s-domain Circuit Analysis
|
|
|
- MargaretMargaret Evans
- 9 years ago
- Views:
Transcription
1 S-Doman naly
2 -Doman rcut naly Tme doman t doman near rcut aplace Tranform omplex frequency doman doman Tranformed rcut Dfferental equaton lacal technque epone waveform aplace Tranform nvere Tranform - lgebrac equaton lgebrac technque epone tranform
3 Krchhoff aw n -Doman t doman Krchhoff current law K doman t t 3 t 4 t t t t t v t v t 4 Krchhoff voltage law K v t v 3 t v 5 t v t v t v t 3 3
4 Sgnal Source n Doman t doman oltage Source: v t vs t t depend on crcut t vt v S t S doman oltage Source: S depend on crcut urrent Source: t S t v t depend on crcut t v t t S S urrent Source: S depend on crcut
5 Tme Doman Tme and -Doman Element Model mpedance and oltage Source for ntal ondton t -Doman etor: v t t v t etor: nductor: v t d t dt v t t nductor: apactor: v t t d τ τ v v t t v apactor: v
6 mpedance and oltage Source for ntal ondton mpedance wth wth v voltage tranform current tranform wth all ntal condton et to zero mpedance of the three pave element
7 Tme and -Doman Element Model dmttance and urrent Source for ntal ondton Tme Doman t -Doman etor: t v t v t etor: nductor: t t v d τ τ apactor: dv t t dt v v t t t t nductor: v apactor: v
8 dmttance and urrent Source for ntal ondton dmttance wth all ntal condton et to zero current tranform voltage tranform wth wth v dmttance of the three pave element
9 Example: Solve for urrent Waveform t ut t y K: etor: nductor: t u e e t t t nvere Tranform: forced repone natural repone
10 Sere Equvalence and oltage Dvon et of rcut et of rcut EQ EQ K: EQ EQ EQ
11 Parallel Equvalence and urrent Dvon et of rcut et of rcut EQ EQ K: EQ EQ EQ
12 Example: Equvalence mpedance and dmttance v t EQ EQ EQ EQ v t nductor current at t capactor voltage Fnd equvalent mpedance at and Solve for v t EQ EQ EQ EQ EQ EQ
13 General Technque for -Doman rcut naly Node oltage naly n -doman Ue Krchhoff urrent aw K Get equaton of node voltage Ue current ource for ntal condton oltage ource current ource Meh urrent naly n -doman Ue Krchhoff oltage aw K Get equaton of current n the meh Ue voltage ource for ntal condton urrent ource voltage ource Work only for Planar crcut
14 Formulatng Node-oltage Equaton Step : Tranform the crcut nto the doman ung current ource to repreent capactor and nductor ntal condton Step : Select a reference node. dentfy a node voltage at each of the non-reference node and a current wth every element n the crcut Step : Wrte K connecton contrant n term of the element current at the non-reference node Step 3: Ue the element admttance and the fundamental property of node voltage to expre the element current n term of the node voltage Step 4: Subttute the devce contrant from Step 3 nto the K connecton contrant from Step and arrange the reultng equaton n a tandard form
15 Example: Formulatng Node-oltage Equaton S S t t doman doman 3 eference node Step : Tranform the crcut nto the doman ung current ource to repreent capactor and nductor ntal condton Step : dentfy N- node voltage and a current wth each element Step : pply K at node and : Node : S Node : v 3 Step 3: Expre element equaton n term of node voltage v G where G 3 [ ] [ ]
16 Formulatng Node-oltage Equaton ont d Step : pply K at node and : Node : Node : 3 S v Step 3: Expre element equaton n term of node voltage [ ] [ ] where 3 G G Step 4: Subttute eqn. n Step 3 nto eqn. n Step and collect common term to yeld node-voltage eqn. v G S Node : Node :
17 Solvng -Doman rcut Equaton G rcut Determnant: G G G Depend on crcut element parameter:,, G/, not on drvng force and ntal condton Solve for node ung ramer rule: S v G S G v G G ero State when ntal condton ource are turned off ero nput when nput ource are turned off
18 Solvng -Doman rcut Eqn. ont d Solve for node ung ramer rule: G S G G S G v G v G G ero State ero nput
19 Network functon Network Functon ero- tate epone Tranform nput Sgnal Tranform Drvng-pont functon relate the voltage and current at a gven par of termnal called a port Tranfer functon relate an nput and repone at dfferent port n the crcut T oltage Tranfer Functon T urrent Tranfer Functon n T Tranfer dmttance T Tranfer mpedance n T T nput rcut n the zero-tate rcut n the zero-tate Output or or Out Out n n T T Out Out
20 alculatng Network Functon EQ T Drvng-pont mpedance oltage tranfer functon: EQ T Drvng-pont admttance oltage tranfer functon:
21 mpule epone and Step epone nput-output relatonhp n -doman T X When nput gnal an mpule T T mpule repone equal network functon H mpule repone tranform ht mpule repone waveform When nput gnal a tep G tep repone tranform gt tep repone waveform T G g H h τ dτ, h t x t δ t x t u t dg t dt t nput T rcut Output X mean equal almot everywhere, exclude thoe pont at whch gt ha a dcontnuty
Basic Principle of Buck-Boost
Bac Prncple of Buck-Boot he buck-boot a popular non-olated nvertng power tage topology, ometme called a tep-up/down power tage. Power upply degner chooe the buck-boot power tage becaue the requred output
The circuit shown on Figure 1 is called the common emitter amplifier circuit. The important subsystems of this circuit are:
polar Juncton Transstor rcuts Voltage and Power Amplfer rcuts ommon mtter Amplfer The crcut shown on Fgure 1 s called the common emtter amplfer crcut. The mportant subsystems of ths crcut are: 1. The basng
Multiple stage amplifiers
Multple stage amplfers Ams: Examne a few common 2-transstor amplfers: -- Dfferental amplfers -- Cascode amplfers -- Darlngton pars -- current mrrors Introduce formal methods for exactly analysng multple
(6)(2) (-6)(-4) (-4)(6) + (-2)(-3) + (4)(3) + (2)(-3) = -12-24 + 24 + 6 + 12 6 = 0
Chapter 3 Homework Soluton P3.-, 4, 6, 0, 3, 7, P3.3-, 4, 6, P3.4-, 3, 6, 9, P3.5- P3.6-, 4, 9, 4,, 3, 40 ---------------------------------------------------- P 3.- Determne the alues of, 4,, 3, and 6
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
Faraday's Law of Induction
Introducton Faraday's Law o Inducton In ths lab, you wll study Faraday's Law o nducton usng a wand wth col whch swngs through a magnetc eld. You wll also examne converson o mechanc energy nto electrc energy
Chapter 12 Inductors and AC Circuits
hapter Inductors and A rcuts awrence B. ees 6. You may make a sngle copy of ths document for personal use wthout wrtten permsson. Hstory oncepts from prevous physcs and math courses that you wll need for
TRANSFORM AND ITS APPLICATION
LAPLACE TRANSFORM AND ITS APPLICATION IN CIRCUIT ANALYSIS C.T. Pan. Definition of the Laplace Tranform. Ueful Laplace Tranform Pair.3 Circuit Analyi in S Domain.4 The Tranfer Function and the Convolution
Chapter 6 Inductance, Capacitance, and Mutual Inductance
Chapter 6 Inductance Capactance and Mutual Inductance 6. The nductor 6. The capactor 6.3 Seres-parallel combnatons of nductance and capactance 6.4 Mutual nductance 6.5 Closer look at mutual nductance Oerew
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
Module 2. AC to DC Converters. Version 2 EE IIT, Kharagpur 1
Module 2 AC to DC Converters erson 2 EE IIT, Kharagpur 1 Lesson 1 Sngle Phase Fully Controlled Rectfer erson 2 EE IIT, Kharagpur 2 Operaton and Analyss of sngle phase fully controlled converter. Instructonal
Correlated Noise Modeling - An Implementation into HICUM
Correlated ose Modelng - An Implementaton nto HICUM A. Chakravorty, M. chroter, P. akalas, J. Herrcht Char for Electron Devces and Integrated Crcuts (CEDIC) Unversty of Technology Dresden Germany Dept.
Lecture #21. MOS Capacitor Structure
Lecture #21 OUTLINE The MOS apactor Electrotatc Readng: oure Reader EE130 Lecture 21, Slde 1 MOS apactor Structure MOS capactor (croectonal vew _ TE x EE130 Lecture 21, Slde 2 Typcal MOS capactor and trantor
Lecture 3: Force of Interest, Real Interest Rate, Annuity
Lecture 3: Force of Interest, Real Interest Rate, Annuty Goals: Study contnuous compoundng and force of nterest Dscuss real nterest rate Learn annuty-mmedate, and ts present value Study annuty-due, and
Solution: Let i = 10% and d = 5%. By definition, the respective forces of interest on funds A and B are. i 1 + it. S A (t) = d (1 dt) 2 1. = d 1 dt.
Chapter 9 Revew problems 9.1 Interest rate measurement Example 9.1. Fund A accumulates at a smple nterest rate of 10%. Fund B accumulates at a smple dscount rate of 5%. Fnd the pont n tme at whch the forces
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
Lecture 2: Single Layer Perceptrons Kevin Swingler
Lecture 2: Sngle Layer Perceptrons Kevn Sngler [email protected] Recap: McCulloch-Ptts Neuron Ths vastly smplfed model of real neurons s also knon as a Threshold Logc Unt: W 2 A Y 3 n W n. A set of synapses
Equivalent Electrical Simulation of High -Power Ultrasonic Piezoelectric Transducers by Using Finite Element Analysis
Equvalent Electrcal Smulaton of Hgh -Power Ultrasonc Pezoelectrc Transducers by Usng Fnte Element Analyss Amr Abdullah 1, Abbas Pak, Alreza Shahd 3 1Department of Mechancal Engneerng, Amrkabr Unversty
+ + + - - This circuit than can be reduced to a planar circuit
MeshCurrent Method The meshcurrent s analog of the nodeoltage method. We sole for a new set of arables, mesh currents, that automatcally satsfy KCLs. As such, meshcurrent method reduces crcut soluton to
Imperial College London
F. Fang 1, C.C. Pan 1, I.M. Navon 2, M.D. Pggott 1, G.J. Gorman 1, P.A. Allson 1 and A.J.H. Goddard 1 1 Appled Modellng and Computaton Group Department of Earth Scence and Engneerng Imperal College London,
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
Chapter 14, Problem 1. Find the transfer function V o. /V i. of the RC circuit in Fig. 14.68. Express it using ω = 1/RC. Figure 14.68 For Prob. 14.1.
Chapter 4, Prblem. Fnd the traner unctn V /V the C crcut n Fg. 4.68. Expre t ung /C. Fgure 4.68 Fr Prb. 4.. Chapter 4, Slutn. V H ( ) V H() jc jc jc j 0 j 0, where 0 C H 0 π - H ( ) φ H ( ) tan ( 0 ) 0
Chapter 31B - Transient Currents and Inductance
Chapter 31B - Transent Currents and Inductance A PowerPont Presentaton by Paul E. Tppens, Professor of Physcs Southern Polytechnc State Unversty 007 Objectves: After completng ths module, you should be
Time Domain simulation of PD Propagation in XLPE Cables Considering Frequency Dependent Parameters
Internatonal Journal of Smart Grd and Clean Energy Tme Doman smulaton of PD Propagaton n XLPE Cables Consderng Frequency Dependent Parameters We Zhang a, Jan He b, Ln Tan b, Xuejun Lv b, Hong-Je L a *
RELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT
Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE
The Full-Wave Rectifier
9/3/2005 The Full Wae ectfer.doc /0 The Full-Wae ectfer Consder the followng juncton dode crcut: s (t) Power Lne s (t) 2 Note that we are usng a transformer n ths crcut. The job of ths transformer s to
Consider a 1-D stationary state diffusion-type equation, which we will call the generalized diffusion equation from now on:
Chapter 1 Boundary value problems Numercal lnear algebra technques can be used for many physcal problems. In ths chapter we wll gve some examples of how these technques can be used to solve certan boundary
Implementation of Deutsch's Algorithm Using Mathcad
Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"
Lecture 3: Annuity. Study annuities whose payments form a geometric progression or a arithmetic progression.
Lecture 3: Annuty Goals: Learn contnuous annuty and perpetuty. Study annutes whose payments form a geometrc progresson or a arthmetc progresson. Dscuss yeld rates. Introduce Amortzaton Suggested Textbook
Computational Fluid Dynamics II
Computatonal Flud Dynamcs II Eercse 2 1. Gven s the PDE: u tt a 2 ou Formulate the CFL-condton for two possble eplct schemes. 2. The Euler equatons for 1-dmensonal, unsteady flows s dscretsed n the followng
Laddered Multilevel DC/AC Inverters used in Solar Panel Energy Systems
Proceedngs of the nd Internatonal Conference on Computer Scence and Electroncs Engneerng (ICCSEE 03) Laddered Multlevel DC/AC Inverters used n Solar Panel Energy Systems Fang Ln Luo, Senor Member IEEE
7.5. Present Value of an Annuity. Investigate
7.5 Present Value of an Annuty Owen and Anna are approachng retrement and are puttng ther fnances n order. They have worked hard and nvested ther earnngs so that they now have a large amount of money on
The Bridge Rectifier
9/4/004 The Brdge ectfer.doc 1/9 The Brdge ectfer Now consder ths juncton dode rectfer crcut: 1 Lne (t) - O (t) _ 4 3 We call ths crcut the brdge rectfer. Let s analyze t and see what t does! Frst, we
Peak Inverse Voltage
9/13/2005 Peak Inerse Voltage.doc 1/6 Peak Inerse Voltage Q: I m so confused! The brdge rectfer and the fullwae rectfer both prode full-wae rectfcaton. Yet, the brdge rectfer use 4 juncton dodes, whereas
Canon NTSC Help Desk Documentation
Canon NTSC Help Desk Documentaton READ THIS BEFORE PROCEEDING Before revewng ths documentaton, Canon Busness Solutons, Inc. ( CBS ) hereby refers you, the customer or customer s representatve or agent
Safety instructions VEGAVIB VB6*.GI*******
Safety nstructons VEGAVIB VB6*.GI******* Kosha 14-AV4BO-0107 Ex td A20, A20/21, A21 IP66 T** 0044 Document ID: 48578 Contents 1 Area of applcablty... 3 2 General nformaton... 3 3 Techncal data... 3 4 Applcaton
Recurrence. 1 Definitions and main statements
Recurrence 1 Defntons and man statements Let X n, n = 0, 1, 2,... be a MC wth the state space S = (1, 2,...), transton probabltes p j = P {X n+1 = j X n = }, and the transton matrx P = (p j ),j S def.
FINANCIAL MATHEMATICS. A Practical Guide for Actuaries. and other Business Professionals
FINANCIAL MATHEMATICS A Practcal Gude for Actuares and other Busness Professonals Second Edton CHRIS RUCKMAN, FSA, MAAA JOE FRANCIS, FSA, MAAA, CFA Study Notes Prepared by Kevn Shand, FSA, FCIA Assstant
Simple Interest Loans (Section 5.1) :
Chapter 5 Fnance The frst part of ths revew wll explan the dfferent nterest and nvestment equatons you learned n secton 5.1 through 5.4 of your textbook and go through several examples. The second part
Addendum to: Importing Skill-Biased Technology
Addendum to: Importng Skll-Based Technology Arel Bursten UCLA and NBER Javer Cravno UCLA August 202 Jonathan Vogel Columba and NBER Abstract Ths Addendum derves the results dscussed n secton 3.3 of our
Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
Analysis and Modeling of Magnetic Coupling
Analyss and Modelng of Magnetc Couplng Bryce Hesterman Adanced Energy Industres Tuesday, Aprl 7 Dscoery earnng Center Unersty Of Colorado, Boulder, Colorado Dener Chapter, IEEE Power Electroncs Socety
Introduction to Differential Algebraic Equations
Dr. Abebe Geletu Ilmenau Unversty of Technology Department of Smulaton and Optmal Processes (SOP) Wnter Semester 2011/12 4.1 Defnton and Propertes of DAEs A system of equatons that s of the form F (t,
VRT012 User s guide V0.1. Address: Žirmūnų g. 27, Vilnius LT-09105, Phone: (370-5) 2127472, Fax: (370-5) 276 1380, Email: info@teltonika.
VRT012 User s gude V0.1 Thank you for purchasng our product. We hope ths user-frendly devce wll be helpful n realsng your deas and brngng comfort to your lfe. Please take few mnutes to read ths manual
In our example i = r/12 =.0825/12 At the end of the first month after your payment is received your amount in the account, the balance, is
Payout annutes: Start wth P dollars, e.g., P = 100, 000. Over a 30 year perod you receve equal payments of A dollars at the end of each month. The amount of money left n the account, the balance, earns
An Isolated Feedback Circuit for a Flyback Charging Circuit
Proceedngs of the 007 WSEAS Int. Conference on Crcuts, Systems, Sgnal and Telecommuncatons, Gold Coast, Australa, January 17-19, 007 35 An Isolated Feedback Crcut for a Flyback Chargng Crcut LI JIE, HUAG
1. Introduction. 2. Derivation of a time-discrete algorithm for a PID controller
PID Controller Calulu for HERMS home-brewng ytem Introuton h oument erbe the ervaton of a PID ontroller that an be mplemente n the brew applaton he PID ontroller houl be apable of ontrollng the temperature
HALL EFFECT SENSORS AND COMMUTATION
OEM770 5 Hall Effect ensors H P T E R 5 Hall Effect ensors The OEM770 works wth three-phase brushless motors equpped wth Hall effect sensors or equvalent feedback sgnals. In ths chapter we wll explan how
0.02t if 0 t 3 δ t = 0.045 if 3 < t
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual effectve
Small-Signal Analysis of BJT Differential Pairs
5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an
Active Compensation of Transducer Nonlinearities
Actve Compensaton of Transducer Nonlneartes Wolfgang Klppel Klppel GmbH, Dresden, 01277, Germany, www.klppel.de ABSTRACT Nonlneartes nherent n electromechancal and electroacoustcal transducers produce
Support Vector Machines
Support Vector Machnes Max Wellng Department of Computer Scence Unversty of Toronto 10 Kng s College Road Toronto, M5S 3G5 Canada [email protected] Abstract Ths s a note to explan support vector machnes.
Extending Probabilistic Dynamic Epistemic Logic
Extendng Probablstc Dynamc Epstemc Logc Joshua Sack May 29, 2008 Probablty Space Defnton A probablty space s a tuple (S, A, µ), where 1 S s a set called the sample space. 2 A P(S) s a σ-algebra: a set
Damage detection in composite laminates using coin-tap method
Damage detecton n composte lamnates usng con-tap method S.J. Km Korea Aerospace Research Insttute, 45 Eoeun-Dong, Youseong-Gu, 35-333 Daejeon, Republc of Korea [email protected] 45 The con-tap test has the
Time Value of Money. Types of Interest. Compounding and Discounting Single Sums. Page 1. Ch. 6 - The Time Value of Money. The Time Value of Money
Ch. 6 - The Tme Value of Money Tme Value of Money The Interest Rate Smple Interest Compound Interest Amortzng a Loan FIN21- Ahmed Y, Dasht TIME VALUE OF MONEY OR DISCOUNTED CASH FLOW ANALYSIS Very Important
Comparison of Control Strategies for Shunt Active Power Filter under Different Load Conditions
Comparson of Control Strateges for Shunt Actve Power Flter under Dfferent Load Condtons Sanjay C. Patel 1, Tushar A. Patel 2 Lecturer, Electrcal Department, Government Polytechnc, alsad, Gujarat, Inda
A frequency decomposition time domain model of broadband frequency-dependent absorption: Model II
A frequenc decomposton tme doman model of broadband frequenc-dependent absorpton: Model II W. Chen Smula Research Laborator, P. O. Box. 134, 135 Lsaker, Norwa (1 Aprl ) (Proect collaborators: A. Bounam,
RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.
ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) [email protected] Abstract
580.439 Course Notes: Linear circuit theory and differential equations
58.439 ourse Notes: Linear circuit theory and differential equations eading: Koch, h. ; any text on linear signal and system theory can be consulted for more details. These notes will review the basics
n + d + q = 24 and.05n +.1d +.25q = 2 { n + d + q = 24 (3) n + 2d + 5q = 40 (2)
MATH 16T Exam 1 : Part I (In-Class) Solutons 1. (0 pts) A pggy bank contans 4 cons, all of whch are nckels (5 ), dmes (10 ) or quarters (5 ). The pggy bank also contans a con of each denomnaton. The total
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
Level Annuities with Payments Less Frequent than Each Interest Period
Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Level Annutes wth Payments Less Frequent than Each Interest Perod 1 Annuty-mmedate 2 Annuty-due Symoblc approach
10. (# 45, May 2001). At time t = 0, 1 is deposited into each of Fund X and Fund Y. Fund X accumulates at a force of interest
1 Exam FM questons 1. (# 12, May 2001). Bruce and Robbe each open up new bank accounts at tme 0. Bruce deposts 100 nto hs bank account, and Robbe deposts 50 nto hs. Each account earns an annual e ectve
NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. *MR for LS160A and LS161A *SR for LS162A and LS163A
BCD DECADE COUNTERS/ 4-BIT BINARY COUNTERS The LS160A/ 161A/ 162A/ 163A are hgh-speed 4-bt synchronous counters. They are edge-trggered, synchronously presettable, and cascadable MSI buldng blocks for
Health Monitoring of DC link Capacitors
A publcaton of CHMICAL NGINRING TRANSACTIONS VOL. 33, 213 Guest dtors: nrco Zo, Pero Barald Copyrght 213, AIDIC Servz S.r.l., ISBN 978-88-9568-24-2; ISSN 1974-9791 The Italan Assocaton of Chemcal ngneerng
Chapter 35 Alternating Current Circuits
hapter 35 Alternating urrent ircuits ac-ircuits Phasor Diagrams Resistors, apacitors and nductors in ac-ircuits R ac-ircuits ac-ircuit power. Resonance Transformers ac ircuits Alternating currents and
Topic 5. An Interleaved PFC Preregulator for High-Power Converters
Topic 5 An nterleaved PFC Preregulator for High-Power Converters An nterleaving PFC Pre-Regulator for High-Power Converters Michael O Loughlin, Texas nstruments ABSTRACT n higher power applications, to
substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as
Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change
Luby s Alg. for Maximal Independent Sets using Pairwise Independence
Lecture Notes for Randomzed Algorthms Luby s Alg. for Maxmal Independent Sets usng Parwse Independence Last Updated by Erc Vgoda on February, 006 8. Maxmal Independent Sets For a graph G = (V, E), an ndependent
Using Series to Analyze Financial Situations: Present Value
2.8 Usng Seres to Analyze Fnancal Stuatons: Present Value In the prevous secton, you learned how to calculate the amount, or future value, of an ordnary smple annuty. The amount s the sum of the accumulated
The Mathematical Derivation of Least Squares
Pscholog 885 Prof. Federco The Mathematcal Dervaton of Least Squares Back when the powers that e forced ou to learn matr algera and calculus, I et ou all asked ourself the age-old queston: When the hell
Switching Regulator IC Series Inductor Calculation for Buck Converter IC
Switching Regulator C Series nductor Calculation for Buck Converter C No.107ECY01 This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator
Formulating & Solving Integer Problems Chapter 11 289
Formulatng & Solvng Integer Problems Chapter 11 289 The Optonal Stop TSP If we drop the requrement that every stop must be vsted, we then get the optonal stop TSP. Ths mght correspond to a ob sequencng
J. Parallel Distrib. Comput.
J. Parallel Dstrb. Comput. 71 (2011) 62 76 Contents lsts avalable at ScenceDrect J. Parallel Dstrb. Comput. journal homepage: www.elsever.com/locate/jpdc Optmzng server placement n dstrbuted systems n
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM
GRAVITY DATA VALIDATION AND OUTLIER DETECTION USING L 1 -NORM BARRIOT Jean-Perre, SARRAILH Mchel BGI/CNES 18.av.E.Beln 31401 TOULOUSE Cedex 4 (France) Emal: [email protected] 1/Introducton The
A hybrid global optimization algorithm based on parallel chaos optimization and outlook algorithm
Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(7):1884-1889 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A hybrd global optmzaton algorthm based on parallel
ITS-90 FORMULATIONS FOR VAPOR PRESSURE, FROSTPOINT TEMPERATURE, DEWPOINT TEMPERATURE, AND ENHANCEMENT FACTORS IN THE RANGE 100 TO +100 C.
ITS-90 FORMULATIONS FOR VAPOR PRESSURE, FROSTPOINT TEMPERATURE, DEWPOINT TEMPERATURE, AND ENHANCEMENT FACTORS IN THE RANGE 100 TO +100 C Bob Hardy Thunder Scentfc Corporaton, Albuquerque, NM, USA Abtract:
Response Coordination of Distributed Generation and Tap Changers for Voltage Support
Response Coordnaton of Dstrbuted Generaton and Tap Changers for Voltage Support An D.T. Le, Student Member, IEEE, K.M. Muttaq, Senor Member, IEEE, M. Negnevtsky, Member, IEEE,and G. Ledwch, Senor Member,
Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals
Automated nformaton technology for onosphere montorng of low-orbt navgaton satellte sgnals Alexander Romanov, Sergey Trusov and Alexey Romanov Federal State Untary Enterprse Russan Insttute of Space Devce
Chapter 7: Answers to Questions and Problems
19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter
Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING
260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore
Analysis and Modeling of Buck Converter in Discontinuous-Output-Inductor-Current Mode Operation *
Energy and Power Engneerng, 3, 5, 85-856 do:.436/ee.3.54b63 Publshed Onlne July 3 (htt://www.scr.org/journal/ee) Analyss and Modelng of Buck Converter n Dscontnuous-Outut-Inductor-Current Mode Oeraton
ES250: Electrical Science. HW7: Energy Storage Elements
ES250: Electrical Science HW7: Energy Storage Elements Introduction This chapter introduces two more circuit elements, the capacitor and the inductor whose elements laws involve integration or differentiation;
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Problem Set 3. a) We are asked how people will react, if the interest rate i on bonds is negative.
Queston roblem Set 3 a) We are asked how people wll react, f the nterest rate on bonds s negatve. When
Rotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and
POLYSA: A Polynomal Algorthm for Non-bnary Constrant Satsfacton Problems wth and Mguel A. Saldo, Federco Barber Dpto. Sstemas Informátcos y Computacón Unversdad Poltécnca de Valenca, Camno de Vera s/n
Loudspeaker Voice-Coil Inductance Losses: Circuit Models, Parameter Estimation, and Effect on Frequency Response
44 JOURAL OF THE AUDIO EGIEERIG SOCIETY, VOL. 50, O. 6, 00 JUE Loudspeaker Voce-Col Inductance Losses: Crcut Models, Parameter Estmaton, and Effect on Frequency Response W. Marshall Leach, Jr., Professor
What is Candidate Sampling
What s Canddate Samplng Say we have a multclass or mult label problem where each tranng example ( x, T ) conssts of a context x a small (mult)set of target classes T out of a large unverse L of possble
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
COMPUTER SUPPORT OF SEMANTIC TEXT ANALYSIS OF A TECHNICAL SPECIFICATION ON DESIGNING SOFTWARE. Alla Zaboleeva-Zotova, Yulia Orlova
Internatonal Book Seres "Informaton Scence and Computng" 29 COMPUTE SUPPOT O SEMANTIC TEXT ANALYSIS O A TECHNICAL SPECIICATION ON DESIGNING SOTWAE Alla Zaboleeva-Zotova, Yula Orlova Abstract: The gven
Probabilistic Linear Classifier: Logistic Regression. CS534-Machine Learning
robablstc Lnear Classfer: Logstc Regresson CS534-Machne Learnng Three Man Approaches to learnng a Classfer Learn a classfer: a functon f, ŷ f Learn a probablstc dscrmnatve model,.e., the condtonal dstrbuton
Derivation of Humidty and NOx Humidty Correction Factors
(Ths document follows the presentatons n "Vapor Pressure Equaton for Water n the Range 0 to 00 C", by Arnold Wexler and Lews Greenspan, February 9, 97 JOURNAL OF RESEARCH of the Natonal Bureau of Standards
