6.012 Microelectronic Devices and Circuits Formula Sheet for the Final Exam, Fall " de(x) dx % d&(x) dx %" d 2 &(x) (x,t) J e

Similar documents
Section C2: BJT Structure and Operational Modes

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

Lecture #21. MOS Capacitor Structure

Multiple stage amplifiers

Transconductance. (Saturated) MOSFET Small-Signal Model. The small-signal drain current due to v gs is therefore given by

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Chapter 6 Inductance, Capacitance, and Mutual Inductance

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

Mean Molecular Weight

EDC Lesson 12: Transistor and FET Characteristics EDCLesson12- ", Raj Kamal, 1

The difference between voltage and potential difference

Lecture 060 Push-Pull Output Stages (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Lecture 8 MOSFET(I) MOSFET I-V CHARACTERISTICS

NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A

SMA Compound Semiconductors Lecture 2 - Metal-Semiconductor Junctions - Outline Introduction

BJT Ebers-Moll Model and SPICE MOSFET model

CHAPTER 10 Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor

Faraday's Law of Induction

Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters

CO2005: Electronics I (FET) Electronics I, Neamen 3th Ed. 1

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. March 6, 2003

Portfolio Loss Distribution

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany,

EQUIVALENT ELECTRIC CIRCUIT MATLAB SIMULINK OF A BIFACIAL SOLAR CELL IN TRANSIENT STATE: APPLIED MAGNETIC FIELD EFFECT

Lecture 9 MOSFET(II) MOSFET I-V CHARACTERISTICS(contd.)

Quantization Effects in Digital Filters

MOSFET DEVICE MODELING FOR ANALOG CIRCUITS DESIGN

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST)

Chapter 10 Advanced CMOS Circuits

Computational Fluid Dynamics II

s-domain Circuit Analysis

Comparison of Control Strategies for Shunt Active Power Filter under Different Load Conditions

Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II

5.74 Introductory Quantum Mechanics II

Bob York. Transistor Basics - MOSFETs

Lecture 23 - Frequency Response of Amplifiers (I) Common-Source Amplifier. December 1, 2005

(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = = 0

Rotation Kinematics, Moment of Inertia, and Torque

Chapter 31B - Transient Currents and Inductance

Simulating injection moulding of microfeatured components

Jet Engine. Figure 1 Jet engine

EE-612: Nanoscale Transistors (Advanced VLSI Devices) Spring 2005

AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level

Correlated Noise Modeling - An Implementation into HICUM

Chapter 12 Inductors and AC Circuits

Transient Voltage Suppressor SMBJ5.0 - SMBJ440CA


Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Lecture 9 - MOSFET (I) MOSFET I-V Characteristics. October 6, 2005

Analysis and Modeling of Buck Converter in Discontinuous-Output-Inductor-Current Mode Operation *

Loudspeaker Voice-Coil Inductance Losses: Circuit Models, Parameter Estimation, and Effect on Frequency Response

Lecture 3: Force of Interest, Real Interest Rate, Annuity

OptiMOS Power-Transistor Product Summary

NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6

Integrated Circuits & Systems

ESPOO 2005 VTT PUBLICATIONS 570. Kari J. Kataja. Numerical modelling of near field optical data storage

Interlude: Interphase Mass Transfer

Field-Effect (FET) transistors

Design Issues for Low Power Integrated Thermal Flow Sensors with Ultra-Wide Dynamic Range and Low Insertion Loss

I-V Characteristics of BJT Common-Emitter Output Characteristics

Section 2 Introduction to Statistical Mechanics

Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]

UGF W, 1 GHz, 26V Broadband RF Power N-Channel Enhancement-Mode Lateral MOSFET

Derivation of Humidty and NOx Humidty Correction Factors

CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol

ALTRONIC 24VDC Al TERNATOR ENGINE DRIVEN POWER PACKAGES. INSTALLATION INSTRUCTIONS!FORM Al T H 2m DESCRIPTION

MOSFET N-channel enhancement switching transistor IMPORTANT NOTICE. use

Realistic Image Synthesis

Viscosity of Solutions of Macromolecules

An Introduction to the EKV Model and a Comparison of EKV to BSIM

Lecture 090 Large Signal MOSFET Model (3/24/10) Page 090-1

CIRCUITS AND ELECTRONICS. Filters

Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.

OptiMOS 3 Power-Transistor

Recurrence. 1 Definitions and main statements

QUANTIZATION. Outlines. Joseph RONSIN. Definition Scalar quantization. Vector quantization. Definition Distortion Non uniform quantization


Consider a 1-D stationary state diffusion-type equation, which we will call the generalized diffusion equation from now on:

Reduced magnetohydrodynamic equations with coupled Alfvén and sound wave dynamics

where the coordinates are related to those in the old frame as follows.

1 Battery Technology and Markets, Spring January 2010 Lecture 1: Introduction to Electrochemistry

Calculating the high frequency transmission line parameters of power cables

OptiMOS 3 Power-Transistor

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

BJT Circuit Configurations

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals

STANDING WAVE TUBE TECHNIQUES FOR MEASURING THE NORMAL INCIDENCE ABSORPTION COEFFICIENT: COMPARISON OF DIFFERENT EXPERIMENTAL SETUPS.

Active Compensation of Transducer Nonlinearities

Calculation of Sampling Weights

Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems

IRF150 [REF:MIL-PRF-19500/543] 100V, N-CHANNEL. Absolute Maximum Ratings

Technical Note on the MTF of CCD Sensors

Equivalent Electrical Simulation of High -Power Ultrasonic Piezoelectric Transducers by Using Finite Element Analysis

Energy-balance and Sliding Mode Control Strategies of a Cascade H-Bridge Multilevel Converter for Grid-connected PV Systems

We are now ready to answer the question: What are the possible cardinalities for finite fields?

"Research Note" APPLICATION OF CHARGE SIMULATION METHOD TO ELECTRIC FIELD CALCULATION IN THE POWER CABLES *

IRFP460LC PD HEXFET Power MOSFET V DSS = 500V. R DS(on) = 0.27Ω I D = 20A

How To Understand An Outut Stage

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR

Transcription:

6.0 Mcroelectronc Devces and Crcuts Formula Sheet for the Fnal Exam Fall 009 Parameter Values: q.6x0 "9 Coul # o 8.854x0 "4 F/cm # rs.7 # S $0 " F/cm n [ S@R.T ] $0 0 cm "3 kt /q $ 0.05 V; kt /q Еm x0 "4 cm Drft/Dffuson: ln0 $ 0.06 V Perodc Table: III IV V B C N Al S P Ga Ge As In Sn Sb Electrostatcs: Drft velocty : Conductvty : Dffuson flux : Ensten relaton : s x БЕ m E x " q Е e n Е h p $C F m #D m m $x D m kt Е m q " dex dx dx dx " d x #x Ex #xdx " Ex x $ Exdx dx #x x " $ $$ #xdxdx The Fve Basc Equatons: Electron contnuty : Hole contnuty : Electron current densty : Hole current densty : Possons equaton : "nxt "t "pxt "t # q q "J e xt "J h xt g L xt # [ nxt $ pxt # n ]rt g L xt # [ nxt $ pxt # n ]rt "nxt J e xt qе e nxtext q "pxt J h xt qе h pxtext # qd h "Ext q pxt # nxt N d x # N # a x Unform dopng full onzaton TE n - type N d >> N a n o " N d # N a $ N D p o n n o n kt q ln N D n p - type N a >> N d p o " N a # N d $ N A n o n Unform optcal exctaton unform dopng p o p # kt q ln N A n dn n n o n p p o p n p dt g t " p n n nr l o o dn Low level njecton np<< p o n o : dt n g l t wth # mn $ p o r " # mn

Flow problems unformly doped quas-neutral regons wth quas-statc exctaton and low level njecton; p-type example: d nx Mnorty carrer excess: " nx " g dx L x L e # $ e L e dnt Mnorty carrer current densty: J e x q dx Majorty carrer current densty : J h x J Tot " J e x Electrc feld : E x x Majorty carrer excess: Short base nfnte lfetme lmt: Mnorty carrer excess: px nx q J h x D h J e x qе h p o de x x dx d nx " # g dx L x nx " # $$ g L xdxdx Non-unformly doped semconductor sample n thermal equlbrum d dx { $ [ N d x $ N a x]} q # n e q kt $ e $q kt n o x n e q kt p o x n e $q kt p o xn o x n Depleton approxmaton for abrupt p-n juncton: $ 0 #qn Ap qn Dn 0 for for for for x < #x p #x p < x < 0 0 < x < x n x n < x x p N Dn x n b n # p kt q ln N Dn n wv AB S b # v AB q N Dn E pk q # v b AB N Dn N Dn S N Dn q DP v AB #Ap x p Ideal p-n juncton dode -v relaton: n-x p n e qv AB / kt # D D Aqn h D e e qv AB / kt - $ N Dn w neff w peff -x p v AB #A q S b # v AB N Dn N Dn n-x p n e qv AB / kt "; px n n e qv AB / kt N Dn w meff w m " x m L m tanh w m " x m L m px n n e qv AB / kt " N Dn f L m >> w m f L m ~ w m q QNRp -sde Aq - nxdx q QNRn -sde Aq - pxdx Note : px. nx n QNRs -w p w n x n L m f L m << w m

Large sgnal BJT Model n Forward Actve Regon FAR: npn wth base wdth modulaton B C wth : I BS I BS e qv BE / kt " v BE v CE v BE v BC # F B v BE v CE I ES # F Also F "- B - E Aqn # F When - B. 0 then F. MOS Capactor: 3 $v CE [ $v CE ] # F I BS e qv BE / kt " and # F. D h D e N DE w Eeff N AB w # F Beff - E "- B - E - B wth - E D h / N AB N DE / w Beff w Eeff and # F. - E F " F and $ and - B w Beff L eb Flat - band voltage : V FB " v GB at whch #0 # p$s [# 0 n S] V FB # p$s $ # m Threshold voltage : V T " v GC at whch #0 $ # p$s $ v BC # # p$s $ v BC n S { } / V T v BC V FB $ # p$s S # p$s $ v BC Depleton regon wdth at threshold : x DT v BC S # p$s $ v BC Oxde capactance per unt area : Inverson layer sheet charge densty : q N $ Accumulaton layer sheet charge densty: C ox ox [ rso 3.9 SO 3.5x0 $3 F /cm] q P $ [ v GC $V T v BC ] [ v GB $V FB ] Gradual Channel Approxmaton for MOSFET Characterstcs: n-channel; strong nverson; wth channel length modulaton; no velocty saturaton Only vald for v BS В 0 v DS Г 0. G 0 B 0 K D # [ v "V v GS T BS $ v DS " v DSsat ] for 0 < v GS K v GS "# v DS v DS for 0 < # v DS < v GS wth V T V FB " - p"s. S - p"s " v BS K W L Е e C ox C ox. ox # 0 for [ v GS ] < 0 < # v DS < # v DS { } / v DSsat # v "V v GS T BS. S [ - p"s " v BS ] / $

Large Sgnal Model for MOSFETs Operated below Threshold weak nverson: n-channel Only vald for for v GS В V T v DS Г 0 v BS В 0. 4 G 0 B " 0 Ds#t " I Ss#t e q{ v GS #V T } n kt # e #qv DS / kt where I Ss#t $ W L Е e kt q S p # v BS K o V t - p # v BS wth V t $ kt q K o $ W L Е ec ox - $ S - n " p # v BS Large Sgnal Model for MOSFETs Reachng Velocty Saturaton at Small v DS : n-channel Only vald for v BS В 0 v DS Г 0. Neglects v DS / relatve to -V T. Saturaton model: s y E y Е e E y f E y " E crt s y E y Е e E crt # s sat f E y $ E crt G 0 B 0 0 for v GS V T < 0 < v DS D W s sat [ v GS V T ][ v DS crt L ] for 0 < v GS V T crt L < v DS W L Е C e ox[ v GS V T ]v DS for 0 < v GS V T v DS < crt L wth # CMOS Performance Transfer characterstc: In general : V LO 0 V HI V DD I ON 0 I OFF 0 Symmetry : V M V DD and NM LO NM HI " K n K p and V Tp V Tn Mnmum sze gate : L n L p W n W mn W p Е n Е p W n or W p s satn s satp W n Swtchng tmes and gate delay no velocty saturaton: C " Ch arg e " Dsch arg e L V DD K n [ V DD #V Tn ] C L n W n L n W p L p C ox 3nW mn " Mn.Cycle " Ch arg e " Dsch arg e nl mnv DD Е e [ V DD #V Tn ] Dynamc power dsspaton no velocty saturaton: P dyn @ fmax PD dyn @ fmax C L V DD f max " C LV DD " Е W e mn$ V V V ox DD DD Tn # Mn.Cycle assumes Е e Е h P dyn @ fmax InverterArea " P dyn @ f max " Е e$ V V V ox DD DD Tn W mn

Swtchng tmes and gate delay full velocty saturaton: 5 C " Ch arg e " Dsch arg e L V DD W mn s sat [ V DD #V Tn ] C L n W n L n W p L p C ox nw mn assumes s sate s sath " Mn.Cycle " Ch arg e " Dsch arg e 4nV DD s sat [ V DD #V Tn ] Dynamc power dsspaton per gate full velocty saturaton: P dyn @ fmax PD dyn @ fmax C L V DD Statc power dsspaton per gate f max " C V L DD " s W sat mn$ V V V ox DD DD Tn # Mn.Cycle P dyn @ fmax InverterArea " P dyn @ f max " s sat$ V V V ox DD DD Tn W mn L P statc V DD I Doff W " V mn # DD Е e V S { t e $V T } nv t V BS P statc PD statc Inverter Area V DD # Е e V S t e $V T V BS CMOS Scalng Rules - Constant electrc feld scalng { } nv t Scaled Dmensons : " s W " W s " s N A " sn A Scaled Voltages : V DD " V DD s V BS " V BS s Consequences : C ox " s Devce transt tmes K " sk V T " V T s # " # s P dyn " P dyn s PD dyn @ fmax " PD dyn @ fmax PD statc " s e s$v T sn V t PD statc Short Base Dode transt tme : " b w B D mnb w B Е mnb V thermal Channel transt tme MOSFET w.o. velocty saturaton : " Ch 3 Е Ch V GS #V T Channel transt tme MOSFET wth velocty saturaton : " Ch L s sat L

6 Small Sgnal Lnear Equvalent Crcuts: Ѕ p-n Dode n -p dopng assumed for C d g d " # D q #v AB kt I S eqb / kt $ Q where C dp B A q I D kt C d C dp C df q S and C V qi D df AB kt b B Ѕ BJT n FAR q kt " oi BS e qv kt BE [ #V CE ] $ qi C kt # $ # I C or $ I C " o I BS e qv BE kt C b B-E depleton cap. wth b - w B [ w p x p ] g " o q I C " o kt g d d wth d " w x p p C Е : B-C depleton cap. Ѕ MOSFET strong nverson; n saturaton no velocty saturaton K[ V GS V BS ][ #V DS ] $ K I D K [ V "V V GS T BS ] # $ # I D or $ I D b K I D wth " -V T -v BS Q 3 W LC ox C sb C gb C db : depleton capactances C gd W C gd where C gd. S q/ p "V BS s the G-D frngng and overlap capactance per unt gate length parastc Ѕ MOSFET strong nverson; n saturaton wth full velocty saturaton W s sat C ox " I D I D b # wth # $ V T v BS Q S q p V BS W LC ox C sb C gb C db : depleton capactances C gd W C gd where C gd s the G-D frngng and overlap capactance per unt gate length parastc Ѕ MOSFET operated sub-threshold; n forward actve regon; only vald for v bs 0 q I D n kt " I D I D # W L C gd W C gd where C gd C # ox V GS $V FB C db : dran regon depleton capactance S s the G-D frngng and overlap capactance per unt gate length parastc

7 Sngle transstor analog crcut buldng block stages Note: g l g sl g el ; g l е g l BIPOLAR Common emtter " Common base Emtter follower Emtter degeneracy Shunt feedback Voltage Current gan A v gan A # " r l " $ g l g l g l Input r # g [ g l ] m r l # # [ $ ] [ g ] # $ g l # $ r $ g g l " g " G m F G F g l Output resstance R resstance R o r r o # [ $ ]r o r r t r l $ # " r l # $ # r [ $ ]R F # r o R F # " R F " g l G F g G F " A v r o R F G F MOSFET Common source " Common gate Source follower Source degeneracy seres feedback Shunt feedback Voltage Current Input Output gan A v gan A resstance R resstance R o " r l g # # r $ o g l o [ [ b ] r l r [ b ] o g g mb o]. / - g t 0 [ ] [ g l ] # # [ g l ] " " G F G F " r l R F # # r o " R F " g l G F G F " A v OCTC/SCTC Methods for Estmatng Amplfer Bandwdth OCTC estmate of " HI : " HI # " $ - R C - $ r o R F G F wth R defned as the equvalent resstance n parallel wth C wth all other parastc devce capactors C s C Е s s C gd s etc. open crcuted. SCTC estmate of " LO : " LO # $ " j $ R j C j j j wth R j defned as the equvalent resstance n parallel wth C j wth all other basng and couplng capactors C s C O s C E s C S s etc. short crcuted.

8 Dfference- and Common-mode sgnals Gven two sgnals v and v we can decompose them nto two new sgnals one v C that s common to both v and v and the other v D that makes an equal but opposte polarty contrbuton to v and v : [ v D " v # v and v C " v v ] $ v v C v D and v v C # v D Short crcut current gan unty gan frequency f T " t # 3Е Ch V GS $V T L 3s Ch L MOSFET no vel. sat. W s sat W LC ox s sat L MOSFET w. vel. sat. - C C Е ; lm g I c [ m C C Е ] # D mnb w B BJT large I C. / tr Revsed /9/09

MIT OpenCourseWare http://ocw.mt.edu 6.0 Mcroelectronc Devces and Crcuts Fall 009 For nformaton about ctng these materals or our Terms of Use vst: http://ocw.mt.edu/terms.