Investigation of water droplets, kerosene and ethanol deformation in the air

Similar documents
Fluid Mechanics: Static s Kinematics Dynamics Fluid

THE USE OF AIR ATOMIZING NOZZLES TO PRODUCE SPRAYS WITH FINE DROPLETS

Millikan Oil Drop Experiment Matthew Norton, Jurasits Christopher, Heyduck William, Nick Chumbley. Norton 0

Collision of a small bubble with a large falling particle

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

XI / PHYSICS FLUIDS IN MOTION 11/PA

Lecture 24 - Surface tension, viscous flow, thermodynamics

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

01 The Nature of Fluids

Flow in data racks. 1 Aim/Motivation. 3 Data rack modification. 2 Current state. EPJ Web of Conferences 67, (2014)

GOM Optical Measuring Techniques. Deformation Systems and Applications

Dimensional Analysis

Selection Procedure B-24 ORIENTAL MOTOR GENERAL CATALOGUE

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

A TEST RIG FOR TESTING HIGH PRESSURE CENTRIFUGAL COMPRESSORS MODEL STAGES AT HIGH REYNOLDS NUMBER

Set up and solve a transient problem using the pressure-based solver and VOF model.

Basic Principles in Microfluidics

INVESTIGATION OF FALLING BALL VISCOMETRY AND ITS ACCURACY GROUP R1 Evelyn Chou, Julia Glaser, Bella Goyal, Sherri Wykosky

Current Staff Course Unit/ Length. Basic Outline/ Structure. Unit Objectives/ Big Ideas. Properties of Waves A simple wave has a PH: Sound and Light

CBE 6333, R. Levicky 1 Review of Fluid Mechanics Terminology

Flow Physics Analysis of Three-Bucket Helical Savonius Rotor at Twist Angle Using CFD

Laminar and Turbulent flow. Flow Sensors. Reynolds Number. Thermal flow Sensor. Flow and Flow rate. R = Mass Flow controllers

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Fluids and Solids: Fundamentals

PHYS 101-4M, Fall 2005 Exam #3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1) The time for one cycle of a periodic process is called the A) wavelength. B) period. C) frequency. D) amplitude.

CHAPTER 6 WEAR TESTING MEASUREMENT

Removal of Liquid Water Droplets in Gas Channels of Proton Exchange Membrane Fuel Cell

2 1/2 Pipe. 40 = height. the gauge pressure inside the vessel from the gauge pressure at the nozzle inlet as shown:

Physics 41 HW Set 1 Chapter 15

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

18 Q0 a speed of 45.0 m/s away from a moving car. If the car is 8 Q0 moving towards the ambulance with a speed of 15.0 m/s, what Q0 frequency does a

Physics 111: Lecture 4: Chapter 4 - Forces and Newton s Laws of Motion. Physics is about forces and how the world around us reacts to these forces.

Fracture and strain rate behavior of airplane fuselage materials under blast loading

Fluid Dynamic Optimization of Flat Sheet Membrane Modules Movement of Bubbles in Vertical Channels

MEASUREMENT OF VISCOSITY OF LIQUIDS BY THE STOKE S METHOD

Address for Correspondence

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Natural Convection. Buoyancy force

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

Particle motion, particle size, and aerodynamic diameter

CE 204 FLUID MECHANICS

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli , Tamil Nadu, India

LASER MELTED STEEL FREE SURFACE FORMATION

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Forces. Definition Friction Falling Objects Projectiles Newton s Laws of Motion Momentum Universal Forces Fluid Pressure Hydraulics Buoyancy

Dr Jagannath K Professor, Dept of Mechanical and Mfg Engg, MIT Manipal, Manipal University, India

Acceleration due to Gravity

SOLUTIONS TO CONCEPTS CHAPTER 15

International Year of Light 2015 Tech-Talks BREGENZ: Mehmet Arik Well-Being in Office Applications Light Measurement & Quality Parameters

Using light scattering method to find The surface tension of water

Numerical Analysis of Transient Phenomena in Electromagnetic Forming Processes

LBS-300 Beam Sampler for C-mount Cameras. YAG Focal Spot Analysis Adapter. User Notes

Lesson 11. Luis Anchordoqui. Physics 168. Tuesday, December 8, 15

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

So if ω 0 increases 3-fold, the stopping angle increases 3 2 = 9-fold.

Physics Notes Class 11 CHAPTER 2 UNITS AND MEASUREMENTS

Vatten(byggnad) VVR145 Vatten. 2. Vätskors egenskaper (1.1, 4.1 och 2.8) (Föreläsningsanteckningar)

Advantages of Auto-tuning for Servo-motors

Basic Equations, Boundary Conditions and Dimensionless Parameters

Mixing in the process industry: Chemicals Food Pharmaceuticals Paper Polymers Minerals Environmental. Chemical Industry:

RESEARCH PROJECTS. For more information about our research projects please contact us at:

Fluid structure interaction of a vibrating circular plate in a bounded fluid volume: simulation and experiment

OPERATING FANS IN PARALLEL IN VIEW OF VARIABLE FLOW RATE OUTPUT

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

The Viscosity of Fluids

Diffusion and Fluid Flow

The Viscosity of Fluids

Guideway Joint Surface Properties of Heavy Machine Tools Based on the Theory of Similarity

INTRODUCTION SOME USES OF SPRAY NOZZLES INTRODUCTION TYPES OF SPRAY NOZZLES

The CEETHERM Data Center Laboratory

Full Waveform Digitizing, Dual Channel Airborne LiDAR Scanning System for Ultra Wide Area Mapping

Periodic wave in spatial domain - length scale is wavelength Given symbol l y

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

Behavioral Animation Simulation of Flocking Birds

(I) s(t) = s 0 v 0 (t t 0 ) a (t t 0) 2 (II). t 2 = t v 0. At the time. E kin = 1 2 m v2 = 1 2 m (a (t t 0) v 0 ) 2

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Keywords: CFD, heat turbomachinery, Compound Lean Nozzle, Controlled Flow Nozzle, efficiency.

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

PHYSICS FOUNDATIONS SOCIETY THE DYNAMIC UNIVERSE TOWARD A UNIFIED PICTURE OF PHYSICAL REALITY TUOMO SUNTOLA

CFD MODELLING OF HYDRODYNAMICS IN SUPERCRITICAL FLUID EXTRACTION SYSTEMS

Acoustic GHz-Microscopy: Potential, Challenges and Applications

Solution for Homework #1

Model F822 thru F834 Mulsifyre Directional Spray Nozzles, Open, High Velocity General Description

v v ax v a x a v a v = = = Since F = ma, it follows that a = F/m. The mass of the arrow is unchanged, and ( )

The Moon. Nicola Loaring, SAAO

Laser Ranging to Nano-Satellites

MOLECULAR DYNAMICS INVESTIGATION OF DEFORMATION RESPONSE OF THIN-FILM METALLIC NANOSTRUCTURES UNDER HEATING

Center of Gravity. We touched on this briefly in chapter 7! x 2

FLUID FLOW Introduction General Description

Introduction to acoustic imaging

Introduction to Microfluidics. Date: 2013/04/26. Dr. Yi-Chung Tung. Outline

Ch 2 Properties of Fluids - II. Ideal Fluids. Real Fluids. Viscosity (1) Viscosity (3) Viscosity (2)

High-Concentration Submicron Particle Size Distribution by Dynamic Light Scattering

7. DYNAMIC LIGHT SCATTERING 7.1 First order temporal autocorrelation function.

How To Use A Flowmeter

Technology of EHIS (stamping) applied to the automotive parts production

Transcription:

EPJ Web of Conferences 76, 01038 (2014) DOI: 10.1051/epjconf/20147601038 C Owned by the authors, published by EDP Sciences, 2014 Investigation of water droplets, kerosene and ethanol deformation in the air Roman Volkov, Alena Zhdanova, and Pavel Strizhak a National Research Tomsk Polytechnic University, 30, Lenin Avenue, 634050 Tomsk, Russia Abstract. Experimental investigation of liquid droplets deformation features during motion through the air with velocities up to 5 m/s was executed. Typical liquids (water, kerosene, ethanol) were observed. More than ten successive strain cycles were investigated during the droplets motions of the 1 m distance thought the air. Characteristics times of droplet changes from form to form, and possible deformation modes were determined. 1. Introduction Results of numerical researches [1, 2] have shown that the factor of liquid droplets form influence on integrated characteristics of their movement through the high-temperature gas area is defining. Continuous variation of movement resistance coefficient (c χ ) in time should be considered to draw near the model processes to real ones [1, 2]. The nature of this variation and its dependence on external and internal factors has not been defined fully. It has been identified in experimental and theoretical works [3 6], that the motion of droplets in gas areas and liquids is the specific sequence of strain cycles. The strain cycle means the time interval t d, when the droplet consistently twice takes the form close to the size, the position of the symmetry axis and other features during its motion. Six characteristic configurations of water droplets with glycerin admixtures at their free falling thought the air for the first strain cycle were marked in [4]. Videogams of experiments [7 9] allows carrying the inference that the velocities of droplets movement may significantly influence on the droplets form and the nature of their deformation. High-velocity video registration of droplets movement in gas areas (with various properties, sizes and velocities) is of interest. It will allow establishing the most typical forms of droplets to use at corresponding processes simulation and transition times from one form to another during movement. It is understandable that, it is necessary to investigate the regularities of deformation not only within the first, but also the group of the subsequent strain cycles to extend the possible supplements (for example, perspective gas and vapor-droplet technologies [9, 10]) of received results in contrast to the experiments [3 6]. The purpose of the work is experimental research of features of water droplets, kerosene and ethanol deformation in the air. a Corresponding author: pavelspa@tpu.ru This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/20147601038

EPJ Web of Conferences Figure 1. A scheme of experimental setup: 1 high-velocity digital camera, 2 cross-correlation digital camera, 3 double pulsed solid-state laser, 4 synchronizer of personal computer (PC), cross-correlation digital camera and laser, 5 light pulse, 6 laser generator, 7 PC, 8 vessel with experimental liquid, 9 channel of experimental liquid supply, 10 dosing device, 11 catcher. 2. Experimental setup and methods Scheme of experimental setup is shown in Fig. 1. The setup (on the basic measuring equipment) is similar to that used in [11, 12] with using of tracer visualization optical Particle Image Velocimetry [13] and Interferometric Particle Imaging [14] methods. In particular it is used (Fig. 1): digital video camera 1 with figure format of 1024 1024 pixels, frame frequency up to 10 5 per second; crosscorrelation digital camera 2 with figure format of 2048 2048 pixels, minimal delay between two sequence frames not more than 5 μs; double pulsed solid-state laser 3 with wave-length 532 nm, energy in impulse not less than 70 mj, impulse time not more than 12 ns, recurrence frequency not more than 15 Hz; synchronizing processor 4 with signal sampling not more than 10 ns. Initial characteristic droplet sizes of investigated liquids (water, ethanol, kerosene) were changed in the range from 3 to 6 mm in experiments. Its registered diameter (d 0 ) at an outlet from the dosing device 10 was accepted as such size. Initial velocity of droplet movement (ejection by the dosing device 10) u 0 = 0 3m/s was one of the basic varying parameters in experiments. Droplets velocities u were attained 5 m/s in video registration areas from the dosing device 10 to catcher 11 (Fig. 1). Maximum Weber s numbers were composed We maxw = u 2 max d maxρ a /σ lw = 52 6 10 3 1.5/ 0.0618 3.64, We maxs = u 2 max d maxρ a /σ ls 9.86, We maxk = u 2 max d maxρ a /σ lk 7.78 in experiments under maximum air density ρ a 1.5 kg/m 3 and surface tension coefficients of water, ethanol and kerosene σ lw = 0.0618 kg/s 2, σ ls = 0.0228 kg/s 2 σ lk = 0.0289 kg/s 2 in considered conditions. It has been identified in experiments [8 10] that the probability of liquid droplet breakup is high at Weber s numbers more than 10. Generally, value of We lim = 10 is considered as a maximum permissible one when the solidity preservation of liquids droplets during motion in gas area is possible. Breakup conditions of single water, ethanol and kerosene droplets at d 0 = 3 6mm, u 0 = 0 3m/s and their 1 m distance motion through the air under the action of gravitational forces weren t registered in the conducted experiments. Therefore it is reputed, that the experiment conditions are corresponded to moderate (We < We lim ) Weber s numbers. 01038-p.2

Thermophysical Basis of Energy Technologies (a) (b) Figure 2. The conventional images of liquid droplets at realization of the first (a) and second (b) deformation modes. Droplets of one of the investigated liquids with defined initial sizes d 0 and velocities u 0 were emanated from the dosing device 10 and flew the distance of 1 m in air through the video registration field to the catcher 11 (Fig. 1). The process of droplets movement was registered by the digital camera 1 (with frame frequency up to 10 4 per second). Ten experiments were conducted for the fixture sizes and velocities of droplets under other fixed conditions. Fields corresponding to strain cycles were marked on the personal computer (PC) 7 after processing of videograms. Droplets were assumed the form similar (by configuration, symmetry axis position and characteristics dimensions) to initial one during these strain cycles. The distance between the dosing device 10 and the catcher 11 was detached on group of fields characterizing the relevant strain cycles. Measurement of the droplet sizes was conducted with use of the cross-correlation digital camera 2, solid-state laser 3 and synchronizer 4 for marked strain cycles. Ten experiments with identical sizes and velocities of droplets were accomplished. Images of droplet were fixed only for one or several successive strain cycles. Each videogram was divided on the estimated domains with dimensions 32 32 pixels. The scaling coefficient γ was calculated in consistent with recommendations [13, 14]. The values of γ were changed in 0.01 0.1 mm/pixel interval. The maximum diameter of droplets in pixels were determined and then the conversion in millimeters with the application of coefficient γ was completed with using the algorithms [13, 14] and techniques [12]. 3. Results and discussion Two deformation modes differing by sequential forms of droplets (Fig. 2) have been established when videograms processing of the executed experiments. The droplet from the initial state near to spherical one is flattened and assumes the plate form and then it is stretched along-track direction (then these forms are repeated cyclically) at realization of the first mode (Fig. 2a). The second mode (Fig. 2b) exactly may be called as a vortical one. Rotation of droplet in the ellipsoid form about its own center of inertia during its motions is well visible at realization of the second mode. The slightly different conditions of liquid droplets ejection by the dosing device 10 (Fig. 1) in the conducted experiments are the main cause of revealed deformation modes realization. The first mode (Fig. 2a) is implemented at the optimum transverse ejection of droplets. The second mode (Fig. 2b) is 01038-p.3

EPJ Web of Conferences (a) (b) Figure 3. A change in semicircles times during the realization process of the first (a d 0 = 4 mm; b d 0 = 4.5 mm) deformation mode of ethanol droplets at their various initial droplet sizes and velocities at the strain cycles inlet: 1 the first semicircle, 2 the second semicircle. implemented if the presence of even small canting angle deviation (more then 2 0 ) of the emissive dosing device channel relatively 90 0 to the basis of the catcher 11. The features have been established while processing of characteristic droplet strain cycles for investigated liquids at implementation process of the first and second modes. These features related to pretty significant time differs both of semicircles and quarter cycles (the modification from the plate form to sphere, from sphere to ellipsoid form stretched along-track droplet motion and in reverse). Times of semicircles during the realization process of the first (Fig. 2a) ethanol droplets deformation mode with their various initial sizes and velocities at the inlet of strain cycles are presented in Fig. 3. 01038-p.4

Thermophysical Basis of Energy Technologies Figure 4. Transition times of the ethanol droplets from form to form within limits of fifth, sixth and seventh strains at realization of the first deformation mode. Times of semicircles are differed sufficiently significantly at realization of the first deformation mode. Immensely nonsignificant and fluctuated difference between characteristic times semicircles can be noted for the second mode. It is expedient to observe the transition processes from one droplet form to another at established modes realization to explain the revealed features. Figure 4 shows the experimental values of such transitions times for several consequents strain cycles of ethanol droplets at realization of the first mode. The parameter n d characterizes serial number of droplet forms within the frame of the observed cycles (numbers of droplet forms 1 5 correspond to the fifth, 5 9 to the sixth, 9 13 to the seventh of strain cycles, respectively). It is sufficiently clearly seen (Fig. 4) that the transition times from the sphere form to plate one, from the plate to sphere and from the sphere to ellipsoid stretched along-track direction of droplets are differed. These contrasts are reputed to be significant factors when the times are t d 1s. It has been established that transition times from spherical droplets to ellipsoids and plates are more than times characterizing the reverse transfers by 15 20%. Revealed phenomenon is due to corresponding activity of mass and inertial forces. The resistance forces affected on the droplets of spherical form during their motion in gas areas are less than ones at ellipse-like configurations of droplet surface. As a consequence the slowdown of ellipsoid form droplets and all the more the plate ones by the gas area is more intensive then slowdown of spherical droplets. This involves to the depression of the droplets drive-up phenomenon under the gravitational force influence and the increase of plate ellipsoid transition times. The resistance force decreases slightly and the droplet is accelerated of transition time decreases (Fig. 4) under reverse transfer. The established regularity traces back very plain with increase of passed strain cycles number despite the transition time intervals from one droplet form to another are decreased significantly as the values of t d in all. 4. Conclusions The experiments for analysis of possible liquid droplets strain cycles in gas area (at Weber s moderate numbers) have been executed. The conducted experiments allowed establishing the real droplet forms, their number, times between forms and other characteristics of typical strain cycles. The controlling 01038-p.5

EPJ Web of Conferences influence on the main parameter of typical strain cycles in the air for widely used liquids (water, ethanol, kerosene) has been established. Not only the liquid properties (surface-tension, viscosity, density) but sizes, and also droplet motion velocity have this influence. Videogams of conducted experiments show that the droplet spherical form is founded not oftener than ellipsoid or plate ones during their motion in air. Droplets have the spherical form during not more than 15% of the total time at moving in video registration area. This work was financially supported by the Ministry of Education and Science of the Russian Federation (the state contract 2.1321.2014) and subsidy funds as part of the implementation of Competitive growth program of the National Research Tomsk Polytechnic University. References [1] O.V. Vysokomornaya, G.V. Kuznetsov, P.A. Strizhak, Journal of Engineering Physics and Thermophysics 86, 1 (2013) [2] P.A. Strizhak, Journal of Engineering Physics and Thermophysics 86, 4 (2013) [3] A. Wierzba, Experiments in Fluids 9, 1 (1990) [4] V. V. Dubrovskii, A. M. Podvysotskii, A. A. Shraiber, Journal of Engineering Physics 58, 5 (1990) [5] L.P. Hsiang, G.M. Faeth, International Journal of Multiphase Flow 19, 5 (1993) [6] A. A. Shreiber, A. M. Podvisotski, V. V. Dubrovski, Atomization and Sprays 6, 6 (1996) [7] S.S. Hwang, Z. Liu, R.D. Reitz, Atomization Sprays 6 (1996) [8] D.R. Guildenbecher, P.E. Sojka, Atomization Sprays 21 (2011) [9] A.K. Flock, D.R. Guildenbecher, J. Chen, P.E. Sojka, H.J. Bauer, International Journal of Multiphase Flow 47 (2012) [10] J.E. Sprittles, Y.D. Shikhmurzaev, Physic of Fluids 24, 122105 (2012) [11] A.V. Zakharevich, P.A. Strizhak, Journal of Engineering Thermophysics 22, 2 (2013) [12] R.S. Volkov, O.V. Vysokomornaya, G.V. Kuznetsov, P.A. Strizhak, Journal of Engineering Physics and Thermophysics 86, 6 (2013) [13] J. Westerweel, Measurement Science and Technology 8 (1997) [14] N. Damaschke, H. Nobach, C. Tropea, Experiments in Fluids 32, 2 (2002) 01038-p.6