequence associated with this unit plan. Mathematics Possible time frame: Unit 1: Introduction to Geometric Concepts, Construction, and Proof 14 days This

### Geometry 1. Unit 3: Perpendicular and Parallel Lines

Geometry 1 Unit 3: Perpendicular and Parallel Lines Geometry 1 Unit 3 3.1 Lines and Angles Lines and Angles Parallel Lines Parallel lines are lines that are coplanar and do not intersect. Some examples

### 1.1 Identify Points, Lines, and Planes

1.1 Identify Points, Lines, and Planes Objective: Name and sketch geometric figures. Key Vocabulary Undefined terms - These words do not have formal definitions, but there is agreement aboutwhat they mean.

### Lesson 18: Looking More Carefully at Parallel Lines

Student Outcomes Students learn to construct a line parallel to a given line through a point not on that line using a rotation by 180. They learn how to prove the alternate interior angles theorem using

### Lesson 2: Circles, Chords, Diameters, and Their Relationships

Circles, Chords, Diameters, and Their Relationships Student Outcomes Identify the relationships between the diameters of a circle and other chords of the circle. Lesson Notes Students are asked to construct

### GEOMETRY - QUARTER 1 BENCHMARK

Name: Class: _ Date: _ GEOMETRY - QUARTER 1 BENCHMARK Multiple Choice Identify the choice that best completes the statement or answers the question. Refer to Figure 1. Figure 1 1. What is another name

### POTENTIAL REASONS: Definition of Congruence:

Sec 6 CC Geometry Triangle Pros Name: POTENTIAL REASONS: Definition Congruence: Having the exact same size and shape and there by having the exact same measures. Definition Midpoint: The point that divides

### 5.1 Midsegment Theorem and Coordinate Proof

5.1 Midsegment Theorem and Coordinate Proof Obj.: Use properties of midsegments and write coordinate proofs. Key Vocabulary Midsegment of a triangle - A midsegment of a triangle is a segment that connects

### A summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs:

summary of definitions, postulates, algebra rules, and theorems that are often used in geometry proofs: efinitions: efinition of mid-point and segment bisector M If a line intersects another line segment

### Intermediate Math Circles October 10, 2012 Geometry I: Angles

Intermediate Math Circles October 10, 2012 Geometry I: Angles Over the next four weeks, we will look at several geometry topics. Some of the topics may be familiar to you while others, for most of you,

### Geometry Review Flash Cards

point is like a star in the night sky. However, unlike stars, geometric points have no size. Think of them as being so small that they take up zero amount of space. point may be represented by a dot on

### Name Date Class. Lines and Segments That Intersect Circles. AB and CD are chords. Tangent Circles. Theorem Hypothesis Conclusion

Section. Lines That Intersect Circles Lines and Segments That Intersect Circles A chord is a segment whose endpoints lie on a circle. A secant is a line that intersects a circle at two points. A tangent

### Definitions, Postulates and Theorems

Definitions, s and s Name: Definitions Complementary Angles Two angles whose measures have a sum of 90 o Supplementary Angles Two angles whose measures have a sum of 180 o A statement that can be proven

### Chapter 6 Notes: Circles

Chapter 6 Notes: Circles IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of the circle. Any line segment

### Duplicating Segments and Angles

CONDENSED LESSON 3.1 Duplicating Segments and ngles In this lesson, you Learn what it means to create a geometric construction Duplicate a segment by using a straightedge and a compass and by using patty

### Section 9-1. Basic Terms: Tangents, Arcs and Chords Homework Pages 330-331: 1-18

Chapter 9 Circles Objectives A. Recognize and apply terms relating to circles. B. Properly use and interpret the symbols for the terms and concepts in this chapter. C. Appropriately apply the postulates,

### Chapters 6 and 7 Notes: Circles, Locus and Concurrence

Chapters 6 and 7 Notes: Circles, Locus and Concurrence IMPORTANT TERMS AND DEFINITIONS A circle is the set of all points in a plane that are at a fixed distance from a given point known as the center of

### /27 Intro to Geometry Review

/27 Intro to Geometry Review 1. An acute has a measure of. 2. A right has a measure of. 3. An obtuse has a measure of. 13. Two supplementary angles are in ratio 11:7. Find the measure of each. 14. In the

### 37 Basic Geometric Shapes and Figures

37 Basic Geometric Shapes and Figures In this section we discuss basic geometric shapes and figures such as points, lines, line segments, planes, angles, triangles, and quadrilaterals. The three pillars

### Geometry Course Summary Department: Math. Semester 1

Geometry Course Summary Department: Math Semester 1 Learning Objective #1 Geometry Basics Targets to Meet Learning Objective #1 Use inductive reasoning to make conclusions about mathematical patterns Give

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Tuesday, August 13, 2013 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Tuesday, August 13, 2013 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Geometry Module 4 Unit 2 Practice Exam

Name: Class: Date: ID: A Geometry Module 4 Unit 2 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which diagram shows the most useful positioning

### Selected practice exam solutions (part 5, item 2) (MAT 360)

Selected practice exam solutions (part 5, item ) (MAT 360) Harder 8,91,9,94(smaller should be replaced by greater )95,103,109,140,160,(178,179,180,181 this is really one problem),188,193,194,195 8. On

### Three-Dimensional Figures or Space Figures. Rectangular Prism Cylinder Cone Sphere. Two-Dimensional Figures or Plane Figures

SHAPE NAMES Three-Dimensional Figures or Space Figures Rectangular Prism Cylinder Cone Sphere Two-Dimensional Figures or Plane Figures Square Rectangle Triangle Circle Name each shape. [triangle] [cone]

### CHAPTER 6 LINES AND ANGLES. 6.1 Introduction

CHAPTER 6 LINES AND ANGLES 6.1 Introduction In Chapter 5, you have studied that a minimum of two points are required to draw a line. You have also studied some axioms and, with the help of these axioms,

### Measure and classify angles. Identify and use congruent angles and the bisector of an angle. big is a degree? One of the first references to the

ngle Measure Vocabulary degree ray opposite rays angle sides vertex interior exterior right angle acute angle obtuse angle angle bisector tudy ip eading Math Opposite rays are also known as a straight

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2015 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2015 8:30 to 11:30 a.m., only Student Name: School Name: The possession or use of any communications

### Analytical Geometry (4)

Analytical Geometry (4) Learning Outcomes and Assessment Standards Learning Outcome 3: Space, shape and measurement Assessment Standard As 3(c) and AS 3(a) The gradient and inclination of a straight line

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 29, 2014 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### GEOMETRY CONCEPT MAP. Suggested Sequence:

CONCEPT MAP GEOMETRY August 2011 Suggested Sequence: 1. Tools of Geometry 2. Reasoning and Proof 3. Parallel and Perpendicular Lines 4. Congruent Triangles 5. Relationships Within Triangles 6. Polygons

### Unit 2 - Triangles. Equilateral Triangles

Equilateral Triangles Unit 2 - Triangles Equilateral Triangles Overview: Objective: In this activity participants discover properties of equilateral triangles using properties of symmetry. TExES Mathematics

### Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook

Unit 8: Congruent and Similar Triangles Lesson 8.1 Apply Congruence and Triangles Lesson 4.2 from textbook Objectives Identify congruent figures and corresponding parts of closed plane figures. Prove that

### Semester Exam Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

Semester Exam Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Are O, N, and P collinear? If so, name the line on which they lie. O N M P a. No,

### Angles that are between parallel lines, but on opposite sides of a transversal.

GLOSSARY Appendix A Appendix A: Glossary Acute Angle An angle that measures less than 90. Acute Triangle Alternate Angles A triangle that has three acute angles. Angles that are between parallel lines,

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXMINTION GEOMETRY Thursday, January 26, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3

Mathematics 3301-001 Spring 2015 Dr. Alexandra Shlapentokh Guide #3 The problems in bold are the problems for Test #3. As before, you are allowed to use statements above and all postulates in the proofs

### TIgeometry.com. Geometry. Angle Bisectors in a Triangle

Angle Bisectors in a Triangle ID: 8892 Time required 40 minutes Topic: Triangles and Their Centers Use inductive reasoning to postulate a relationship between an angle bisector and the arms of the angle.

### Vocabulary. Term Page Definition Clarifying Example. biconditional statement. conclusion. conditional statement. conjecture.

CHAPTER Vocabulary The table contains important vocabulary terms from Chapter. As you work through the chapter, fill in the page number, definition, and a clarifying example. biconditional statement conclusion

### Lesson 6 Supplementary and Complementary Angles

6-1 Lesson 6 Supplementary and Complementary Angles Greek Letters Figure 1 a b d g a = alpha b = beta g = gamma d = delta Adjacent Angles Angles that share a common side and have the same origin are called

### Circle Name: Radius: Diameter: Chord: Secant:

12.1: Tangent Lines Congruent Circles: circles that have the same radius length Diagram of Examples Center of Circle: Circle Name: Radius: Diameter: Chord: Secant: Tangent to A Circle: a line in the plane

### Terminology: When one line intersects each of two given lines, we call that line a transversal.

Feb 23 Notes: Definition: Two lines l and m are parallel if they lie in the same plane and do not intersect. Terminology: When one line intersects each of two given lines, we call that line a transversal.

### 2. If C is the midpoint of AB and B is the midpoint of AE, can you say that the measure of AC is 1/4 the measure of AE?

MATH 206 - Midterm Exam 2 Practice Exam Solutions 1. Show two rays in the same plane that intersect at more than one point. Rays AB and BA intersect at all points from A to B. 2. If C is the midpoint of

### Geometry - Semester 2. Mrs. Day-Blattner 1/20/2016

Geometry - Semester 2 Mrs. Day-Blattner 1/20/2016 Agenda 1/20/2016 1) 20 Question Quiz - 20 minutes 2) Jan 15 homework - self-corrections 3) Spot check sheet Thales Theorem - add to your response 4) Finding

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, June 17, 2010 1:15 to 4:15 p.m., only Student Name: School Name: Print your name and the name of your

### The Geometry of Piles of Salt Thinking Deeply About Simple Things

The Geometry of Piles of Salt Thinking Deeply About Simple Things PCMI SSTP Tuesday, July 15 th, 2008 By Troy Jones Willowcreek Middle School Important Terms (the word line may be replaced by the word

### Geometry Regents Review

Name: Class: Date: Geometry Regents Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. If MNP VWX and PM is the shortest side of MNP, what is the shortest

### Cumulative Test. 161 Holt Geometry. Name Date Class

Choose the best answer. 1. P, W, and K are collinear, and W is between P and K. PW 10x, WK 2x 7, and PW WK 6x 11. What is PK? A 2 C 90 B 6 D 11 2. RM bisects VRQ. If mmrq 2, what is mvrm? F 41 H 9 G 2

### Curriculum Map by Block Geometry Mapping for Math Block Testing 2007-2008. August 20 to August 24 Review concepts from previous grades.

Curriculum Map by Geometry Mapping for Math Testing 2007-2008 Pre- s 1 August 20 to August 24 Review concepts from previous grades. August 27 to September 28 (Assessment to be completed by September 28)

### Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

### Conjectures. Chapter 2. Chapter 3

Conjectures Chapter 2 C-1 Linear Pair Conjecture If two angles form a linear pair, then the measures of the angles add up to 180. (Lesson 2.5) C-2 Vertical Angles Conjecture If two angles are vertical

### Angle Vocabulary, Complementary & Supplementary Angles

ngle Vocabulary, omplementary & Supplementary ngles Review 1 1. What is the definition of an acute angle? 2. Name the angle shown. 3. What is the definition of complimentary angles? 4. What is the definition

### Chapter 4.1 Parallel Lines and Planes

Chapter 4.1 Parallel Lines and Planes Expand on our definition of parallel lines Introduce the idea of parallel planes. What do we recall about parallel lines? In geometry, we have to be concerned about

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Thursday, August 13, 2009 8:30 to 11:30 a.m., only.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Thursday, August 13, 2009 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of your

### Algebraic Properties and Proofs

Algebraic Properties and Proofs Name You have solved algebraic equations for a couple years now, but now it is time to justify the steps you have practiced and now take without thinking and acting without

### Angle: An angle is the union of two line segments (or two rays) with a common endpoint, called a vertex.

MATH 008: Angles Angle: An angle is the union of two line segents (or two rays) with a coon endpoint, called a vertex. A B C α Adjacent angles: Adjacent angles are two angles that share a vertex, have

### Geometry. Relationships in Triangles. Unit 5. Name:

Geometry Unit 5 Relationships in Triangles Name: 1 Geometry Chapter 5 Relationships in Triangles ***In order to get full credit for your assignments they must me done on time and you must SHOW ALL WORK.

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m.

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, January 28, 2015 9:15 a.m. to 12:15 p.m., only Student Name: School Name: The possession or use of any

### Show all work for credit. Attach paper as needed to keep work neat & organized.

Geometry Semester 1 Review Part 2 Name Show all work for credit. Attach paper as needed to keep work neat & organized. Determine the reflectional (# of lines and draw them in) and rotational symmetry (order

Quadrilaterals / Mathematics Unit: 11 Lesson: 01 Duration: 7 days Lesson Synopsis: In this lesson students explore properties of quadrilaterals in a variety of ways including concrete modeling, patty paper

### MATH STUDENT BOOK. 8th Grade Unit 6

MATH STUDENT BOOK 8th Grade Unit 6 Unit 6 Measurement Math 806 Measurement Introduction 3 1. Angle Measures and Circles 5 Classify and Measure Angles 5 Perpendicular and Parallel Lines, Part 1 12 Perpendicular

### Geometry 8-1 Angles of Polygons

. Sum of Measures of Interior ngles Geometry 8-1 ngles of Polygons 1. Interior angles - The sum of the measures of the angles of each polygon can be found by adding the measures of the angles of a triangle.

### Discovering Math: Exploring Geometry Teacher s Guide

Teacher s Guide Grade Level: 6 8 Curriculum Focus: Mathematics Lesson Duration: Three class periods Program Description Discovering Math: Exploring Geometry From methods of geometric construction and threedimensional

### BLoCK 1 ~ LInes And AngLes

BLoCK ~ LInes And AngLes angle pairs Lesson MeasUring and naming angles -------------------------------------- 3 Lesson classifying angles -------------------------------------------------- 8 Explore!

### Situation: Proving Quadrilaterals in the Coordinate Plane

Situation: Proving Quadrilaterals in the Coordinate Plane 1 Prepared at the University of Georgia EMAT 6500 Date Last Revised: 07/31/013 Michael Ferra Prompt A teacher in a high school Coordinate Algebra

### Rays and Angles Examples

Rays and Angles Examples 1. In geometry, an angle is defined in terms of two rays that form the angle. You can think of a ray as a segment that is extended indefinitely in one direction. Rays have exactly

### GEOMETRIC FIGURES, AREAS, AND VOLUMES

HPTER GEOMETRI FIGURES, RES, N VOLUMES carpenter is building a deck on the back of a house. s he works, he follows a plan that he made in the form of a drawing or blueprint. His blueprint is a model of

### Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, June 20, 2012 9:15 a.m. to 12:15 p.m., only Student Name: School Name: Print your name and the name

### Three Lemmas in Geometry

Winter amp 2010 Three Lemmas in Geometry Yufei Zhao Three Lemmas in Geometry Yufei Zhao Massachusetts Institute of Technology yufei.zhao@gmail.com 1 iameter of incircle T Lemma 1. Let the incircle of triangle

### NAME DATE PERIOD. Study Guide and Intervention

opyright Glencoe/McGraw-Hill, a division of he McGraw-Hill ompanies, Inc. 5-1 M IO tudy Guide and Intervention isectors, Medians, and ltitudes erpendicular isectors and ngle isectors perpendicular bisector

### INCIDENCE-BETWEENNESS GEOMETRY

INCIDENCE-BETWEENNESS GEOMETRY MATH 410, CSUSM. SPRING 2008. PROFESSOR AITKEN This document covers the geometry that can be developed with just the axioms related to incidence and betweenness. The full

Lecture 24: Saccheri Quadrilaterals 24.1 Saccheri Quadrilaterals Definition In a protractor geometry, we call a quadrilateral ABCD a Saccheri quadrilateral, denoted S ABCD, if A and D are right angles

### Name Period 10/22 11/1 10/31 11/1. Chapter 4 Section 1 and 2: Classifying Triangles and Interior and Exterior Angle Theorem

Name Period 10/22 11/1 Vocabulary Terms: Acute Triangle Right Triangle Obtuse Triangle Scalene Isosceles Equilateral Equiangular Interior Angle Exterior Angle 10/22 Classify and Triangle Angle Theorems

### Visualizing Triangle Centers Using Geogebra

Visualizing Triangle Centers Using Geogebra Sanjay Gulati Shri Shankaracharya Vidyalaya, Hudco, Bhilai India http://mathematicsbhilai.blogspot.com/ sanjaybhil@gmail.com ABSTRACT. In this paper, we will

### 12. Parallels. Then there exists a line through P parallel to l.

12. Parallels Given one rail of a railroad track, is there always a second rail whose (perpendicular) distance from the first rail is exactly the width across the tires of a train, so that the two rails

### Lesson 1.1 Building Blocks of Geometry

Lesson 1.1 Building Blocks of Geometry For Exercises 1 7, complete each statement. S 3 cm. 1. The midpoint of Q is. N S Q 2. NQ. 3. nother name for NS is. 4. S is the of SQ. 5. is the midpoint of. 6. NS.

### Geometry Arcs And Central Angles Practice Key

Arcs And Central Angles Practice Key Free PDF ebook Download: Arcs And Central Angles Practice Key Download or Read Online ebook geometry arcs and central angles practice key in PDF Format From The Best

### CONGRUENCE BASED ON TRIANGLES

HTR 174 5 HTR TL O ONTNTS 5-1 Line Segments ssociated with Triangles 5-2 Using ongruent Triangles to rove Line Segments ongruent and ngles ongruent 5-3 Isosceles and quilateral Triangles 5-4 Using Two

### The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY. Student Name:

GEOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION GEOMETRY Wednesday, August 18, 2010 8:30 to 11:30 a.m., only Student Name: School Name: Print your name and the name of

### 3.1 Triangles, Congruence Relations, SAS Hypothesis

Chapter 3 Foundations of Geometry 2 3.1 Triangles, Congruence Relations, SAS Hypothesis Definition 3.1 A triangle is the union of three segments ( called its side), whose end points (called its vertices)

Geometry Progress Ladder Maths Makes Sense Foundation End-of-year objectives page 2 Maths Makes Sense 1 2 End-of-block objectives page 3 Maths Makes Sense 3 4 End-of-block objectives page 4 Maths Makes

### The Triangle and its Properties

THE TRINGLE ND ITS PROPERTIES 113 The Triangle and its Properties Chapter 6 6.1 INTRODUCTION triangle, you have seen, is a simple closed curve made of three line segments. It has three vertices, three

### 1-1. Nets and Drawings for Visualizing Geometry. Vocabulary. Review. Vocabulary Builder. Use Your Vocabulary

1-1 Nets and Drawings for Visualizing Geometry Vocabulary Review Identify each figure as two-dimensional or three-dimensional. 1. 2. 3. three-dimensional two-dimensional three-dimensional Vocabulary uilder

### Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

### Lesson 5-3: Concurrent Lines, Medians and Altitudes

Playing with bisectors Yesterday we learned some properties of perpendicular bisectors of the sides of triangles, and of triangle angle bisectors. Today we are going to use those skills to construct special

### Chapter 5.1 and 5.2 Triangles

Chapter 5.1 and 5.2 Triangles Students will classify triangles. Students will define and use the Angle Sum Theorem. A triangle is formed when three non-collinear points are connected by segments. Each