QUANTIZATION. Outlines. Joseph RONSIN. Definition Scalar quantization. Vector quantization. Definition Distortion Non uniform quantization
|
|
|
- Aubrey Hill
- 10 years ago
- Views:
Transcription
1 QUANTIZATION by Joseph RONSIN Outlnes Scalar quantzaton Dstorton Non unform quantzaton Vector quantzaton
2 Quantzaton 3 : Dscretsaton of color space One value for a set of values on an nterval Defnng number of ntervals Depends on dsplay (physcal factors) Depends on human vsual propertes (SVH) x Contnuous ampltude Quantzaton Y = Q(x) Dscrete values Quantzaton Topcs: Acquston Processng: reducton of number of grey levels or colors nsde orgnal mage Mnmal Dstorson 4 Interest Reducton of number of bts Dsplayng a pcture wth N bts on a dsplay wth M<N bts Quantzaton types Scalar (lnear or not) Vectoral
3 Type of mages Dfferent Quantzatons and correspondng types of mages bnary I(x,y) { 0,1 } black whte Monochrome or grey I(x,y) [ a, b ] often a = 0 et b = 55 black whte 5 color RVB I(x,y) = I r (x,y) I v (x,y) I b (x,y) Outlnes Scalar quantzaton 6 Dstorton Non unform quantzaton Vector quantzaton
4 Scalar Quantzaton : 7 Quantzaton levels q -1 q q +1 Output Qx d -1 d d +1 decson thresholds Input X Q ( x ) q d x 0 mn d x L max f d x d 1 wth 0,..., L 1 x x, x mn max Scalar Quantzaton Other representaton: Quantzaton Characterstc 8 Unform Quantzaton N reconstructon levels Q(x) Output q N/ q d d +1 d N/-1 X : Input
5 Impossble d affcher l mage. Dstorson Measure of dstorson: objectve crteron 9 For an orgnal mage MxN represented wth B bts dynamc of symbols : B -1 = L x,j and y, pxels of orgnal mage and quantzed mage MSE (Mean Square Error) 1 MSE MN M N 1 j1 x j y j PSNR (Peak Sgnal-to-Nose Rato) PSNR 0log 10 L MSE Non unform leads to ntervals of dfferent szes Adaptaton to dstrbuton of values to quantze Optmal Quantzer Objectve: Fnd best d and q hypothess: optmsaton crteron probablty densty p(x) Crteron of Mean Square Error Non unform Quantzaton Mnmzaton of MSE non unform probablty densty non lnear quantzaton 10
6 Impossble d affcher l mage. Non unform Quantzaton MSE Mnmzaton MAX Quantzer reconstructon levels: centroïds of areas defned by p(x) and decson regons d 1 d decson thresholds d : n the mddle of lmt values of ntervals Symetry wth 0 ( x q ) p( x) dx 0 0 q q d d d 1 et L 1,,..., 0 L 1,,..., 1 L q q 11 Outlnes Scalar quantzaton 1 Dstorton Non unform quantzaton Vector quantzaton
7 Vector Quantzaton Prncpe / example 4 color Image Symbols 00 / 01 / 11 / 10 4 color Image Image: Symbols 0/ VECTOR QUANTIZATION Bnary Dctonnary Q = Index choce for the nearest one of current regon Resultng number of bts Let: Image : matrx MxN I(x,y) [ L mn, L max ] Necessary number of bts for representaton of grey levels n L s K 14 So for scalar quantzaton: L = K Total number of bts: b = M x N x K Then for vector quantzaton: blocks m x n p blocks to code M : dctonary sze b = p x log (M)
8 Bblographe [1] Véronque Coat, Cours et supports de cours, INSA Rennes [] Max Mgnotte, "Tratement d'mages Introducton", support de cours, Unversté de Montréal [3] Grégory Bzarr, "Etude des mécansmes de dégradaton du lumnophore", thèse de doctorat, décembre 003 [4] Sofane Laran, "Percepton et nterprétaton de sectons et blocs ssmques: oculométre et analyse d'mages", Thèse de l'ujf, Mathématques Applquées, Grenoble, 4 Octobre 000. [5] [6] Adelson, «E.H. Lghtness Percepton and Lghtness Illusons». In The New Cogntve Neuroscences, nd ed., M. Gazzanga, ed. Cambrdge, MA: MIT Press, pp , (000). [7] Perre Kornprobst, Cours et supports de cours, INRIA [8] M. Burel, C. Obert, «DICOM Quantfcaton vectorelle», 005 [9] Perre MATHIEU, Cours, DEA ARAVIS, Polytech Nce-Sopha 15 MAX Quantzer Decson thresholds and reconstructon Levels for MAX s quantzer Unforme Gaussen Laplacen Raylegh 16 bts d r d r d r d r
9 MAX Quantzer 17 Unforme Gaussen Laplacen Raylegh bts d r d r d r d r ² 18 END
Adaptive Fractal Image Coding in the Frequency Domain
PROCEEDINGS OF INTERNATIONAL WORKSHOP ON IMAGE PROCESSING: THEORY, METHODOLOGY, SYSTEMS AND APPLICATIONS 2-22 JUNE,1994 BUDAPEST,HUNGARY Adaptve Fractal Image Codng n the Frequency Doman K AI UWE BARTHEL
Vision Mouse. Saurabh Sarkar a* University of Cincinnati, Cincinnati, USA ABSTRACT 1. INTRODUCTION
Vson Mouse Saurabh Sarkar a* a Unversty of Cncnnat, Cncnnat, USA ABSTRACT The report dscusses a vson based approach towards trackng of eyes and fngers. The report descrbes the process of locatng the possble
Logistic Regression. Lecture 4: More classifiers and classes. Logistic regression. Adaboost. Optimization. Multiple class classification
Lecture 4: More classfers and classes C4B Machne Learnng Hlary 20 A. Zsserman Logstc regresson Loss functons revsted Adaboost Loss functons revsted Optmzaton Multple class classfcaton Logstc Regresson
Conversion between the vector and raster data structures using Fuzzy Geographical Entities
Converson between the vector and raster data structures usng Fuzzy Geographcal Enttes Cdála Fonte Department of Mathematcs Faculty of Scences and Technology Unversty of Combra, Apartado 38, 3 454 Combra,
Effective wavelet-based compression method with adaptive quantization threshold and zerotree coding
Effectve wavelet-based compresson method wth adaptve quantzaton threshold and zerotree codng Artur Przelaskowsk, Maran Kazubek, Tomasz Jamrógewcz Insttute of Radoelectroncs, Warsaw Unversty of Technology,
Quantization Effects in Digital Filters
Quantzaton Effects n Dgtal Flters Dstrbuton of Truncaton Errors In two's complement representaton an exact number would have nfntely many bts (n general). When we lmt the number of bts to some fnte value
Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur
Module LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 3 Lossless Compresson: Huffman Codng Instructonal Objectves At the end of ths lesson, the students should be able to:. Defne and measure source entropy..
Imperial College London
F. Fang 1, C.C. Pan 1, I.M. Navon 2, M.D. Pggott 1, G.J. Gorman 1, P.A. Allson 1 and A.J.H. Goddard 1 1 Appled Modellng and Computaton Group Department of Earth Scence and Engneerng Imperal College London,
An Enhanced Super-Resolution System with Improved Image Registration, Automatic Image Selection, and Image Enhancement
An Enhanced Super-Resoluton System wth Improved Image Regstraton, Automatc Image Selecton, and Image Enhancement Yu-Chuan Kuo ( ), Chen-Yu Chen ( ), and Chou-Shann Fuh ( ) Department of Computer Scence
Image Compression of MRI Image using Planar Coding
(IJACSA) Internatonal Journal of Advanced Computer Scence and Applcatons, Image Compresson of MRI Image usng Planar Codng Laltha Y. S Department of Electroncs & Communcaton Engg. Appa Insttute of Engneerng
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Single and multiple stage classifiers implementing logistic discrimination
Sngle and multple stage classfers mplementng logstc dscrmnaton Hélo Radke Bttencourt 1 Dens Alter de Olvera Moraes 2 Vctor Haertel 2 1 Pontfíca Unversdade Católca do Ro Grande do Sul - PUCRS Av. Ipranga,
Feature selection for intrusion detection. Slobodan Petrović NISlab, Gjøvik University College
Feature selecton for ntruson detecton Slobodan Petrovć NISlab, Gjøvk Unversty College Contents The feature selecton problem Intruson detecton Traffc features relevant for IDS The CFS measure The mrmr measure
Loop Parallelization
- - Loop Parallelzaton C-52 Complaton steps: nested loops operatng on arrays, sequentell executon of teraton space DECLARE B[..,..+] FOR I :=.. FOR J :=.. I B[I,J] := B[I-,J]+B[I-,J-] ED FOR ED FOR analyze
An interactive system for structure-based ASCII art creation
An nteractve system for structure-based ASCII art creaton Katsunor Myake Henry Johan Tomoyuk Nshta The Unversty of Tokyo Nanyang Technologcal Unversty Abstract Non-Photorealstc Renderng (NPR), whose am
) of the Cell class is created containing information about events associated with the cell. Events are added to the Cell instance
Calbraton Method Instances of the Cell class (one nstance for each FMS cell) contan ADC raw data and methods assocated wth each partcular FMS cell. The calbraton method ncludes event selecton (Class Cell
Foreground-Object-Protected Depth Map Smoothing for DIBR
01 IEEE Internatonal Conference on Multmeda and Expo Foreground-Object-Protected Depth Map Smoothng for DIBR Xao-han Lu, Fang We, Fang-mn Chen School of Informaton and Communcaton Engneerng Bejng Unversty
NON-CONSTANT SUM RED-AND-BLACK GAMES WITH BET-DEPENDENT WIN PROBABILITY FUNCTION LAURA PONTIGGIA, University of the Sciences in Philadelphia
To appear n Journal o Appled Probablty June 2007 O-COSTAT SUM RED-AD-BLACK GAMES WITH BET-DEPEDET WI PROBABILITY FUCTIO LAURA POTIGGIA, Unversty o the Scences n Phladelpha Abstract In ths paper we nvestgate
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Fragility Based Rehabilitation Decision Analysis
.171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented
Bag-of-Words models. Lecture 9. Slides from: S. Lazebnik, A. Torralba, L. Fei-Fei, D. Lowe, C. Szurka
Bag-of-Words models Lecture 9 Sldes from: S. Lazebnk, A. Torralba, L. Fe-Fe, D. Lowe, C. Szurka Bag-of-features models Overvew: Bag-of-features models Orgns and motvaton Image representaton Dscrmnatve
8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by
6 CHAPTER 8 COMPLEX VECTOR SPACES 5. Fnd the kernel of the lnear transformaton gven n Exercse 5. In Exercses 55 and 56, fnd the mage of v, for the ndcated composton, where and are gven by the followng
On-Line Fault Detection in Wind Turbine Transmission System using Adaptive Filter and Robust Statistical Features
On-Lne Fault Detecton n Wnd Turbne Transmsson System usng Adaptve Flter and Robust Statstcal Features Ruoyu L Remote Dagnostcs Center SKF USA Inc. 3443 N. Sam Houston Pkwy., Houston TX 77086 Emal: [email protected]
Nonlinear Time Series Analysis in a Nutshell
9 Nonlnear Tme Seres Analyss n a Nutshell Ralph Gregor Andrzejak Contents 9. Introducton...25 9.2 Dynamcs and Tme Seres... 27 9.2. Nonlnear Determnstc Dynamcs Lorenz Dynamcs... 27 9.2.2 Nosy Determnstc
Politecnico di Torino. Porto Institutional Repository
Poltecnco d orno Porto Insttutonal Repostory [Artcle] Study and development of morphologcal analyss gudelnes for pont cloud management: he "decsonal cube" Orgnal Ctaton: Vezzett E. (2011). Study and development
L10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
Rotation Kinematics, Moment of Inertia, and Torque
Rotaton Knematcs, Moment of Inerta, and Torque Mathematcally, rotaton of a rgd body about a fxed axs s analogous to a lnear moton n one dmenson. Although the physcal quanttes nvolved n rotaton are qute
Production. 2. Y is closed A set is closed if it contains its boundary. We need this for the solution existence in the profit maximization problem.
Producer Theory Producton ASSUMPTION 2.1 Propertes of the Producton Set The producton set Y satsfes the followng propertes 1. Y s non-empty If Y s empty, we have nothng to talk about 2. Y s closed A set
MACHINE VISION SYSTEM FOR SPECULAR SURFACE INSPECTION: USE OF SIMULATION PROCESS AS A TOOL FOR DESIGN AND OPTIMIZATION
MACHINE VISION SYSTEM FOR SPECULAR SURFACE INSPECTION: USE OF SIMULATION PROCESS AS A TOOL FOR DESIGN AND OPTIMIZATION R. SEULIN, F. MERIENNE and P. GORRIA Laboratore Le2, CNRS FRE2309, EA 242, Unversté
An Integrated Semantically Correct 2.5D Object Oriented TIN. Andreas Koch
An Integrated Semantcally Correct 2.5D Object Orented TIN Andreas Koch Unverstät Hannover Insttut für Photogrammetre und GeoInformaton Contents Introducton Integraton of a DTM and 2D GIS data Semantcs
A Single-Image Super-Resolution Method for Texture Interpolation
A Sngle-Image Super-Resoluton Method for Texture Interpolaton Yaron Kalt and Moshe Porat Abstract In recent years, a number of super-resoluton technques have been proposed. Most of these technques construct
v a 1 b 1 i, a 2 b 2 i,..., a n b n i.
SECTION 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS 455 8.4 COMPLEX VECTOR SPACES AND INNER PRODUCTS All the vector spaces we have studed thus far n the text are real vector spaces snce the scalars are
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS
CALL ADMISSION CONTROL IN WIRELESS MULTIMEDIA NETWORKS Novella Bartoln 1, Imrch Chlamtac 2 1 Dpartmento d Informatca, Unverstà d Roma La Sapenza, Roma, Italy [email protected] 2 Center for Advanced
CS 2750 Machine Learning. Lecture 3. Density estimation. CS 2750 Machine Learning. Announcements
Lecture 3 Densty estmaton Mlos Hauskrecht [email protected] 5329 Sennott Square Next lecture: Matlab tutoral Announcements Rules for attendng the class: Regstered for credt Regstered for audt (only f there
Automated information technology for ionosphere monitoring of low-orbit navigation satellite signals
Automated nformaton technology for onosphere montorng of low-orbt navgaton satellte sgnals Alexander Romanov, Sergey Trusov and Alexey Romanov Federal State Untary Enterprse Russan Insttute of Space Devce
Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering
Out-of-Sample Extensons for LLE, Isomap, MDS, Egenmaps, and Spectral Clusterng Yoshua Bengo, Jean-Franços Paement, Pascal Vncent Olver Delalleau, Ncolas Le Roux and Mare Oumet Département d Informatque
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
POLYSA: A Polynomial Algorithm for Non-binary Constraint Satisfaction Problems with and
POLYSA: A Polynomal Algorthm for Non-bnary Constrant Satsfacton Problems wth and Mguel A. Saldo, Federco Barber Dpto. Sstemas Informátcos y Computacón Unversdad Poltécnca de Valenca, Camno de Vera s/n
A Multi-Camera System on PC-Cluster for Real-time 3-D Tracking
The 23 rd Conference of the Mechancal Engneerng Network of Thaland November 4 7, 2009, Chang Ma A Mult-Camera System on PC-Cluster for Real-tme 3-D Trackng Vboon Sangveraphunsr*, Krtsana Uttamang, and
Power law distribution of dividends in horse races
EUROPHYSICS LETTERS 15 February 2001 Europhys. Lett., 53 (4), pp. 419 425 (2001) Power law dstrbuton of dvdends n horse races K. Park and E. Domany Department of Physcs of Complex Systems, Wezmann Insttute
Audio Compression Codec Using a Dynamic Gammachirp Psychoacoustic Model And a D.W.T Multiresolution Analysis
Khall Abd et. al. / (IJSE) Internatonal Journal on omputer Scence and Engneerng Vol., No. 4,, 34-354 Audo ompresson odec Usng a Dynamc Gammachrp Psychoacoustc Model And a D.W.T Multresoluton Analyss Khall
Statistical Approach for Offline Handwritten Signature Verification
Journal of Computer Scence 4 (3): 181-185, 2008 ISSN 1549-3636 2008 Scence Publcatons Statstcal Approach for Offlne Handwrtten Sgnature Verfcaton 2 Debnath Bhattacharyya, 1 Samr Kumar Bandyopadhyay, 2
8 Algorithm for Binary Searching in Trees
8 Algorthm for Bnary Searchng n Trees In ths secton we present our algorthm for bnary searchng n trees. A crucal observaton employed by the algorthm s that ths problem can be effcently solved when the
Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School
Robust Desgn of Publc Storage Warehouses Yemng (Yale) Gong EMLYON Busness School Rene de Koster Rotterdam school of management, Erasmus Unversty Abstract We apply robust optmzaton and revenue management
INSTITUT FÜR INFORMATIK
INSTITUT FÜR INFORMATIK Schedulng jobs on unform processors revsted Klaus Jansen Chrstna Robene Bercht Nr. 1109 November 2011 ISSN 2192-6247 CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL Insttut für Informat
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
Binomial Link Functions. Lori Murray, Phil Munz
Bnomal Lnk Functons Lor Murray, Phl Munz Bnomal Lnk Functons Logt Lnk functon: ( p) p ln 1 p Probt Lnk functon: ( p) 1 ( p) Complentary Log Log functon: ( p) ln( ln(1 p)) Motvatng Example A researcher
Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
Ring structure of splines on triangulations
www.oeaw.ac.at Rng structure of splnes on trangulatons N. Vllamzar RICAM-Report 2014-48 www.rcam.oeaw.ac.at RING STRUCTURE OF SPLINES ON TRIANGULATIONS NELLY VILLAMIZAR Introducton For a trangulated regon
Parallel Numerical Simulation of Visual Neurons for Analysis of Optical Illusion
212 Thrd Internatonal Conference on Networkng and Computng Parallel Numercal Smulaton of Vsual Neurons for Analyss of Optcal Illuson Akra Egashra, Shunj Satoh, Hdetsugu Ire and Tsutomu Yoshnaga Graduate
A Binary Particle Swarm Optimization Algorithm for Lot Sizing Problem
Journal o Economc and Socal Research 5 (2), -2 A Bnary Partcle Swarm Optmzaton Algorthm or Lot Szng Problem M. Fath Taşgetren & Yun-Cha Lang Abstract. Ths paper presents a bnary partcle swarm optmzaton
Latent Class Regression. Statistics for Psychosocial Research II: Structural Models December 4 and 6, 2006
Latent Class Regresson Statstcs for Psychosocal Research II: Structural Models December 4 and 6, 2006 Latent Class Regresson (LCR) What s t and when do we use t? Recall the standard latent class model
Set. algorithms based. 1. Introduction. System Diagram. based. Exploration. 2. Index
ISSN (Prnt): 1694-0784 ISSN (Onlne): 1694-0814 www.ijcsi.org 236 IT outsourcng servce provder dynamc evaluaton model and algorthms based on Rough Set L Sh Sh 1,2 1 Internatonal School of Software, Wuhan
Preventive Maintenance and Replacement Scheduling: Models and Algorithms
Preventve Mantenance and Replacement Schedulng: Models and Algorthms By Kamran S. Moghaddam B.S. Unversty of Tehran 200 M.S. Tehran Polytechnc 2003 A Dssertaton Proposal Submtted to the Faculty of the
How Sets of Coherent Probabilities May Serve as Models for Degrees of Incoherence
1 st Internatonal Symposum on Imprecse Probabltes and Ther Applcatons, Ghent, Belgum, 29 June 2 July 1999 How Sets of Coherent Probabltes May Serve as Models for Degrees of Incoherence Mar J. Schervsh
2008/8. An integrated model for warehouse and inventory planning. Géraldine Strack and Yves Pochet
2008/8 An ntegrated model for warehouse and nventory plannng Géraldne Strack and Yves Pochet CORE Voe du Roman Pays 34 B-1348 Louvan-la-Neuve, Belgum. Tel (32 10) 47 43 04 Fax (32 10) 47 43 01 E-mal: [email protected]
the Manual on the global data processing and forecasting system (GDPFS) (WMO-No.485; available at http://www.wmo.int/pages/prog/www/manuals.
Gudelne on the exchange and use of EPS verfcaton results Update date: 30 November 202. Introducton World Meteorologcal Organzaton (WMO) CBS-XIII (2005) recommended that the general responsbltes for a Lead
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
The Greedy Method. Introduction. 0/1 Knapsack Problem
The Greedy Method Introducton We have completed data structures. We now are gong to look at algorthm desgn methods. Often we are lookng at optmzaton problems whose performance s exponental. For an optmzaton
ECE544NA Final Project: Robust Machine Learning Hardware via Classifier Ensemble
1 ECE544NA Fnal Project: Robust Machne Learnng Hardware va Classfer Ensemble Sa Zhang, [email protected] Dept. of Electr. & Comput. Eng., Unv. of Illnos at Urbana-Champagn, Urbana, IL, USA Abstract In
Project Networks With Mixed-Time Constraints
Project Networs Wth Mxed-Tme Constrants L Caccetta and B Wattananon Western Australan Centre of Excellence n Industral Optmsaton (WACEIO) Curtn Unversty of Technology GPO Box U1987 Perth Western Australa
MONITORING METHODOLOGY TO ASSESS THE PERFORMANCE OF GSM NETWORKS
Electronc Communcatons Commttee (ECC) wthn the European Conference of Postal and Telecommuncatons Admnstratons (CEPT) MONITORING METHODOLOGY TO ASSESS THE PERFORMANCE OF GSM NETWORKS Athens, February 2008
Cloud simulation. www.vterrain.org/atmosphere. Course SS 06 Simulation and Animation Prof. Dr. R. Westermann Computer Graphics and Visualization Group
Smulaton and Anmaton Clouds Vsual smulaton of clouds - Cloud smulaton and renderng Stochastc fractals Book by Ebert et al. Texturng and Modelng Dobash et al. A Smple, Effcent Method for Realstc Anmaton
where the coordinates are related to those in the old frame as follows.
Chapter 2 - Cartesan Vectors and Tensors: Ther Algebra Defnton of a vector Examples of vectors Scalar multplcaton Addton of vectors coplanar vectors Unt vectors A bass of non-coplanar vectors Scalar product
Implementation of Deutsch's Algorithm Using Mathcad
Implementaton of Deutsch's Algorthm Usng Mathcad Frank Roux The followng s a Mathcad mplementaton of Davd Deutsch's quantum computer prototype as presented on pages - n "Machnes, Logc and Quantum Physcs"
One-Shot Games for Spectrum Sharing among Co-Located Radio Access Networks
One-Shot Games for Spectrum Sharng among Co-Located Rado Access etwors Sofonas Halu, Alexs A. Dowhuszo, Olav Tronen and Lu We Department of Communcatons and etworng, Aalto Unversty, P.O. Box 3000, FI-00076
An Interest-Oriented Network Evolution Mechanism for Online Communities
An Interest-Orented Network Evoluton Mechansm for Onlne Communtes Cahong Sun and Xaopng Yang School of Informaton, Renmn Unversty of Chna, Bejng 100872, P.R. Chna {chsun,yang}@ruc.edu.cn Abstract. Onlne
Inter-Ing 2007. INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007.
Inter-Ing 2007 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, 15-16 November 2007. UNCERTAINTY REGION SIMULATION FOR A SERIAL ROBOT STRUCTURE MARIUS SEBASTIAN
Calculation of Sampling Weights
Perre Foy Statstcs Canada 4 Calculaton of Samplng Weghts 4.1 OVERVIEW The basc sample desgn used n TIMSS Populatons 1 and 2 was a two-stage stratfed cluster desgn. 1 The frst stage conssted of a sample
Active Learning for Interactive Visualization
Actve Learnng for Interactve Vsualzaton Tomoharu Iwata Nel Houlsby Zoubn Ghahraman Unversty of Cambrdge Unversty of Cambrdge Unversty of Cambrdge Abstract Many automatc vsualzaton methods have been. However,
A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION. Michael E. Kuhl Radhamés A. Tolentino-Peña
Proceedngs of the 2008 Wnter Smulaton Conference S. J. Mason, R. R. Hll, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler eds. A DYNAMIC CRASHING METHOD FOR PROJECT MANAGEMENT USING SIMULATION-BASED OPTIMIZATION
Research Article Enhanced Two-Step Method via Relaxed Order of α-satisfactory Degrees for Fuzzy Multiobjective Optimization
Hndaw Publshng Corporaton Mathematcal Problems n Engneerng Artcle ID 867836 pages http://dxdoorg/055/204/867836 Research Artcle Enhanced Two-Step Method va Relaxed Order of α-satsfactory Degrees for Fuzzy
BRNO UNIVERSITY OF TECHNOLOGY
BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS ALGORITHMIC AND MATHEMATICAL PRINCIPLES OF AUTOMATIC NUMBER PLATE RECOGNITION SYSTEMS B.SC. THESIS AUTHOR
Scale Dependence of Overconfidence in Stock Market Volatility Forecasts
Scale Dependence of Overconfdence n Stoc Maret Volatlty Forecasts Marus Glaser, Thomas Langer, Jens Reynders, Martn Weber* June 7, 007 Abstract In ths study, we analyze whether volatlty forecasts (judgmental
Frequency Selective IQ Phase and IQ Amplitude Imbalance Adjustments for OFDM Direct Conversion Transmitters
Frequency Selectve IQ Phase and IQ Ampltude Imbalance Adjustments for OFDM Drect Converson ransmtters Edmund Coersmeer, Ernst Zelnsk Noka, Meesmannstrasse 103, 44807 Bochum, Germany [email protected],
Returns to Experience in Mozambique: A Nonparametric Regression Approach
Returns to Experence n Mozambque: A Nonparametrc Regresson Approach Joel Muzma Conference Paper nº 27 Conferênca Inaugural do IESE Desafos para a nvestgação socal e económca em Moçambque 19 de Setembro
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
Projection-based Registration Using a Multi-view Camera for Indoor Scene Reconstruction
Projecton-based Regstraton Usng a Mult-vew Camera for Indoor Scene Reconstructon Sehwan Km and Woontack Woo GIST U-VR Lab. Gwangju 500-71, S.Korea {skm, wwoo}@gst.ac.kr Abstract A regstraton method s proposed
Gender Classification for Real-Time Audience Analysis System
Gender Classfcaton for Real-Tme Audence Analyss System Vladmr Khryashchev, Lev Shmaglt, Andrey Shemyakov, Anton Lebedev Yaroslavl State Unversty Yaroslavl, Russa [email protected], [email protected], [email protected],
Solving Factored MDPs with Continuous and Discrete Variables
Solvng Factored MPs wth Contnuous and screte Varables Carlos Guestrn Berkeley Research Center Intel Corporaton Mlos Hauskrecht epartment of Computer Scence Unversty of Pttsburgh Branslav Kveton Intellgent
