Mean Molecular Weight

Size: px
Start display at page:

Download "Mean Molecular Weight"

Transcription

1 Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of materal, or, alternatvely, the mean mass of a partcle n Atomc Mass Unts). Recall that a mole of any substance contans N A = atoms. Thus, the number densty of ons s related to the mass densty, ρ, by n = ρ = ρn A µm a µ 5.1.1) where m a s the mass that s equvalent to 1 A.M.U. If the mass fracton of speces s x, thets number densty s = x ρn A A 5.1.2) where A s the atomc weght of the speces. The number densty of all ons n a volume of gas s then n I = x = ρn A A or n I = ρn A µ I where µ I = x A ) ) To compute the contrbuton of massless) electrons to the mean molecular weght, let Z be the atomc number of speces, and f be the speces onzaton fracton,.e., the fracton of electrons of that are free. The number densty of electrons s therefore ) x n e = ρn A f Z 5.1.4) A

2 or n e = ρn A µ e where µ e = Z x f A ) ) Note that n the case of total onzaton f = 1), ths equaton smplfes greatly. Snce Z /A = 1 for hydrogen, and 1/2 for everythng else, µ e = X Y + Z) ) 1 = X + ) 1 1 X) = X 5.1.6) From the defntons above, the total number densty of partcles s n = n I + n e = ρn A µ where the mean molecular weght s defned as µ = [ 1 µ I + 1 µ e ] )

3 The Ionzaton Fracton The calculaton of mean molecular weght requres knowledge of the chemcal composton of the materal and the onzaton fracton. To calculate onzaton fracton, one needs the Saha equaton. In general, the Saha equaton can be used to compute onzaton fractons over most of the star. It does, however, requre that the gas be n thermodynamc equlbrum. Ths s true throughout the star, as at hgh denstes, collsons wll control the level populatons. Ths approxmaton only breaks down the solar corona, where the denstes become very low. The Saha equaton also breaks down the centers of stars, where hgh denstes cause the onzaton energes of atoms to be reduced. Obvously, f the mean dstance between atoms s d, then there can be no bound states wth rad greater than d/2.) In the case of the hydrogen atom, the Bohr radus of level s a n = n + 1) 2 h2 m e e 2 = n + 1) 2 cm Thus, f the partcle densty s ρ µm a 0.3 µ g cm 3 4/3π2a 0 ) 3 then all the hydroges necessarly pressure onzed. In practce, the Saha equaton begns to break down at nuclear dstances of 10 a 0, whch corresponds to µ g-cm 3. To correct for ths effect, the Saha equatos normally used untl t begns to show decreasng onzaton fractons toward the center of the star. When ths happens, complete onzatos assumed.

4 To derve the Saha equaton, begn by consderng the Boltzmann equaton, whch states that the number of atoms n level relatve to level j s = ω e χ j/k T 5.2.1) n j ω j where ω s the statstcal weght of the level.e., the number of separate, ndvdual states that are degenerate n energy), and χ j s the dfference n energy between the two levels. The number of atoms n level relatve to the number n all levels s thus n = ω ω 0 e +χ 0/kT + ω 1 e +χ 1/kT + ω 2 e +χ 2/kT +... = ω e χ /kt ω 0 + ω 1 e χ 1/kT + ω 2 e χ 2/kT +... n = ω e χ /kt u 5.2.2) where χ s the energy dfference between the th level and the ground state. The varable u s the partton functon for the atom or on). Because u s a functon of temperature, t s sometmes wrtten ut). Now let s generalze ths equaton to electrons n the contnuum. Let be the number of atoms n all levels defned as n above), and let state +1 be that where an excted electros n the contnuum wth momentum between p and p + dp. The Boltzmann equaton then gves d+1 = dω +1 u exp χ + p 2 ) /2m e k T where χ s the energy needed to onze the ground state of the atom, and dω +1 s the statstcal weght of the onzed state.

5 Now consder that dω has two components: one from the on ω +1 ), and other from the free electron dω e ). The former s just the statstcal weght of the ground state of the on, whle the latter can be computed usng the excluson rule. Snce each quantum cell n phase space can have only two electrons t spn up and spn down), then the number of degenerate states n a volume h 3 s Thus dω e = 2 d3 x d 3 p h 3 d+1 = 2 dv d3 p h 3 = 2 h 3 dv 4πp2 dp 5.2.3) = 8πp2 ω +1 h 3 u T) exp χ + p 2 ) /2m e dv dp k T The number of electrons n volume dv = 1/n e, so the total number of electrons n all contnuum states s therefore +1 = ω +1 8π ) u T) n e h 3 e χ /kt p 2 exp p2 dp 2m e kt or, f we let x 2 = p 2 /2m e kt, then +1 = ω +1 u T) = ω +1 u T) 8π n e h 3 e χ /kt 0 8π n e h 3 e χ /kt 2m e kt) 3/2 0 2m e kt) x 2 e x2 2m e kt) 1/2 dx 0 x 2 e x2 dx = ω +1 u T) 8π n e h 3 e χ /kt 2m e kt) 3/2 π 4 +1 = 2 n e ω +1 u T) 2πm e kt) 3/2 h 3 e χ /kt 5.2.4)

6 Fnally, note that for the calculaton above +1 represents those atoms of speces that have one electron the contnuum state,.e., onzed. It does not consder atoms of +1 that are themselves excted. In other words, +1 n 5.2.4) only ncludes onzed atoms n ther ground state.) To nclude all the excted states of +1, we must agan sum the contrbutons n exactly the same way as we dd n 5.2.2). Thus, the statstcal weght n 5.2.4) should be replaced by the partton functon, and +1 = 2 n e u +1 T) u T) 2πme kt h 2 ) 3/2 e χ /kt 5.2.5) Ths s the Saha equaton, whch relates the number of atoms n onzaton state + 1 to the number onzaton state. Note that f need be, we can substtute the electron pressure for the electron densty usng P e = n e kt, and wrte the Saha equaton as +1 P e = 2 u +1T) u T) ) 3/2 2πme k T) 5/2 e χ /kt h ) The sense of these equatons s ntutve: the hgher the temperature, the greater the rato, but the hgher the densty or pressure), the lower the rato due to the greater possblty for recombnatons).

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change

More information

Can Auto Liability Insurance Purchases Signal Risk Attitude?

Can Auto Liability Insurance Purchases Signal Risk Attitude? Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang

More information

Shielding Equations and Buildup Factors Explained

Shielding Equations and Buildup Factors Explained Sheldng Equatons and uldup Factors Explaned Gamma Exposure Fluence Rate Equatons For an explanaton of the fluence rate equatons used n the unshelded and shelded calculatons, vst ths US Health Physcs Socety

More information

Calculation of Sampling Weights

Calculation of Sampling Weights Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample

More information

Section 2 Introduction to Statistical Mechanics

Section 2 Introduction to Statistical Mechanics Secton 2 Introducton to Statstcal Mechancs 2.1 Introducng entropy 2.1.1 Boltzmann s formula A very mportant thermodynamc concept s that of entropy S. Entropy s a functon of state, lke the nternal energy.

More information

An Alternative Way to Measure Private Equity Performance

An Alternative Way to Measure Private Equity Performance An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate

More information

1. Measuring association using correlation and regression

1. Measuring association using correlation and regression How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a

More information

Introduction to Statistical Physics (2SP)

Introduction to Statistical Physics (2SP) Introducton to Statstcal Physcs (2SP) Rchard Sear March 5, 20 Contents What s the entropy (aka the uncertanty)? 2. One macroscopc state s the result of many many mcroscopc states.......... 2.2 States wth

More information

1. Degenerate Pressure

1. Degenerate Pressure . Degenerate Pressure We next consider a Fermion gas in quite a different context: the interior of a white dwarf star. Like other stars, white dwarfs have fully ionized plasma interiors. The positively

More information

Viscosity of Solutions of Macromolecules

Viscosity of Solutions of Macromolecules Vscosty of Solutons of Macromolecules When a lqud flows, whether through a tube or as the result of pourng from a vessel, layers of lqud slde over each other. The force f requred s drectly proportonal

More information

Recurrence. 1 Definitions and main statements

Recurrence. 1 Definitions and main statements Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.

More information

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by 6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng

More information

Jet Engine. Figure 1 Jet engine

Jet Engine. Figure 1 Jet engine Jet Engne Prof. Dr. Mustafa Cavcar Anadolu Unversty, School of Cvl Avaton Esksehr, urkey GROSS HRUS INAKE MOMENUM DRAG NE HRUS Fgure 1 Jet engne he thrust for a turboet engne can be derved from Newton

More information

MOLECULAR PARTITION FUNCTIONS

MOLECULAR PARTITION FUNCTIONS MOLECULR PRTITIO FUCTIOS Introducton In the last chapter, we have been ntroduced to the three man ensembles used n statstcal mechancs and some examples of calculatons of partton functons were also gven.

More information

University Physics AI No. 11 Kinetic Theory

University Physics AI No. 11 Kinetic Theory Unersty hyscs AI No. 11 Knetc heory Class Number Name I.Choose the Correct Answer 1. Whch type o deal gas wll hae the largest alue or C -C? ( D (A Monatomc (B Datomc (C olyatomc (D he alue wll be the same

More information

Rotation Kinematics, Moment of Inertia, and Torque

Rotation Kinematics, Moment of Inertia, and Torque Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute

More information

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).

benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ). REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or

More information

How To Calculate The Accountng Perod Of Nequalty

How To Calculate The Accountng Perod Of Nequalty Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.

More information

HÜCKEL MOLECULAR ORBITAL THEORY

HÜCKEL MOLECULAR ORBITAL THEORY 1 HÜCKEL MOLECULAR ORBITAL THEORY In general, the vast maorty polyatomc molecules can be thought of as consstng of a collecton of two electron bonds between pars of atoms. So the qualtatve pcture of σ

More information

Portfolio Loss Distribution

Portfolio Loss Distribution Portfolo Loss Dstrbuton Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment

More information

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES

THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered

More information

Addendum to: Importing Skill-Biased Technology

Addendum to: Importing Skill-Biased Technology Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our

More information

Lecture 2 The First Law of Thermodynamics (Ch.1)

Lecture 2 The First Law of Thermodynamics (Ch.1) Lecture he Frst Law o hermodynamcs (Ch.) Outlne:. Internal Energy, Work, Heatng. Energy Conservaton the Frst Law 3. Quas-statc processes 4. Enthalpy 5. Heat Capacty Internal Energy he nternal energy o

More information

v a 1 b 1 i, a 2 b 2 i,..., a n b n i.

v a 1 b 1 i, a 2 b 2 i,..., a n b n i. SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are

More information

Luby s Alg. for Maximal Independent Sets using Pairwise Independence

Luby s Alg. for Maximal Independent Sets using Pairwise Independence Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mt.edu 5.74 Introductory Quantum Mechancs II Sprng 9 For nformaton about ctng these materals or our Terms of Use, vst: http://ocw.mt.edu/terms. 4-1 4.1. INTERACTION OF LIGHT

More information

Interlude: Interphase Mass Transfer

Interlude: Interphase Mass Transfer Interlude: Interphase Mass Transfer The transport of mass wthn a sngle phase depends drectly on the concentraton gradent of the transportng speces n that phase. Mass may also transport from one phase to

More information

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity

Trade Adjustment and Productivity in Large Crises. Online Appendix May 2013. Appendix A: Derivation of Equations for Productivity Trade Adjustment Productvty n Large Crses Gta Gopnath Department of Economcs Harvard Unversty NBER Brent Neman Booth School of Busness Unversty of Chcago NBER Onlne Appendx May 2013 Appendx A: Dervaton

More information

where the coordinates are related to those in the old frame as follows.

where the coordinates are related to those in the old frame as follows. Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product

More information

CHAPTER 14 MORE ABOUT REGRESSION

CHAPTER 14 MORE ABOUT REGRESSION CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp

More information

7.5. Present Value of an Annuity. Investigate

7.5. Present Value of an Annuity. Investigate 7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on

More information

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:

The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are: polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng

More information

DEFINING %COMPLETE IN MICROSOFT PROJECT

DEFINING %COMPLETE IN MICROSOFT PROJECT CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.

More information

L10: Linear discriminants analysis

L10: Linear discriminants analysis L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss

More information

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12

PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 12 14 The Ch-squared dstrbuton PSYCHOLOGICAL RESEARCH (PYC 304-C) Lecture 1 If a normal varable X, havng mean µ and varance σ, s standardsed, the new varable Z has a mean 0 and varance 1. When ths standardsed

More information

Simple Interest Loans (Section 5.1) :

Simple Interest Loans (Section 5.1) : Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part

More information

Multiple stage amplifiers

Multiple stage amplifiers Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple

More information

1 What is a conservation law?

1 What is a conservation law? MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2015 2016, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

More information

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background:

SPEE Recommended Evaluation Practice #6 Definition of Decline Curve Parameters Background: SPEE Recommended Evaluaton Practce #6 efnton of eclne Curve Parameters Background: The producton hstores of ol and gas wells can be analyzed to estmate reserves and future ol and gas producton rates and

More information

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy

Answer: A). There is a flatter IS curve in the high MPC economy. Original LM LM after increase in M. IS curve for low MPC economy 4.02 Quz Solutons Fall 2004 Multple-Choce Questons (30/00 ponts) Please, crcle the correct answer for each of the followng 0 multple-choce questons. For each queston, only one of the answers s correct.

More information

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.

More information

CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potential Energy and Conservation of Energy CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..

More information

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1.

1.1 The University may award Higher Doctorate degrees as specified from time-to-time in UPR AS11 1. HIGHER DOCTORATE DEGREES SUMMARY OF PRINCIPAL CHANGES General changes None Secton 3.2 Refer to text (Amendments to verson 03.0, UPR AS02 are shown n talcs.) 1 INTRODUCTION 1.1 The Unversty may award Hgher

More information

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network

Forecasting the Demand of Emergency Supplies: Based on the CBR Theory and BP Neural Network 700 Proceedngs of the 8th Internatonal Conference on Innovaton & Management Forecastng the Demand of Emergency Supples: Based on the CBR Theory and BP Neural Network Fu Deqang, Lu Yun, L Changbng School

More information

Quantization Effects in Digital Filters

Quantization Effects in Digital Filters Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value

More information

Lagrangian Dynamics: Virtual Work and Generalized Forces

Lagrangian Dynamics: Virtual Work and Generalized Forces Admssble Varatons/Vrtual Dsplacements 1 2.003J/1.053J Dynamcs and Control I, Sprng 2007 Paula Echeverr, Professor Thomas Peacock 4/4/2007 Lecture 14 Lagrangan Dynamcs: Vrtual Work and Generalzed Forces

More information

1. Give a reason why the Thomson plum-pudding model does not agree with experimental observations.

1. Give a reason why the Thomson plum-pudding model does not agree with experimental observations. [Problems] Walker, Physcs, 3 rd Edton Chapter 31 Conceptual Questons (Answers to odd-numbered Conceptual Questons can be ound n the back o the book, begnnng on page ANS-xx.) 1. Gve a reason why the Thomson

More information

BERNSTEIN POLYNOMIALS

BERNSTEIN POLYNOMIALS On-Lne Geometrc Modelng Notes BERNSTEIN POLYNOMIALS Kenneth I. Joy Vsualzaton and Graphcs Research Group Department of Computer Scence Unversty of Calforna, Davs Overvew Polynomals are ncredbly useful

More information

The OC Curve of Attribute Acceptance Plans

The OC Curve of Attribute Acceptance Plans The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4

More information

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance

) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell

More information

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION

PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIGIOUS AFFILIATION AND PARTICIPATION PRIVATE SCHOOL CHOICE: THE EFFECTS OF RELIIOUS AFFILIATION AND PARTICIPATION Danny Cohen-Zada Department of Economcs, Ben-uron Unversty, Beer-Sheva 84105, Israel Wllam Sander Department of Economcs, DePaul

More information

Chapter 11 CLOUD DYNAMICS AND CHEMISTRY

Chapter 11 CLOUD DYNAMICS AND CHEMISTRY Chapter 11 CLOUD DYNAMICS AND CHEMISTRY Shawn J. Roselle * and Francs S. Bnkowsk ** Atmospherc Modelng Dvson Natonal Exposure Research Laboratory U.S. Envronmental Protecton Agency Research Trangle Park,

More information

Analysis of Premium Liabilities for Australian Lines of Business

Analysis of Premium Liabilities for Australian Lines of Business Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton

More information

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany, www.uni-leipzig.

Topical Workshop for PhD students Adsorption and Diffusion in MOFs Institut für Nichtklassische Chemie, Germany, www.uni-leipzig. Gas Separaton and Purfcaton Measurement of Breakthrough Curves Topcal Workshop for PhD students Adsorpton and Dffuson n MOFs Adsorpton on Surfaces / Separaton effects Useful features Thermodynamc effect

More information

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008

Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008 Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn

More information

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES

CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable

More information

21 Vectors: The Cross Product & Torque

21 Vectors: The Cross Product & Torque 21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl

More information

1 De nitions and Censoring

1 De nitions and Censoring De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence

More information

A Master Time Value of Money Formula. Floyd Vest

A Master Time Value of Money Formula. Floyd Vest A Master Tme Value of Money Formula Floyd Vest For Fnancal Functons on a calculator or computer, Master Tme Value of Money (TVM) Formulas are usually used for the Compound Interest Formula and for Annutes.

More information

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry

1 Battery Technology and Markets, Spring 2010 26 January 2010 Lecture 1: Introduction to Electrochemistry 1 Battery Technology and Markets, Sprng 2010 Lecture 1: Introducton to Electrochemstry 1. Defnton of battery 2. Energy storage devce: voltage and capacty 3. Descrpton of electrochemcal cell and standard

More information

1 Example 1: Axis-aligned rectangles

1 Example 1: Axis-aligned rectangles COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 6 Scrbe: Aaron Schld February 21, 2013 Last class, we dscussed an analogue for Occam s Razor for nfnte hypothess spaces that, n conjuncton

More information

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)

n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2) MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total

More information

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR

SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR XVIII Internatonal Conference on Gas Dscharges and Ther Applcatons (GD 2010) Grefswald - Germany SIMULATION OF THERMAL AND CHEMICAL RELAXATION IN A POST-DISCHARGE AIR CORONA REACTOR M. Mezane, J.P. Sarrette,

More information

Applied Research Laboratory. Decision Theory and Receiver Design

Applied Research Laboratory. Decision Theory and Receiver Design Decson Theor and Recever Desgn Sgnal Detecton and Performance Estmaton Sgnal Processor Decde Sgnal s resent or Sgnal s not resent Nose Nose Sgnal? Problem: How should receved sgnals be rocessed n order

More information

Section 5.3 Annuities, Future Value, and Sinking Funds

Section 5.3 Annuities, Future Value, and Sinking Funds Secton 5.3 Annutes, Future Value, and Snkng Funds Ordnary Annutes A sequence of equal payments made at equal perods of tme s called an annuty. The tme between payments s the payment perod, and the tme

More information

Chapter 7: Answers to Questions and Problems

Chapter 7: Answers to Questions and Problems 19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter

More information

The Mathematical Derivation of Least Squares

The Mathematical Derivation of Least Squares Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell

More information

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES

FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES FREQUENCY OF OCCURRENCE OF CERTAIN CHEMICAL CLASSES OF GSR FROM VARIOUS AMMUNITION TYPES Zuzanna BRO EK-MUCHA, Grzegorz ZADORA, 2 Insttute of Forensc Research, Cracow, Poland 2 Faculty of Chemstry, Jagellonan

More information

8 Algorithm for Binary Searching in Trees

8 Algorithm for Binary Searching in Trees 8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the

More information

Activity Scheduling for Cost-Time Investment Optimization in Project Management

Activity Scheduling for Cost-Time Investment Optimization in Project Management PROJECT MANAGEMENT 4 th Internatonal Conference on Industral Engneerng and Industral Management XIV Congreso de Ingenería de Organzacón Donosta- San Sebastán, September 8 th -10 th 010 Actvty Schedulng

More information

What is Candidate Sampling

What is Candidate Sampling What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble

More information

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW.

SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. SUPPLIER FINANCING AND STOCK MANAGEMENT. A JOINT VIEW. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (Span) Phone: 976-76-10-00

More information

The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1

The Effect of Mean Stress on Damage Predictions for Spectral Loading of Fiberglass Composite Coupons 1 EWEA, Specal Topc Conference 24: The Scence of Makng Torque from the Wnd, Delft, Aprl 9-2, 24, pp. 546-555. The Effect of Mean Stress on Damage Predctons for Spectral Loadng of Fberglass Composte Coupons

More information

Fixed income risk attribution

Fixed income risk attribution 5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group [email protected] We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two

More information

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek

THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo

More information

Question 2: What is the variance and standard deviation of a dataset?

Question 2: What is the variance and standard deviation of a dataset? Queston 2: What s the varance and standard devaton of a dataset? The varance of the data uses all of the data to compute a measure of the spread n the data. The varance may be computed for a sample of

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004 PHY464 Introduction to Quantum Mechanics Fall 4 Practice Test 3 November, 4 These problems are similar but not identical to the actual test. One or two parts will actually show up.. Short answer. (a) Recall

More information

Section 5.4 Annuities, Present Value, and Amortization

Section 5.4 Annuities, Present Value, and Amortization Secton 5.4 Annutes, Present Value, and Amortzaton Present Value In Secton 5.2, we saw that the present value of A dollars at nterest rate per perod for n perods s the amount that must be deposted today

More information

Brigid Mullany, Ph.D University of North Carolina, Charlotte

Brigid Mullany, Ph.D University of North Carolina, Charlotte Evaluaton And Comparson Of The Dfferent Standards Used To Defne The Postonal Accuracy And Repeatablty Of Numercally Controlled Machnng Center Axes Brgd Mullany, Ph.D Unversty of North Carolna, Charlotte

More information

Modelling of Hot Water Flooding

Modelling of Hot Water Flooding Unversty of Readng Modellng of Hot Water Floodng as an Enhanced Ol Recovery Method by Zenab Zargar August 013 Department of Mathematcs Submtted to the Department of Mathematcs, Unversty of Readng, n Partal

More information

The Current Employment Statistics (CES) survey,

The Current Employment Statistics (CES) survey, Busness Brths and Deaths Impact of busness brths and deaths n the payroll survey The CES probablty-based sample redesgn accounts for most busness brth employment through the mputaton of busness deaths,

More information

Joe Pimbley, unpublished, 2005. Yield Curve Calculations

Joe Pimbley, unpublished, 2005. Yield Curve Calculations Joe Pmbley, unpublshed, 005. Yeld Curve Calculatons Background: Everythng s dscount factors Yeld curve calculatons nclude valuaton of forward rate agreements (FRAs), swaps, nterest rate optons, and forward

More information

Extending Probabilistic Dynamic Epistemic Logic

Extending Probabilistic Dynamic Epistemic Logic Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set

More information

Liquid-Vapor Equilibria in Binary Systems 1

Liquid-Vapor Equilibria in Binary Systems 1 Lqud-Vapor Equlbra n Bnary Systems 1 Purpose The purpose of ths experment s to study a bnary lqud-vapor equlbrum of chloroform and acetone. Measurements of lqud and vapor compostons wll be made by refractometry.

More information

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State.

Effects of Extreme-Low Frequency Electromagnetic Fields on the Weight of the Hg at the Superconducting State. Effects of Etreme-Low Frequency Electromagnetc Felds on the Weght of the at the Superconductng State. Fran De Aquno Maranhao State Unversty, Physcs Department, S.Lus/MA, Brazl. Copyrght 200 by Fran De

More information

Traffic State Estimation in the Traffic Management Center of Berlin

Traffic State Estimation in the Traffic Management Center of Berlin Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal [email protected] Peter Möhl, PTV AG,

More information