Portfolio Loss Distribution
|
|
|
- Timothy Cain
- 9 years ago
- Views:
Transcription
1 Portfolo Loss Dstrbuton
2 Rsky assets n loan ortfolo hghly llqud assets hold-to-maturty n the bank s balance sheet Outstandngs The orton of the bank asset that has already been extended to borrowers. Commtment A commtment s an amount the bank has commtted to lend. Should the borrower encounter fnancal dffcultes, t would draw on ths commtted lne of credt.
3 Adjusted exosure and exected loss Let α be the amount of drawn down or usage gven default. Outstandng + α commtment, Rsky Asset value at later tme H, V H Adjusted exosure s the rsky art of V H. (1 α) commtment, Rskless Exected loss adjusted exosure loss gven default robablty of default * Normally, racttoners treat the uncertan draw-down rate as a known functon of the oblgor s end-of-horzon credt class ratng.
4 Examle calculaton of exected loss Commtment Outstandng Internal rsk ratng Maturty Tye Unused drawn-down on default (for nternal ratng 3) Adjusted exosure on default EDF for nternal ratng 3 Loss gven default for non-secured asset Exected loss $10,000,000 $3,000, year Non-secured 65% $8,250, % 50% $6,188
5 Unexected loss Unexected loss s the estmated volatlty of the otental loss n value of the asset around ts exected loss. AE EDF LGD 2 2 σ LGD + σ 2 EDF where σ EDF 2 EDF (1- EDF). Assumtons * The random rsk factors contrbutng to an oblgor s default (resultng n EDF) are statstcally ndeendent of the severty of loss (as gven by LGD). * The default rocess s two-state event.
6 Examle on unexected loss calculaton Adjusted exosure $8,250,000 EDF 0.15% σ EDF 3.87% LGD 50% σ LGD 25% Unexected loss $178,511 * The calculated unexected loss s 2.16% of the adjusted exosure, whle the exected loss s only 0.075%
7 Comarson between exected loss and unexected loss * The hgher the recovery rate (lower LGD), the lower s the ercentage loss for both EL and. * EL ncreases lnearly wth decreasng credt qualty (wth ncreasng EDF) * ncreases much faster than EL wth ncreasng EDF. Percentage loss er unt of adjusted loss 10% 5% 10% EL EDF
8 Assets wth varyng terms of maturty * The longer the term to maturty, the greater the varaton n asset value due to changes n credt qualty. * The two-state default rocess aradgm nherently gnores the credt losses assocated wth defaults that occur beyond the analyss horzon. * To mtgate some of the maturty effect, banks commonly adjust a rsky asset s nternal credt class ratng n accordance wth ts terms to maturty.
9 Portfolo exected loss where EL EL AE LGD EDF EL s the exected loss for the ortfolo, AE s the rsky orton of the termnal value of the th asset to whch the bank s exosed n the event of default. We may wrte EL AE w EL AE where the weghts refer to AE w AE AE AE.
10 EL AE EL AE AE AE EL AE w EL AE AE w EL EL /AE 1 $10 M 0.5 $ $4 M 0.2 $ $6 M 0.3 $ AE $20M 1 w EL AE
11 Portfolo unexected loss ortfolo unexected loss j ρ j w w j j where AE EDF σ LGD + GD σ E L DF and ρ j s the correlaton of default between asset and asset j. Due to dversfcaton effect, we exect <<.
12 Rsk contrbuton The rsk contrbuton of a rsky asset to the ortfolo unexected loss s defned to be the ncremental rsk that the exosure of a sngle asset contrbutes to the ortfolo s total rsk. RC and t can be shown that RC j j ρ j.
13 Undversfable rsk The rsk contrbuton s a measure of the undversfable rsk of an asset n the ortfolo the amount of credt rsk whch cannot be dversfed away by lacng the asset n the ortfolo. RC To ncororate ndustry correlaton, usng ndustry α and j ndustry β RC (1 ) + α ραα β α k β k ρ αβ.
14 Calculaton of EL, and RC for a two-asset ortfolo ρ EL default correlaton between the two exosures ortfolo exected loss EL EL 1 + EL 2 ortfolo unexected loss RC 1 RC rsk contrbuton from Exosure 1 rsk contrbuton from Exosure 2 + ρ RC1 1(1 + ρ2) / RC2 2(2 + ρ1) / RC 1 + RC 2 << 1 + 2
15 Fttng of loss dstrbuton The two statstcal measures about the credt ortfolo are ortfolo exected loss; ortfolo unexected loss. At the smlest level, the beta dstrbuton may be chosen to ft the ortfolo loss dstrbuton. Reservaton A beta dstrbuton wth only two degrees of freedom s erhas nsuffcent to gve an adequate descrton of the tal events n the loss dstrbuton.
16 Beta dstrbuton The densty functon of a beta dstrbuton s > > < < Γ Γ + Γ otherwse 0 0 0, 1 0, ) (1 ),, ( 1 1 ) ( ) ( ) ( β α β α β α β α β α x x x x F Mean and varance β α α µ +. 1) ( ) ( β α β α αβ σ 1 x f(x, α, β)
17 Economc Catal If X T s the random varable for loss and z s the ercentage robablty (confdence level), what s the quantty v of mnmum economc catal EC needed to rotect the bank from nsolvency at the tme horzon T such that Pr[ X T v] z. Here, z s the desred debt ratng of the bank, say, 99.97% for an AA ratng.
18 frequency of loss X T EL EC
19 Catal multler Gven a desred level of z, what s EC such that Pr[ X EL EC] T z. Let CM (catal multler) be defned by EC CM then Pr X T EL CM z.
20 Monte Carol smulaton of loss dstrbuton of a ortfolo 1. Estmate default and losses 2. Estmate asset correlaton between oblgors Assgn rsk ratngs to loss facltes and determne ther default robablty + Assgn LGD and σ LGD Determne arwse asset correlaton whenever ossble OR Assgn oblgors to ndustry groungs, then determne ndustry ar correlaton
21 3. Generate random loss gven default 4. Generate correlated default events Determne stochastc loss gven default + Correlated default events + Decomoston of covarance matrx + Smulate default ont
22 5. Loss calculaton 6. Loss dstrbuton Calculate faclty loss for each scenaro and obtan ortfolo loss Construct smulated ortfolo loss dstrbuton
23 Generaton of correlated default events Generate a set of random numbers drawn from a standard normal dstrbuton. Perform a decomoston (Cholesky, SVD or egenvalue) on the asset correlaton matrx to transform the ndeendent set of random numbers (stored n the vector e ) nto a set of correlated asset values (stored n the vector e ). Here, the transformaton matrx s M, where e M e. The covarance matrx and M are related by M T M.
24 Calculaton of the default ont The default ont threshold, DP, of the th oblgor can be defned as DP N 1 (EDF, 0, 1). The crteron of default for the th oblgor s default f e < ' DP no default f e ' DP.
25 Generate loss gven default The LGD s a stochastc varable wth an unknown dstrbuton. A tycal examle may be Recovery rate (%) LGD (%) σ LGD (%) secured unsecured LGD LGD + σ s s f LGD where f s drawn from a unform dstrbuton whose range s selected so that the resultng LGD has a standard devaton that s consstent wth hstorcal observaton.
26 Calculaton of loss Summng all the smulated losses from one sngle scenaro Loss Adjusted exosure Oblgors n default LGD Smulated loss dstrbuton The smulated loss dstrbuton s obtaned by reeatng the above rocess suffcently number of tmes.
27 Features of ortfolo rsk The varablty of default rsk wthn a ortfolo s substantal. The correlaton between default rsks s generally low. The default rsk tself s dynamc and subject to large fluctuatons. Default rsks can be effectvely managed through dversfcaton. Wthn a well-dversfed ortfolo, the loss behavor s characterzed by lower than exected default credt losses for much of the tme, but very large losses whch are ncurred nfrequently.
THE DISTRIBUTION OF LOAN PORTFOLIO VALUE * Oldrich Alfons Vasicek
HE DISRIBUION OF LOAN PORFOLIO VALUE * Oldrch Alfons Vascek he amount of captal necessary to support a portfolo of debt securtes depends on the probablty dstrbuton of the portfolo loss. Consder a portfolo
Causal, Explanatory Forecasting. Analysis. Regression Analysis. Simple Linear Regression. Which is Independent? Forecasting
Causal, Explanatory Forecastng Assumes cause-and-effect relatonshp between system nputs and ts output Forecastng wth Regresson Analyss Rchard S. Barr Inputs System Cause + Effect Relatonshp The job of
How To Evaluate A Dia Fund Suffcency
DI Fund Suffcency Evaluaton Methodologcal Recommendatons and DIA Russa Practce Andre G. Melnkov Deputy General Drector DIA Russa THE DEPOSIT INSURANCE CONFERENCE IN THE MENA REGION AMMAN-JORDAN, 18 20
Analysis of Premium Liabilities for Australian Lines of Business
Summary of Analyss of Premum Labltes for Australan Lnes of Busness Emly Tao Honours Research Paper, The Unversty of Melbourne Emly Tao Acknowledgements I am grateful to the Australan Prudental Regulaton
Vasicek s Model of Distribution of Losses in a Large, Homogeneous Portfolio
Vascek s Model of Dstrbuton of Losses n a Large, Homogeneous Portfolo Stephen M Schaefer London Busness School Credt Rsk Electve Summer 2012 Vascek s Model Important method for calculatng dstrbuton of
Measuring portfolio loss using approximation methods
Scence Journal of Appled Mathematcs and Statstcs 014; (): 4-5 Publshed onlne Aprl 0, 014 (http://www.scencepublshnggroup.com/j/sjams) do: 10.11648/j.sjams.01400.11 Measurng portfolo loss usng approxmaton
How To Calculate The Accountng Perod Of Nequalty
Inequalty and The Accountng Perod Quentn Wodon and Shlomo Ytzha World Ban and Hebrew Unversty September Abstract Income nequalty typcally declnes wth the length of tme taen nto account for measurement.
Risk Management and Financial Institutions
Rsk Management and Fnancal Insttutons By John C. Hull Chapter 3 How Traders manage Ther Exposures... Chapter 4 Interest Rate Rsk...3 Chapter 5 Volatlty...5 Chapter 6 Correlatons and Copulas...7 Chapter
Credit Limit Optimization (CLO) for Credit Cards
Credt Lmt Optmzaton (CLO) for Credt Cards Vay S. Desa CSCC IX, Ednburgh September 8, 2005 Copyrght 2003, SAS Insttute Inc. All rghts reserved. SAS Propretary Agenda Background Tradtonal approaches to credt
Stress test for measuring insurance risks in non-life insurance
PROMEMORIA Datum June 01 Fnansnspektonen Författare Bengt von Bahr, Younes Elonq and Erk Elvers Stress test for measurng nsurance rsks n non-lfe nsurance Summary Ths memo descrbes stress testng of nsurance
THE METHOD OF LEAST SQUARES THE METHOD OF LEAST SQUARES
The goal: to measure (determne) an unknown quantty x (the value of a RV X) Realsaton: n results: y 1, y 2,..., y j,..., y n, (the measured values of Y 1, Y 2,..., Y j,..., Y n ) every result s encumbered
NPAR TESTS. One-Sample Chi-Square Test. Cell Specification. Observed Frequencies 1O i 6. Expected Frequencies 1EXP i 6
PAR TESTS If a WEIGHT varable s specfed, t s used to replcate a case as many tmes as ndcated by the weght value rounded to the nearest nteger. If the workspace requrements are exceeded and samplng has
Lecture 14: Implementing CAPM
Lecture 14: Implementng CAPM Queston: So, how do I apply the CAPM? Current readng: Brealey and Myers, Chapter 9 Reader, Chapter 15 M. Spegel and R. Stanton, 2000 1 Key Results So Far All nvestors should
benefit is 2, paid if the policyholder dies within the year, and probability of death within the year is ).
REVIEW OF RISK MANAGEMENT CONCEPTS LOSS DISTRIBUTIONS AND INSURANCE Loss and nsurance: When someone s subject to the rsk of ncurrng a fnancal loss, the loss s generally modeled usng a random varable or
Discount Rate for Workout Recoveries: An Empirical Study*
Dscount Rate for Workout Recoveres: An Emprcal Study* Brooks Brady Amercan Express Peter Chang Standard & Poor s Peter Mu** McMaster Unversty Boge Ozdemr Standard & Poor s Davd Schwartz Federal Reserve
Reporting Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (including SME Corporate), Sovereign and Bank Instruction Guide
Reportng Forms ARF 113.0A, ARF 113.0B, ARF 113.0C and ARF 113.0D FIRB Corporate (ncludng SME Corporate), Soveregn and Bank Instructon Gude Ths nstructon gude s desgned to assst n the completon of the FIRB
Risk Model of Long-Term Production Scheduling in Open Pit Gold Mining
Rsk Model of Long-Term Producton Schedulng n Open Pt Gold Mnng R Halatchev 1 and P Lever 2 ABSTRACT Open pt gold mnng s an mportant sector of the Australan mnng ndustry. It uses large amounts of nvestments,
Forecasting the Direction and Strength of Stock Market Movement
Forecastng the Drecton and Strength of Stock Market Movement Jngwe Chen Mng Chen Nan Ye [email protected] [email protected] [email protected] Abstract - Stock market s one of the most complcated systems
Robust Design of Public Storage Warehouses. Yeming (Yale) Gong EMLYON Business School
Robust Desgn of Publc Storage Warehouses Yemng (Yale) Gong EMLYON Busness School Rene de Koster Rotterdam school of management, Erasmus Unversty Abstract We apply robust optmzaton and revenue management
L10: Linear discriminants analysis
L0: Lnear dscrmnants analyss Lnear dscrmnant analyss, two classes Lnear dscrmnant analyss, C classes LDA vs. PCA Lmtatons of LDA Varants of LDA Other dmensonalty reducton methods CSCE 666 Pattern Analyss
Risk-based Fatigue Estimate of Deep Water Risers -- Course Project for EM388F: Fracture Mechanics, Spring 2008
Rsk-based Fatgue Estmate of Deep Water Rsers -- Course Project for EM388F: Fracture Mechancs, Sprng 2008 Chen Sh Department of Cvl, Archtectural, and Envronmental Engneerng The Unversty of Texas at Austn
Can Auto Liability Insurance Purchases Signal Risk Attitude?
Internatonal Journal of Busness and Economcs, 2011, Vol. 10, No. 2, 159-164 Can Auto Lablty Insurance Purchases Sgnal Rsk Atttude? Chu-Shu L Department of Internatonal Busness, Asa Unversty, Tawan Sheng-Chang
Fixed income risk attribution
5 Fxed ncome rsk attrbuton Chthra Krshnamurth RskMetrcs Group [email protected] We compare the rsk of the actve portfolo wth that of the benchmark and segment the dfference between the two
The OC Curve of Attribute Acceptance Plans
The OC Curve of Attrbute Acceptance Plans The Operatng Characterstc (OC) curve descrbes the probablty of acceptng a lot as a functon of the lot s qualty. Fgure 1 shows a typcal OC Curve. 10 8 6 4 1 3 4
An Alternative Way to Measure Private Equity Performance
An Alternatve Way to Measure Prvate Equty Performance Peter Todd Parlux Investment Technology LLC Summary Internal Rate of Return (IRR) s probably the most common way to measure the performance of prvate
The impact of hard discount control mechanism on the discount volatility of UK closed-end funds
Investment Management and Fnancal Innovatons, Volume 10, Issue 3, 2013 Ahmed F. Salhn (Egypt) The mpact of hard dscount control mechansm on the dscount volatlty of UK closed-end funds Abstract The mpact
Kiel Institute for World Economics Duesternbrooker Weg 120 24105 Kiel (Germany) Kiel Working Paper No. 1120
Kel Insttute for World Economcs Duesternbrooker Weg 45 Kel (Germany) Kel Workng Paper No. Path Dependences n enture Captal Markets by Andrea Schertler July The responsblty for the contents of the workng
Copulas. Modeling dependencies in Financial Risk Management. BMI Master Thesis
Copulas Modelng dependences n Fnancal Rsk Management BMI Master Thess Modelng dependences n fnancal rsk management Modelng dependences n fnancal rsk management 3 Preface Ths paper has been wrtten as part
1. Measuring association using correlation and regression
How to measure assocaton I: Correlaton. 1. Measurng assocaton usng correlaton and regresson We often would lke to know how one varable, such as a mother's weght, s related to another varable, such as a
On the computation of the capital multiplier in the Fortis Credit Economic Capital model
On the computaton of the captal multpler n the Forts Cret Economc Captal moel Jan Dhaene 1, Steven Vuffel 2, Marc Goovaerts 1, Ruben Oleslagers 3 Robert Koch 3 Abstract One of the key parameters n the
Method for assessment of companies' credit rating (AJPES S.BON model) Short description of the methodology
Method for assessment of companes' credt ratng (AJPES S.BON model) Short descrpton of the methodology Ljubljana, May 2011 ABSTRACT Assessng Slovenan companes' credt ratng scores usng the AJPES S.BON model
Efficient Project Portfolio as a tool for Enterprise Risk Management
Effcent Proect Portfolo as a tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company January 5, 27 Effcent Proect Portfolo as a tool for Enterprse
Characterization of Assembly. Variation Analysis Methods. A Thesis. Presented to the. Department of Mechanical Engineering. Brigham Young University
Characterzaton of Assembly Varaton Analyss Methods A Thess Presented to the Department of Mechancal Engneerng Brgham Young Unversty In Partal Fulfllment of the Requrements for the Degree Master of Scence
Outline. Investment Opportunity Set with Many Assets. Portfolio Selection with Multiple Risky Securities. Professor Lasse H.
Portfolo Selecton wth Multple Rsky Securtes. Professor Lasse H. Pedersen Prof. Lasse H. Pedersen Outlne Investment opportunty set wth many rsky assets wth many rsky assets and a rsk-free securty Optmal
CHAPTER 14 MORE ABOUT REGRESSION
CHAPTER 14 MORE ABOUT REGRESSION We learned n Chapter 5 that often a straght lne descrbes the pattern of a relatonshp between two quanttatve varables. For nstance, n Example 5.1 we explored the relatonshp
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK. Sample Stability Protocol
CHOLESTEROL REFERENCE METHOD LABORATORY NETWORK Sample Stablty Protocol Background The Cholesterol Reference Method Laboratory Network (CRMLN) developed certfcaton protocols for total cholesterol, HDL
SDN: Systemic Risks due to Dynamic Load Balancing
SDN: Systemc Rsks due to Dynamc Load Balancng Vladmr Marbukh IRTF SDN Abstract SDN acltates dynamc load balancng Systemc benets o dynamc load balancng: - economc: hgher resource utlzaton, hgher revenue,..
ENTERPRISE RISK MANAGEMENT IN INSURANCE GROUPS: MEASURING RISK CONCENTRATION AND DEFAULT RISK
ETERPRISE RISK MAAGEMET I ISURACE GROUPS: MEASURIG RISK COCETRATIO AD DEFAULT RISK ADIE GATZERT HATO SCHMEISER STEFA SCHUCKMA WORKIG PAPERS O RISK MAAGEMET AD ISURACE O. 35 EDITED BY HATO SCHMEISER CHAIR
Applied Research Laboratory. Decision Theory and Receiver Design
Decson Theor and Recever Desgn Sgnal Detecton and Performance Estmaton Sgnal Processor Decde Sgnal s resent or Sgnal s not resent Nose Nose Sgnal? Problem: How should receved sgnals be rocessed n order
A Simplified Framework for Return Accountability
Reprnted wth permsson from Fnancal Analysts Journal, May/June 1991. Copyrght 1991. Assocaton for Investment Management and Research, Charlottesvlle, VA. All rghts reserved. by Gary P. Brnson, Bran D. Snger
Face Verification Problem. Face Recognition Problem. Application: Access Control. Biometric Authentication. Face Verification (1:1 matching)
Face Recognton Problem Face Verfcaton Problem Face Verfcaton (1:1 matchng) Querymage face query Face Recognton (1:N matchng) database Applcaton: Access Control www.vsage.com www.vsoncs.com Bometrc Authentcaton
Chapter 4 ECONOMIC DISPATCH AND UNIT COMMITMENT
Chapter 4 ECOOMIC DISATCH AD UIT COMMITMET ITRODUCTIO A power system has several power plants. Each power plant has several generatng unts. At any pont of tme, the total load n the system s met by the
Abstract. 260 Business Intelligence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING
260 Busness Intellgence Journal July IDENTIFICATION OF DEMAND THROUGH STATISTICAL DISTRIBUTION MODELING FOR IMPROVED DEMAND FORECASTING Murphy Choy Mchelle L.F. Cheong School of Informaton Systems, Sngapore
STATISTICAL DATA ANALYSIS IN EXCEL
Mcroarray Center STATISTICAL DATA ANALYSIS IN EXCEL Lecture 6 Some Advanced Topcs Dr. Petr Nazarov 14-01-013 [email protected] Statstcal data analyss n Ecel. 6. Some advanced topcs Correcton for
Débats économiques et financiers N 1
Débats économques et fnancers N 1 How dfferent s the regulatory captal from the economc captal: the case of busness loans portfolos held by the major bankng groups n France Mchel Detsch * et Henr Frasse
Chapter 7: Answers to Questions and Problems
19. Based on the nformaton contaned n Table 7-3 of the text, the food and apparel ndustres are most compettve and therefore probably represent the best match for the expertse of these managers. Chapter
Mean Molecular Weight
Mean Molecular Weght The thermodynamc relatons between P, ρ, and T, as well as the calculaton of stellar opacty requres knowledge of the system s mean molecular weght defned as the mass per unt mole of
A Model of Private Equity Fund Compensation
A Model of Prvate Equty Fund Compensaton Wonho Wlson Cho Andrew Metrck Ayako Yasuda KAIST Yale School of Management Unversty of Calforna at Davs June 26, 2011 Abstract: Ths paper analyzes the economcs
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES
CHAPTER 5 RELATIONSHIPS BETWEEN QUANTITATIVE VARIABLES In ths chapter, we wll learn how to descrbe the relatonshp between two quanttatve varables. Remember (from Chapter 2) that the terms quanttatve varable
1 De nitions and Censoring
De ntons and Censorng. Survval Analyss We begn by consderng smple analyses but we wll lead up to and take a look at regresson on explanatory factors., as n lnear regresson part A. The mportant d erence
CEIOPS-DOC-42/09. (former CP 49) October 2009
CEIOPS-DOC-42/09 CEIOPS Advce for Level 2 Imlementng Measures on Solvency II: Standard formula SCR - Artcle 109 c Lfe underwrtng rsk (former CP 49) October 2009 CEIOPS e.v. Westhafenlatz 1-60327 Frankfurt
THE USE OF RISK ADJUSTED CAPITAL TO SUPPORT BUSINESS DECISION-MAKING
THE USE OF RISK ADJUSTED CAPITAL TO SUPPORT BUSINESS DECISION-MAKING By Gary Patrk Stefan Bernegger Marcel Beat Rüegg Swss Rensurance Company Casualty Actuaral Socety and Casualty Actuares n Rensurance
Macro Factors and Volatility of Treasury Bond Returns
Macro Factors and Volatlty of Treasury Bond Returns Jngzh Huang Department of Fnance Smeal Colleage of Busness Pennsylvana State Unversty Unversty Park, PA 16802, U.S.A. Le Lu School of Fnance Shangha
Outline. CAPM: Introduction. The Capital Asset Pricing Model (CAPM) Professor Lasse H. Pedersen. Key questions: Answer: CAPM
The Catal Asset Prcng odel (CAP) Proessor Lasse H. Pedersen Pro. Lasse H. Pedersen 1 Key questons: Outlne What s the equlbrum requred return, E(R), o a stock? What s the equlbrum rce o a stock? Whch ortolos
An Analysis of Pricing Methods for Baskets Options
An Analyss of Prcng Methods for Baskets Optons Martn Krekel, Johan de Kock, Ralf Korn, Tn-Kwa Man Fraunhofer ITWM, Department of Fnancal Mathematcs, 67653 Kaserslautern, Germany, emal: [email protected]
Fragility Based Rehabilitation Decision Analysis
.171. Fraglty Based Rehabltaton Decson Analyss Cagdas Kafal Graduate Student, School of Cvl and Envronmental Engneerng, Cornell Unversty Research Supervsor: rcea Grgoru, Professor Summary A method s presented
Construction Rules for Morningstar Canada Target Dividend Index SM
Constructon Rules for Mornngstar Canada Target Dvdend Index SM Mornngstar Methodology Paper October 2014 Verson 1.2 2014 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C White Emerson Process Management
ECONOMICS OF PLANT ENERGY SAVINGS PROJECTS IN A CHANGING MARKET Douglas C Whte Emerson Process Management Abstract Energy prces have exhbted sgnfcant volatlty n recent years. For example, natural gas prces
Transition Matrix Models of Consumer Credit Ratings
Transton Matrx Models of Consumer Credt Ratngs Abstract Although the corporate credt rsk lterature has many studes modellng the change n the credt rsk of corporate bonds over tme, there s far less analyss
Statistical Methods to Develop Rating Models
Statstcal Methods to Develop Ratng Models [Evelyn Hayden and Danel Porath, Österrechsche Natonalbank and Unversty of Appled Scences at Manz] Source: The Basel II Rsk Parameters Estmaton, Valdaton, and
Marginal Benefit Incidence Analysis Using a Single Cross-section of Data. Mohamed Ihsan Ajwad and Quentin Wodon 1. World Bank.
Margnal Beneft Incdence Analyss Usng a Sngle Cross-secton of Data Mohamed Ihsan Ajwad and uentn Wodon World Bank August 200 Abstract In a recent paper, Lanjouw and Ravallon proposed an attractve and smple
Measurement of Farm Credit Risk: SUR Model and Simulation Approach
Measurement of Farm Credt Rsk: SUR Model and Smulaton Approach Yan Yan, Peter Barry, Ncholas Paulson, Gary Schntkey Contact Author Yan Yan Unversty of Illnos at Urbana-Champagn Department of Agrcultural
Imperial College London
F. Fang 1, C.C. Pan 1, I.M. Navon 2, M.D. Pggott 1, G.J. Gorman 1, P.A. Allson 1 and A.J.H. Goddard 1 1 Appled Modellng and Computaton Group Department of Earth Scence and Engneerng Imperal College London,
Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits
Lnear Crcuts Analyss. Superposton, Theenn /Norton Equalent crcuts So far we hae explored tmendependent (resste) elements that are also lnear. A tmendependent elements s one for whch we can plot an / cure.
Economic Interpretation of Regression. Theory and Applications
Economc Interpretaton of Regresson Theor and Applcatons Classcal and Baesan Econometrc Methods Applcaton of mathematcal statstcs to economc data for emprcal support Economc theor postulates a qualtatve
Trackng Corporate Bond Ndces
The art of trackng corporate bond ndces Laurent Gouzlh, Marelle de Jong, Therry Lebeaupan and Hongwen Wu 1 Abstract The corporate bond ndces, bult by market ndex provders to serve as nvestment benchmarks,
RELIABILITY, RISK AND AVAILABILITY ANLYSIS OF A CONTAINER GANTRY CRANE ABSTRACT
Kolowrock Krzysztof Joanna oszynska MODELLING ENVIRONMENT AND INFRATRUCTURE INFLUENCE ON RELIABILITY AND OPERATION RT&A # () (Vol.) March RELIABILITY RIK AND AVAILABILITY ANLYI OF A CONTAINER GANTRY CRANE
Most investors focus on the management
Long-Short Portfolo Management: An Integrated Approach The real benefts of long-short are released only by an ntegrated portfolo optmzaton. Bruce I. Jacobs, Kenneth. Levy, and Davd Starer BRUCE I. JACOBS
INVESTIGATION OF VEHICULAR USERS FAIRNESS IN CDMA-HDR NETWORKS
21 22 September 2007, BULGARIA 119 Proceedngs of the Internatonal Conference on Informaton Technologes (InfoTech-2007) 21 st 22 nd September 2007, Bulgara vol. 2 INVESTIGATION OF VEHICULAR USERS FAIRNESS
Staff Paper. Farm Savings Accounts: Examining Income Variability, Eligibility, and Benefits. Brent Gloy, Eddy LaDue, and Charles Cuykendall
SP 2005-02 August 2005 Staff Paper Department of Appled Economcs and Management Cornell Unversty, Ithaca, New York 14853-7801 USA Farm Savngs Accounts: Examnng Income Varablty, Elgblty, and Benefts Brent
Enabling P2P One-view Multi-party Video Conferencing
Enablng P2P One-vew Mult-party Vdeo Conferencng Yongxang Zhao, Yong Lu, Changja Chen, and JanYn Zhang Abstract Mult-Party Vdeo Conferencng (MPVC) facltates realtme group nteracton between users. Whle P2P
Forecasting and Stress Testing Credit Card Default using Dynamic Models
Forecastng and Stress Testng Credt Card Default usng Dynamc Models Tony Bellott and Jonathan Crook Credt Research Centre Unversty of Ednburgh Busness School Verson 4.5 Abstract Typcally models of credt
Lecture 5,6 Linear Methods for Classification. Summary
Lecture 5,6 Lnear Methods for Classfcaton Rce ELEC 697 Farnaz Koushanfar Fall 2006 Summary Bayes Classfers Lnear Classfers Lnear regresson of an ndcator matrx Lnear dscrmnant analyss (LDA) Logstc regresson
PAS: A Packet Accounting System to Limit the Effects of DoS & DDoS. Debish Fesehaye & Klara Naherstedt University of Illinois-Urbana Champaign
PAS: A Packet Accountng System to Lmt the Effects of DoS & DDoS Debsh Fesehaye & Klara Naherstedt Unversty of Illnos-Urbana Champagn DoS and DDoS DDoS attacks are ncreasng threats to our dgtal world. Exstng
Calibration and Linear Regression Analysis: A Self-Guided Tutorial
Calbraton and Lnear Regresson Analyss: A Self-Guded Tutoral Part The Calbraton Curve, Correlaton Coeffcent and Confdence Lmts CHM314 Instrumental Analyss Department of Chemstry, Unversty of Toronto Dr.
Prediction of Disability Frequencies in Life Insurance
Predcton of Dsablty Frequences n Lfe Insurance Bernhard Köng Fran Weber Maro V. Wüthrch October 28, 2011 Abstract For the predcton of dsablty frequences, not only the observed, but also the ncurred but
Part 1: quick summary 5. Part 2: understanding the basics of ANOVA 8
Statstcs Rudolf N. Cardnal Graduate-level statstcs for psychology and neuroscence NOV n practce, and complex NOV desgns Verson of May 4 Part : quck summary 5. Overvew of ths document 5. Background knowledge
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA*
HOUSEHOLDS DEBT BURDEN: AN ANALYSIS BASED ON MICROECONOMIC DATA* Luísa Farnha** 1. INTRODUCTION The rapd growth n Portuguese households ndebtedness n the past few years ncreased the concerns that debt
Optimal maintenance of a production-inventory system with continuous repair times and idle periods
Proceedngs o the 3 Internatonal Conerence on Aled Mathematcs and Comutatonal Methods Otmal mantenance o a roducton-nventory system wth contnuous rear tmes and dle erods T. D. Dmtrakos* Deartment o Mathematcs
Exhaustive Regression. An Exploration of Regression-Based Data Mining Techniques Using Super Computation
Exhaustve Regresson An Exploraton of Regresson-Based Data Mnng Technques Usng Super Computaton Antony Daves, Ph.D. Assocate Professor of Economcs Duquesne Unversty Pttsburgh, PA 58 Research Fellow The
The Proper Use of Risk Measures in Portfolio Theory
The Proper Use of Rsk Measures n Portfolo Theory Sergo Ortobell a, Svetlozar T. Rachev b, Stoyan Stoyanov c, Frank J. Fabozz d,* and Almra Bglova e a Unversty of Bergamo, Italy b Unversty of Calforna,
Traffic State Estimation in the Traffic Management Center of Berlin
Traffc State Estmaton n the Traffc Management Center of Berln Authors: Peter Vortsch, PTV AG, Stumpfstrasse, D-763 Karlsruhe, Germany phone ++49/72/965/35, emal [email protected] Peter Möhl, PTV AG,
Valuing Customer Portfolios under Risk-Return-Aspects: A Model-based Approach and its Application in the Financial Services Industry
Buhl and Henrch / Valung Customer Portfolos Valung Customer Portfolos under Rsk-Return-Aspects: A Model-based Approach and ts Applcaton n the Fnancal Servces Industry Hans Ulrch Buhl Unversty of Augsburg,
DEFINING %COMPLETE IN MICROSOFT PROJECT
CelersSystems DEFINING %COMPLETE IN MICROSOFT PROJECT PREPARED BY James E Aksel, PMP, PMI-SP, MVP For Addtonal Informaton about Earned Value Management Systems and reportng, please contact: CelersSystems,
Portfolio Performance Manipulation and Manipulation-Proof Performance Measures
Portfolo Performance Manpulaton and Manpulaton-Proof Performance Measures Wllam Goetzmann, Jonathan Ingersoll, Matthew Spegel, Ivo Welch March 5, 006 Yale School of Management, PO Box 0800, New Haven,
Power-of-Two Policies for Single- Warehouse Multi-Retailer Inventory Systems with Order Frequency Discounts
Power-of-wo Polces for Sngle- Warehouse Mult-Retaler Inventory Systems wth Order Frequency Dscounts José A. Ventura Pennsylvana State Unversty (USA) Yale. Herer echnon Israel Insttute of echnology (Israel)
