BJT Circuit Configurations
|
|
|
- Clinton Merritt
- 9 years ago
- Views:
Transcription
1 BJT Circuit Configurations V be ~ ~ ~ v s R L v s R L V Vcc R s cc R s v s R s R L V cc Common base Common emitter Common collector
2 Common emitter current gain
3 BJT Current-Voltage Characteristics V CE, V Very small base current (~5-75 μa) causes much higher collector current (up to 7.5 ma). The current gain is ~ 100
4 BJT amplifier circuit analysis: Operating point R L V CE, V Collector current depends on two circuit parameters: the base current and the collector voltage. At high collector voltage the collector current depends on the base current only. For I base = 40 μa, I coll = 4 ma for any E C-E greater than 1.5 V
5 BJT amplifier circuit analysis: Operating point V CC R L V CE V CE, V For an arbitrary collector voltage, collector current can be found using the KVL. The KVL for the collector emitter circuit, V CC = I RL R L + V CE ; I V V CC CE RL = The R L current depends linearly on the collector voltage V CE RL Resistor R L and the C-E circuit of BJT are connected in series, hence I RL = I C For I b = 40 μa and V CC = 13V, the collector current I C = 4 ma For I b = 75 μa and V CC = 14V, the collector current I C = 4 ma
6 BJT amplifier gain analysis: 1 1. Input circuit The input voltage has two components: the DC bias and the AC signal V in AC signal amplitude DC bias Time DC voltage component biases the base-emitter p-n junction in the forward direction AC component is the input signal to be amplified by the BJT.
7 BJT amplifier gain analysis: 2 V CE, V 2. Output circuit The collector current has two components too. Base current I C AC current amplitude DC current Time DC and AC collector currents flow through the BJT in accordance with its I-V characteristics
8 BJT amplifier gain analysis: 3 V CE, V The resistance of the B-E junction is very low when V BE V BE0 V bi 0.7 V. Hence the base current I B (V in -V BE0 )/R1 = (V indc -V BE0 +V inac )/R 1 The collector current I C does not depend on the collector voltage if the latter is high enough. Hence, I C βi B ; The voltage drop across the load resistance R 2 : V 2 = I C R 2 ; The output voltage V out = V CC -V 2 = V CC -I C R 2 ; V out = V CC -I C R 2 = V CC - β I B R 2 = V CC - β R 2 (V indc -V BE0 +V inac )/R 1 ; In signal amplifiers only AC component of the output voltage is important: V outac = - β R 2 V inac /R 1 ; The amplifier voltage gain: k V = V outac /V inac = - β R 2 /R 1 ;
9 BJT amplifier gain analysis: 4 V CE, V Common emitter gain summary: Current gain: k I = β Voltage gain: k V = V outac /V inac = - β R 2 /R 1 ; Power gain: k P = k V k I = - β 2 R 2 /R 1
10 BJT design and factors affecting the performance
11 Base resistance and emitter current crowding in BJTs The voltage drop along the base layer V bb = r bb I b, where r bb is called the base spreading resistance. The p-n junction current decreases rapidly when the voltage drops by ΔV bb ~ V th = kt/q Δd e qv V kt VTH I = IS e 1 = IS e 1 The length of the edge region, Δd e, where most of the emitter current flows may be estimated from: V = I R I ρ th b bmax b b Δ d e e tw
12 Emitter current crowding in BJTs (cont.) Δd e V = I R I th b bmax b b ρ = b 1 qn b b μ From these, ρ Δ d e e tw Δ V t W V d = qn μ t W th e th e b b e b Ib ρb Ib
13 Example Δd e Estimate the effective emitter length, Δd e for the BJT having the following parameters: I b = 50 μa; N b = cm -3 μ b = 400 cm 2 /V-s W b = 0.1 μm t e = 100 μm V Δd qn μ t W th e b b e b Ib Δd e = 3.33 e-4 cm = 3.33 μm
14 Large periphery B JT Design
15 Base narrowing (Early effect) The depletion width of the p-n junction depends on the applied voltage: (Here W is the depletion region width not the width of the base as in BJT!)
16 In the BJT, this effect means that the effective width of the base is less than W b : W eff = W b -X deb -X dcb where W b is the physical thickness of the base, x deb and x dcb are the depletion region widths from the emitter and collector sides. The depletion widths are given by (N e >>N b ): x x deb dcb 2εε = 0 ( Vbi Vbe ) q N b 2εε + = 0 ( Vbi Vcb ) 2 qnb 1/ 2 N c 1/ 2 x dcb is usually the most important factor since the voltage applied to collector is high. The doping level in collector, N DC has to be lower than that of the base, N AB, to reduce the Early effect: N C << N B
17 Due to Early effect the effective base thickness depends on the collector voltage. In the gain expression, W should be replaced with W eff : β = rec 2 2 L p 2 eff W The Early effect decreases the output resistance, and hence the voltage gain of BJTs.
18 Punch-through breakdown in BJTs - - the result of the Early effect The punch-through breakdown voltage V pt : W= x dcb V pt 2 qw = 2εε 0 N b ( N + N ) c N c b
19 I e BJT Model Gummel-Poon model used in SPICE and other simulators I c Applying KCL to the BJT terminals: I e = I c + I b I b Hence, Common emitter current gain is defined as: Collector emitter current relationship: I c e where α is called a common base current gain I = α I I = α ( I + I ) c c b c I c α = I 1 α = β I b b β= α 1 α α= β 1 +β The last two expressions link common emitter and common base current gains
20 Simplified Gummel-Poon BJT equivalent circuit I e α i I c α n I e Ic Emitter Ideal diode Ideal diode Collector Leakage diode Leakage diode Emitter junction: I be I se V be = exp 1 βf nv F th Base Collector junction: V th = kt/q = V at 300 K I bc I sc V bc = exp 1 βr nv R th
21 Gummel-Poon BJT equivalent circuit accounting for the leakage currents I e α i I c α n I e Ic Emitter Ideal diode Ideal diode Collector Leakage diode Leakage diode I Emitter base leakage diode: V be _ = I exp 1 nv E th Leak be se Base Collector base leakage diode: I V bc _ = I exp 1 nv C th Leak bc sc
Transistors. NPN Bipolar Junction Transistor
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled by either current or voltage ipolar Junction
Voltage Divider Bias
Voltage Divider Bias ENGI 242 ELEC 222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent Output circuit Write necessary KVL and KCL Equations Determine
Bipolar Junction Transistors
Bipolar Junction Transistors Physical Structure & Symbols NPN Emitter (E) n-type Emitter region p-type Base region n-type Collector region Collector (C) B C Emitter-base junction (EBJ) Base (B) (a) Collector-base
Transistor Biasing. The basic function of transistor is to do amplification. Principles of Electronics
192 9 Principles of Electronics Transistor Biasing 91 Faithful Amplification 92 Transistor Biasing 93 Inherent Variations of Transistor Parameters 94 Stabilisation 95 Essentials of a Transistor Biasing
BJT Characteristics and Amplifiers
BJT Characteristics and Amplifiers Matthew Beckler [email protected] EE2002 Lab Section 003 April 2, 2006 Abstract As a basic component in amplifier design, the properties of the Bipolar Junction Transistor
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime
Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime Outline The Bipolar Junction Transistor (BJT): structure and basic operation I-V characteristics in forward active regime Reading Assignment:
Transistor Models. ampel
Transistor Models Review of Transistor Fundamentals Simple Current Amplifier Model Transistor Switch Example Common Emitter Amplifier Example Transistor as a Transductance Device - Ebers-Moll Model Other
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati
Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-2 Transistor
AMPLIFIERS BJT BJT TRANSISTOR. Types of BJT BJT. devices that increase the voltage, current, or power level
AMPLFERS Prepared by Engr. JP Timola Reference: Electronic Devices by Floyd devices that increase the voltage, current, or power level have at least three terminals with one controlling the flow between
Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 8, 1997 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
The 2N3393 Bipolar Junction Transistor
The 2N3393 Bipolar Junction Transistor Common-Emitter Amplifier Aaron Prust Abstract The bipolar junction transistor (BJT) is a non-linear electronic device which can be used for amplification and switching.
BJT Ebers-Moll Model and SPICE MOSFET model
Department of Electrical and Electronic Engineering mperial College London EE 2.3: Semiconductor Modelling in SPCE Course homepage: http://www.imperial.ac.uk/people/paul.mitcheson/teaching BJT Ebers-Moll
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006
Physics 623 Transistor Characteristics and Single Transistor Amplifier Sept. 13, 2006 1 Purpose To measure and understand the common emitter transistor characteristic curves. To use the base current gain
Common-Emitter Amplifier
Common-Emitter Amplifier A. Before We Start As the title of this lab says, this lab is about designing a Common-Emitter Amplifier, and this in this stage of the lab course is premature, in my opinion,
LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS
LAB VII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW You need to first identify the physical
Common Base BJT Amplifier Common Collector BJT Amplifier
Common Base BJT Amplifier Common Collector BJT Amplifier Common Collector (Emitter Follower) Configuration Common Base Configuration Small Signal Analysis Design Example Amplifier Input and Output Impedances
CIRCUITS LABORATORY. In this experiment, the output I-V characteristic curves, the small-signal low
CIRCUITS LABORATORY EXPERIMENT 6 TRANSISTOR CHARACTERISTICS 6.1 ABSTRACT In this experiment, the output I-V characteristic curves, the small-signal low frequency equivalent circuit parameters, and the
Bipolar Junction Transistor Basics
by Kenneth A. Kuhn Sept. 29, 2001, rev 1 Introduction A bipolar junction transistor (BJT) is a three layer semiconductor device with either NPN or PNP construction. Both constructions have the identical
Differential Amplifier Offset. Causes of dc voltage and current offset Modeling dc offset R C
ESE39 ntroduction to Microelectronics Differential Amplifier Offset Causes of dc voltage and current offset Modeling dc offset mismatch S mismatch β mismatch transistor mismatch dc offsets in differential
I-V Characteristics of BJT Common-Emitter Output Characteristics
I-V Characteristics of BJT Common-Emitter Output Characteristics C i C C i C B v CE B v EC i B E i B E Lecture 26 26-1 To illustrate the I C -V CE characteristics, we use an enlarged β R Collector Current
BJT AC Analysis 1 of 38. The r e Transistor model. Remind Q-poiint re = 26mv/IE
BJT AC Analysis 1 of 38 The r e Transistor model Remind Q-poiint re = 26mv/IE BJT AC Analysis 2 of 38 Three amplifier configurations, Common Emitter Common Collector (Emitter Follower) Common Base BJT
Figure 1: Common-base amplifier.
The Common-Base Amplifier Basic Circuit Fig. 1 shows the circuit diagram of a single stage common-base amplifier. The object is to solve for the small-signal voltage gain, input resistance, and output
Lecture 17. Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.
Lecture 17 Bipolar Junction Transistors (BJT): Part 1 Qualitative Understanding - How do they work? Reading: Pierret 10.1-10.6, 11.1 Looks sort of like two diodes back to back pnp mnemonic: Pouring N Pot
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER
LABORATORY 2 THE DIFFERENTIAL AMPLIFIER OBJECTIVES 1. To understand how to amplify weak (small) signals in the presence of noise. 1. To understand how a differential amplifier rejects noise and common
Fig6-22 CB configuration. Z i [6-54] Z o [6-55] A v [6-56] Assuming R E >> r e. A i [6-57]
Common-Base Configuration (CB) The CB configuration having a low input and high output impedance and a current gain less than 1, the voltage gain can be quite large, r o in MΩ so that ignored in parallel
Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads.
Whites, EE 3 Lecture 18 Page 1 of 10 Lecture 18: Common Emitter Amplifier. Maximum Efficiency of Class A Amplifiers. Transformer Coupled Loads. We discussed using transistors as switches in the last lecture.
Bob York. Transistor Basics - BJTs
ob York Transistor asics - JTs ipolar Junction Transistors (JTs) Key points: JTs are current-controlled devices very JT has a base, collector, and emitter The base current controls the collector current
Lecture 12: DC Analysis of BJT Circuits.
Whites, 320 Lecture 12 Page 1 of 9 Lecture 12: D Analysis of JT ircuits. n this lecture we will consider a number of JT circuits and perform the D circuit analysis. For those circuits with an active mode
Electronic Devices and Circuit Theory
Instructor s Resource Manual to accompany Electronic Devices and Circuit Theory Tenth Edition Robert L. Boylestad Louis Nashelsky Upper Saddle River, New Jersey Columbus, Ohio Copyright 2009 by Pearson
05 Bipolar Junction Transistors (BJTs) basics
The first bipolar transistor was realized in 1947 by Brattain, Bardeen and Shockley. The three of them received the Nobel prize in 1956 for their invention. The bipolar transistor is composed of two PN
TWO PORT NETWORKS h-parameter BJT MODEL
TWO PORT NETWORKS h-parameter BJT MODEL The circuit of the basic two port network is shown on the right. Depending on the application, it may be used in a number of different ways to develop different
The BJT Differential Amplifier. Basic Circuit. DC Solution
c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit
Figure 1. Diode circuit model
Semiconductor Devices Non-linear Devices Diodes Introduction. The diode is two terminal non linear device whose I-V characteristic besides exhibiting non-linear behavior is also polarity dependent. The
ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication
ELEC 3908, Physical Electronics, Lecture 15 Lecture Outline Now move on to bipolar junction transistor (BJT) Strategy for next few lectures similar to diode: structure and processing, basic operation,
BIPOLAR JUNCTION TRANSISTORS
CHAPTER 3 BIPOLAR JUNCTION TRANSISTORS A bipolar junction transistor, BJT, is a single piece of silicon with two back-to-back P-N junctions. However, it cannot be made with two independent back-to-back
LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS
LAB VIII. BIPOLAR JUNCTION TRANSISTOR CHARACTERISTICS 1. OBJECTIVE In this lab, you will study the DC characteristics of a Bipolar Junction Transistor (BJT). 2. OVERVIEW In this lab, you will inspect the
Regulated D.C. Power Supply
442 17 Principles of Electronics Regulated D.C. Power Supply 17.1 Ordinary D.C. Power Supply 17.2 Important Terms 17.3 Regulated Power Supply 17.4 Types of Voltage Regulators 17.5 Zener Diode Voltage Regulator
BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008
by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,
Amplifier Teaching Aid
Amplifier Teaching Aid Table of Contents Amplifier Teaching Aid...1 Preface...1 Introduction...1 Lesson 1 Semiconductor Review...2 Lesson Plan...2 Worksheet No. 1...7 Experiment No. 1...7 Lesson 2 Bipolar
W04 Transistors and Applications. Yrd. Doç. Dr. Aytaç Gören
W04 Transistors and Applications W04 Transistors and Applications ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors
Fundamentals of Microelectronics
Fundamentals of Microelectronics H1 Why Microelectronics? H2 Basic Physics of Semiconductors H3 Diode ircuits H4 Physics of Bipolar ransistors H5 Bipolar Amplifiers H6 Physics of MOS ransistors H7 MOS
Differential Amplifier Common & Differential Modes
Differential Amplifier Common & Differential Modes Common & Differential Modes BJT Differential Amplifier Diff. Amp Voltage Gain and Input Impedance Small Signal Analysis Differential Mode Small Signal
3.4 - BJT DIFFERENTIAL AMPLIFIERS
BJT Differential Amplifiers (6/4/00) Page 1 3.4 BJT DIFFERENTIAL AMPLIFIERS INTRODUCTION Objective The objective of this presentation is: 1.) Define and characterize the differential amplifier.) Show the
Common Emitter BJT Amplifier Design Current Mirror Design
Common Emitter BJT Amplifier Design Current Mirror Design 1 Some Random Observations Conditions for stabilized voltage source biasing Emitter resistance, R E, is needed. Base voltage source will have finite
Field Effect Transistors
506 19 Principles of Electronics Field Effect Transistors 191 Types of Field Effect Transistors 193 Principle and Working of JFET 195 Importance of JFET 197 JFET as an Amplifier 199 Salient Features of
Superposition Examples
Superposition Examples The following examples illustrate the proper use of superposition of dependent sources. All superposition equations are written by inspection using voltage division, current division,
The basic cascode amplifier consists of an input common-emitter (CE) configuration driving an output common-base (CB), as shown above.
Cascode Amplifiers by Dennis L. Feucht Two-transistor combinations, such as the Darlington configuration, provide advantages over single-transistor amplifier stages. Another two-transistor combination
Objectives The purpose of this lab is build and analyze Differential amplifiers based on NPN transistors (or NMOS transistors).
1 Lab 03: Differential Amplifiers (BJT) (20 points) NOTE: 1) Please use the basic current mirror from Lab01 for the second part of the lab (Fig. 3). 2) You can use the same chip as the basic current mirror;
LAB IV. SILICON DIODE CHARACTERISTICS
LAB IV. SILICON DIODE CHARACTERISTICS 1. OBJECTIVE In this lab you are to measure I-V characteristics of rectifier and Zener diodes in both forward and reverse-bias mode, as well as learn to recognize
TLP504A,TLP504A 2. Programmable Controllers AC / DC Input Module Solid State Relay. Pin Configurations (top view) 2002-09-25
TOSHIBA Photocoupler GaAs Ired & Photo Transistor TLP4A,TLP4A 2 TLP4A,TLP4A 2 Programmable Controllers AC / DC Input Module Solid State Relay Unit in mm The TOSHIBA TLP4A and TLP4A 2 consists of a photo
Diode Circuits. Operating in the Reverse Breakdown region. (Zener Diode)
Diode Circuits Operating in the Reverse Breakdown region. (Zener Diode) In may applications, operation in the reverse breakdown region is highly desirable. The reverse breakdown voltage is relatively insensitive
AN3022. Establishing the Minimum Reverse Bias for a PIN Diode in a High-Power Switch. 1. Introduction. Rev. V2
Abstract - An important circuit design parameter in a high-power p-i-n diode application is the selection of an appropriate applied dc reverse bias voltage. Until now, this important circuit parameter
Supplement Reading on Diode Circuits. http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf
EE40 Lec 18 Diode Circuits Reading: Chap. 10 of Hambley Supplement Reading on Diode Circuits http://www.inst.eecs.berkeley.edu/ edu/~ee40/fa09/handouts/ee40_mos_circuit.pdf Slide 1 Diodes Circuits Load
3 The TTL NAND Gate. Fig. 3.1 Multiple Input Emitter Structure of TTL
3 The TTL NAND Gate 3. TTL NAND Gate Circuit Structure The circuit structure is identical to the previous TTL inverter circuit except for the multiple emitter input transistor. This is used to implement
Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors.
Whites, EE 320 Lecture 30 Page 1 of 8 Lecture 30: Biasing MOSFET Amplifiers. MOSFET Current Mirrors. There are two different environments in which MOSFET amplifiers are found, (1) discrete circuits and
Dependent Sources: Introduction and analysis of circuits containing dependent sources.
Dependent Sources: Introduction and analysis of circuits containing dependent sources. So far we have explored timeindependent (resistive) elements that are also linear. We have seen that two terminal
Transistor Amplifiers
Physics 3330 Experiment #7 Fall 1999 Transistor Amplifiers Purpose The aim of this experiment is to develop a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must accept input
High Voltage Current Shunt Monitor AD8212
High Voltage Current Shunt Monitor AD822 FEATURES Adjustable gain High common-mode voltage range 7 V to 65 V typical 7 V to >500 V with external pass transistor Current output Integrated 5 V series regulator
Bipolar Transistor Amplifiers
Physics 3330 Experiment #7 Fall 2005 Bipolar Transistor Amplifiers Purpose The aim of this experiment is to construct a bipolar transistor amplifier with a voltage gain of minus 25. The amplifier must
Electronics. Discrete assembly of an operational amplifier as a transistor circuit. LD Physics Leaflets P4.2.1.1
Electronics Operational Amplifier Internal design of an operational amplifier LD Physics Leaflets Discrete assembly of an operational amplifier as a transistor circuit P4.2.1.1 Objects of the experiment
Series-Parallel Circuits. Objectives
Series-Parallel Circuits Objectives Identify series-parallel configuration Analyze series-parallel circuits Apply KVL and KCL to the series-parallel circuits Analyze loaded voltage dividers Determine the
Chapter 8 Differential and Multistage Amplifiers. EE 3120 Microelectronics II
1 Chapter 8 Differential and Multistage Amplifiers Operational Amplifier Circuit Components 2 1. Ch 7: Current Mirrors and Biasing 2. Ch 9: Frequency Response 3. Ch 8: Active-Loaded Differential Pair 4.
ENEE 313, Spr 09 Midterm II Solution
ENEE 313, Spr 09 Midterm II Solution PART I DRIFT AND DIFFUSION, 30 pts 1. We have a silicon sample with non-uniform doping. The sample is 200 µm long: In the figure, L = 200 µm= 0.02 cm. At the x = 0
Chapter 12: The Operational Amplifier
Chapter 12: The Operational Amplifier 12.1: Introduction to Operational Amplifier (Op-Amp) Operational amplifiers (op-amps) are very high gain dc coupled amplifiers with differential inputs; they are used
Low Noise, Matched Dual PNP Transistor MAT03
a FEATURES Dual Matched PNP Transistor Low Offset Voltage: 100 V Max Low Noise: 1 nv/ Hz @ 1 khz Max High Gain: 100 Min High Gain Bandwidth: 190 MHz Typ Tight Gain Matching: 3% Max Excellent Logarithmic
FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC
FPAB20BH60B PFC SPM 3 Series for Single-Phase Boost PFC Features UL Certified No. E209204 (UL1557) 600 V - 20 A Single-Phase Boost PFC with Integral Gate Driver and Protection Very Low Thermal Resistance
ENEE 307 Electronic Circuit Design Laboratory Spring 2012. A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742
1.1. Differential Amplifiers ENEE 307 Electronic Circuit Design Laboratory Spring 2012 A. Iliadis Electrical Engineering Department University of Maryland College Park MD 20742 Differential Amplifiers
Analog & Digital Electronics Course No: PH-218
Analog & Digital Electronics Course No: PH-18 Lec 3: Rectifier and Clipper circuits Course nstructors: Dr. A. P. VAJPEY Department of Physics, ndian nstitute of Technology Guwahati, ndia 1 Rectifier Circuits:
Diodes and Transistors
Diodes What do we use diodes for? Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double input voltage)
Unit/Standard Number. High School Graduation Years 2010, 2011 and 2012
1 Secondary Task List 100 SAFETY 101 Demonstrate an understanding of State and School safety regulations. 102 Practice safety techniques for electronics work. 103 Demonstrate an understanding of proper
Lecture 21: Junction Field Effect Transistors. Source Follower Amplifier
Whites, EE 322 Lecture 21 Page 1 of 8 Lecture 21: Junction Fiel Effect Transistors. Source Follower Amplifier As mentione in Lecture 16, there are two major families of transistors. We ve worke with BJTs
ANALOG & DIGITAL ELECTRONICS
ANALOG & DIGITAL ELECTRONICS Course Instructor: Course No: PH-218 3-1-0-8 Dr. A.P. Vajpeyi E-mail: [email protected] Room No: #305 Department of Physics, Indian Institute of Technology Guwahati,
Peak Atlas DCA. Semiconductor Component Analyser Model DCA55. User Guide
GB55-7 Peak Atlas DCA Semiconductor Component Analyser Model DCA55 User Guide Peak Electronic Design Limited 2000/2007 In the interests of development, information in this guide is subject to change without
Field-Effect (FET) transistors
Field-Effect (FET) transistors References: Hayes & Horowitz (pp 142-162 and 244-266), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and,
Insulated Gate Bipolar Transistor (IGBT) Basics Abdus Sattar, IXYS Corporation 1 IXAN0063
Abdus Sattar, IXYS Corporation 1 This application note describes the basic characteristics and operating performance of IGBTs. It is intended to give the reader a thorough background on the device technology
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures
High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures ARGYRIOS C. VARONIDES Physics and EE Department University of Scranton 800 Linden Street, Scranton PA, 18510 United States Abstract:
IRGP4068DPbF IRGP4068D-EPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS Features Low V CE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction temperature
University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits
University of California, Berkeley Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits LTSpice LTSpice is a free circuit simulator based on Berkeley
LM2576R. 3.0A, 52kHz, Step-Down Switching Regulator FEATURES. Applications DESCRIPTION TO-220 PKG TO-220V PKG TO-263 PKG ORDERING INFORMATION
LM2576 FEATURES 3.3, 5.0, 12, 15, and Adjustable Output ersions Adjustable ersion Output oltage Range, 1.23 to 37 +/- 4% AG10Maximum Over Line and Load Conditions Guaranteed 3.0A Output Current Wide Input
BJT Amplifier Circuits
JT Amplifier ircuits As we have developed different models for D signals (simple large-signal model) and A signals (small-signal model), analysis of JT circuits follows these steps: D biasing analysis:
Lecture 060 Push-Pull Output Stages (1/11/04) Page 060-1. ECE 6412 - Analog Integrated Circuits and Systems II P.E. Allen - 2002
Lecture 060 PushPull Output Stages (1/11/04) Page 0601 LECTURE 060 PUSHPULL OUTPUT STAGES (READING: GHLM 362384, AH 226229) Objective The objective of this presentation is: Show how to design stages that
28V, 2A Buck Constant Current Switching Regulator for White LED
28V, 2A Buck Constant Current Switching Regulator for White LED FP7102 General Description The FP7102 is a PWM control buck converter designed to provide a simple, high efficiency solution for driving
AP331A XX G - 7. Lead Free G : Green. Packaging (Note 2)
Features General Description Wide supply Voltage range: 2.0V to 36V Single or dual supplies: ±1.0V to ±18V Very low supply current drain (0.4mA) independent of supply voltage Low input biasing current:
Fundamentals of Electronic Circuit Design. By Hongshen Ma
Fundamentals of Electronic Circuit Design By Hongshen Ma Preface Why Study Electronics? Purely mechanical problems are often only a subset of larger multidomain problems faced by the designer. Particularly,
TIP140, TIP141, TIP142, (NPN); TIP145, TIP146, TIP147, (PNP) Darlington Complementary Silicon Power Transistors
TIP140, TIP141, TIP142, (); TIP145, TIP146, TIP147, () Darlington Complementary Silicon Power Transistors Designed for generalpurpose amplifier and low frequency switching applications. Features High DC
Lecture-7 Bipolar Junction Transistors (BJT) Part-I Continued
1 Lecture-7 ipolar Junction Transistors (JT) Part-I ontinued 1. ommon-emitter (E) onfiguration: Most JT circuits employ the common-emitter configuration shown in Fig.1. This is due mainly to the fact that
http://users.ece.gatech.edu/~mleach/ece3050/notes/feedback/fbexamples.pdf
c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. Feedback Amplifiers CollectionofSolvedProblems A collection of solved
n-channel t SC 5μs, T J(max) = 175 C V CE(on) typ. = 1.65V
IRGP463DPbF IRGP463D-EPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Low V CE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 C 5 μs
3. Diodes and Diode Circuits. 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1
3. Diodes and Diode Circuits 3. Diodes and Diode Circuits TLT-8016 Basic Analog Circuits 2005/2006 1 3.1 Diode Characteristics Small-Signal Diodes Diode: a semiconductor device, which conduct the current
Quantum Metrology Closing the Quantum Triangle
Quantum Metrology Closing the Quantum Triangle Quantum Triangle Heikki Seppä VTT Information Technology From Quantum Metrology into the Practical Applications MEG Printable Electronics Quantum Metrology
Lecture 22: Class C Power Amplifiers
Whites, EE 322 Lecture 22 Page 1 of 13 Lecture 22: lass Power Amplifiers We discovered in Lecture 18 (Section 9.2) that the maximum efficiency of lass A amplifiers is 25% with a resistive load and 50%
PHOTOTRANSISTOR OPTOCOUPLERS
MCT2 MCT2E MCT20 MCT27 WHITE PACKAGE (-M SUFFIX) BLACK PACKAGE (NO -M SUFFIX) DESCRIPTION The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor
The full wave rectifier consists of two diodes and a resister as shown in Figure
The Full-Wave Rectifier The full wave rectifier consists of two diodes and a resister as shown in Figure The transformer has a centre-tapped secondary winding. This secondary winding has a lead attached
Chapter 1. Fundamental Electrical Concepts
Chapter 1 Fundamental Electrical Concepts Charge, current, voltage, power circuits, nodes, branches Branch and node voltages, Kirchhoff Laws Basic circuit elements, combinations 01 fundamental 1 1.3 Electrical
POWER SUPPLY MODEL XP-15. Instruction Manual ELENCO
POWER SUPPLY MODEL XP-15 Instruction Manual ELENCO Copyright 2013 by Elenco Electronics, Inc. REV-A 753020 All rights reserved. No part of this book shall be reproduced by any means; electronic, photocopying,
Solar Cell Parameters and Equivalent Circuit
9 Solar Cell Parameters and Equivalent Circuit 9.1 External solar cell parameters The main parameters that are used to characterise the performance of solar cells are the peak power P max, the short-circuit
A Comparison of Various Bipolar Transistor Biasing Circuits Application Note 1293
A omparison of Various Bipolar Transistor Biasing ircuits Application Note 1293 Introduction The bipolar junction transistor (BJT) is quite often used as a low noise amplifier in cellular, PS, and pager
OBJECTIVE QUESTIONS IN ANALOG ELECTRONICS
1. The early effect in a bipolar junction transistor is caused by (a) fast turn-on (c) large collector-base reverse bias (b)fast turn-off (d) large emitter-base forward bias 2. MOSFET can be used as a
