Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight



Similar documents
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

THE BOHR QUANTUM MODEL

Photons. ConcepTest ) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

WAVELENGTH OF LIGHT - DIFFRACTION GRATING

Atoms Absorb & Emit Light

GRID AND PRISM SPECTROMETERS

How To Understand Light And Color

Review of the isotope effect in the hydrogen spectrum

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

Bohr's Theory of the Hydrogen Atom

O6: The Diffraction Grating Spectrometer

Atomic Structure: Chapter Problems

Experiment IV: Atomic Spectra and the Bohr model

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Physics 111 Homework Solutions Week #9 - Tuesday

Chapter 18: The Structure of the Atom

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = = = 25 or 2

Homework #10 (749508)

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

Interference. Physics 102 Workshop #3. General Instructions

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Sample Exercise 6.1 Concepts of Wavelength and Frequency

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Polarization of Light

WAVES AND ELECTROMAGNETIC RADIATION

Building your own Spectroscope

Chemistry 102 Summary June 24 th. Properties of Light

Blackbody Radiation References INTRODUCTION

where h = J s

6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.

PHYSICS PAPER 1 (THEORY)

Calculating particle properties of a wave

Flame Tests & Electron Configuration

The Phenomenon of Photoelectric Emission:

Physics 41 Chapter 38 HW Key

Experiment #5: Qualitative Absorption Spectroscopy

Friday 18 January 2013 Morning

Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry

P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)

Experiment 5. Lasers and laser mode structure

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

Chemistry 111 Lab: Intro to Spectrophotometry Page E-1

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

CHARGED PARTICLES & MAGNETIC FIELDS - WebAssign

Centripetal Force. This result is independent of the size of r. A full circle has 2π rad, and 360 deg = 2π rad.

Efficiency of a Light Emitting Diode

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

Infrared Spectroscopy: Theory

Atomic Structure Ron Robertson

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Basic Nuclear Concepts

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

Lab 7: Rotational Motion

Quantum Mechanics and Atomic Structure 1

Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set

Matter Waves. Home Work Solutions

Using the Spectrophotometer

Unit 4 Practice Test: Rotational Motion

PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.

Ampere's Law. Introduction. times the current enclosed in that loop: Ampere's Law states that the line integral of B and dl over a closed path is 0

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Arrangement of Electrons in Atoms

Chapter 28 Atomic Physics

MODERN ATOMIC THEORY AND THE PERIODIC TABLE

Simple Laser-Induced Fluorescence Setup to Explore Molecular Spectroscopy. Abstract

PTYS/ASTR 206 Section 2 Spring 2007 Homework #2 (Page 1/5) NAME: KEY

Motion of Charges in Combined Electric and Magnetic Fields; Measurement of the Ratio of the Electron Charge to the Electron Mass

Solutions to Exercises, Section 5.1

INTERFERENCE OF SOUND WAVES

Chapter 2. Quantum Theory

Copyright by Mark Brandt, Ph.D. 12

Chem 1A Exam 2 Review Problems

EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.

MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.

Integrating the Solar Spectrum

Modern Physics Laboratory e/m with Teltron Deflection Tube

Austin Peay State University Department of Chemistry Chem The Use of the Spectrophotometer and Beer's Law

3. Electronic Spectroscopy of Molecules I - Absorption Spectroscopy

Using light scattering method to find The surface tension of water

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

Rotation: Moment of Inertia and Torque

1240 ev nm 2.5 ev. (4) r 2 or mv 2 = ke2

13C NMR Spectroscopy

PHY4604 Introduction to Quantum Mechanics Fall 2004 Practice Test 3 November 22, 2004

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

Diffraction of Laser Light

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

!! Regarding the information about figures (Fig.XY) please have a look at the german version!! Spektroscopy

Chapter 7. Electron Structure of the Atom. Chapter 7 Topics

Physics 30 Worksheet # 14: Michelson Experiment

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, :15 to 4:15 p.m.

Experiment #8: Magnetic Forces

What s so special about the laser?

A Guide to Acousto-Optic Modulators

Transcription:

Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Discussion: The Bohr model of the hydrogen atom is based on the following assumptions: (1) The electron revolves in certain preferred circular orbits around the nucleus (a single proton) at the center of the atom. (2) The angular momentum of the electron in any of the preferred circular orbits is quantized, i.e., it can have only specific values given by mr = nh/2 nh (1) where r is the radius of the orbit, is the speed of the electron in the orbit, m is the mass of the electron, h = 6.626 10 34 J s is Planck s constant, and n is a positive integer which can take on the values 1, 2, 3,. (3) While the electron is in a preferred orbit, its energy is a constant. The electron emits a photon if it makes a transition from an orbit of higher energy to an orbit of lower energy. t absorbs a photon if it makes a transition from an orbit of lower energy to an orbit of higher energy. The energy of the photon is equal to the difference in energies of the two orbits. Let us see what we can deduce based on these assumptions. The only force on the electron is the Coulomb attraction by the nucleus, so from Newton s second law (F = ma), ke 2 / r 2 = m 2 / r (2) where k = 8.988 10 9 N m 2 /C 2 from Coulomb s law, and we have used the standard expression for the centripetal acceleration on the right-hand side. The total energy E of the electron in its circular orbit is given by the sum of its kinetic and potential energies as E = 1 2 m 2 ke 2 / r. (3) Using Eqs. (1) and (2), it is easy to eliminate the speed and the radius r from the expression for the total energy to obtain E n = 2 2 k 2 me 4 h 2 1 n 2 ev = 13.6 (4) n 2 where the energy in an orbit has now been labeled by the quantum number n for that orbit. The proportionality constant was evaluated by substituting the known values of m = 9.109 10 31 kg, k, e = 1.602 10 19 C, and h, and dividing the result in J by e to get 13.6 ev. So the lowest possible energy of the electron (corresponding to n = 1) is 13.6 ev, the next higher energy (for 1

n = 2) is 3.4 ev, and so on. Next let s consider the experimental setup. A diffraction grating forms a pattern of maxima and minima in the light intensity when a beam of light is passed through it, similar to the pattern formed by the double-slit arrangement which you used in Experiment #3. Recall that the location of these intensity fringes will be different for different wavelengths of light. These two facts make it possible for a diffraction grating to be used to separate the different wavelengths of light in the visible spectrum for our examination, which is known as spectroscopy. The light source in this experiment is a narrow tube of gas through which an electrical discharge is passed. This discharge excites electrons in the gas atoms to energy levels above the ground state; as these electrons return ( decay ) to the lower states, photons will be emitted whose energies equal the differences between the relevant electron energies. The energy levels in each gas are different and the pattern of spectral lines produced by the gas are thus unique and may be used to identify the gas from which they were emitted. A detailed analysis of them can in fact reveal the energy levels and hence the nature of the constituents in the gas. As an example, suppose the electron decays from an initial state n i to a final state n f of lower energy (n i > n f ). The electron consequently loses energy equal to E i E f and a photon with the same energy is emitted. Now, the energy of a photon is equal to hf where h is Planck s constant and f is the frequency of the photon, so that 1 1 hf = E = i E f 13.6 ev. (5) 2 2 n f ni But the frequency f speed of light c = 2.998 10 8 m/s, and wavelength are related by c = f so that we can rewrite Eq. (5) as 1 1 1 = R (7) 2 2 n f n i where the Rydberg constant R is defined as R = 2 2 k 2 me 4 =1.097 10 7 m 1. (8) h 3 c Procedure: 1. Connect the hydrogen gas discharge tube to its power supply and turn it on, after verifying that the variac switch is in the 120 V position and dialed to about 80% of its maximum voltage. Mount a grating on the central platform as near perpendicularly to the collimator tube as you can, checking that the holding post is not blocking the view. Be sure the grating is mounded with its grooves oriented vertically not horizontally---check by looking through it at a ceiling lamp before mounting it! Bring the discharge tube up close to the entrance slit of the collimator of the spectroscope, moving it from side to side to get as bright an image of the zeroth-order band as possible. Next swing the viewing tube by about 20-30% in either clockwise or counter-clockwise directions and look for the first-order spectral lines. You will probably need to tilt the grating, using three holddown screws on the central platform, to center the spectral lines vertically in the eyepiece, as otherwise they tend to be too low or too high to measure properly. First measure the angle 0 (in 2 (6)

= d sin degrees to within 0.5 and minutes to within 30' using the vernier) of the bright central (zerothorder) maximum, by aligning the cross-hair horizontally on the center of the band of light; note that the knob near the bottom of the spectroscope can be used to fine tune the angle. You may need to open or close the slit to let more or less light in. Also, the eyepiece can be slid in or out to focus the image if necessary. 2. Next, resolve the spectral lines into individual colored bands in first order and determine the angle s at which each line has been diffracted; record the angles in degrees and minutes. You should find in order of increasing angle: a dim and a bright violet line about a centimeter apart in the viewer, a blue line, and a red line. gnore other blurry features and artifacts. 3. The angle of diffraction in first order is related to the wavelength of that particular line according to the grating equation, (9) where d is the spacing between adjacent grooves in the grating. The reciprocal 1/d is the number of grooves per unit length (usually specified in lines/mm). The value of, the corrected angle of diffraction, is equal to = S. (10) 0 Once the wavelengths are determined experimentally using two equations, we can compare them with the theoretical wavelengths calculated from Eq. (7) and identify the electron transition which results in each spectral line. 4. We will similarly measure the spectral lines of helium, although the theory for calculating its wavelengths is too advanced to review here. n the best setups, up to 12 lines have been observed (3 very dim violet lines close together, a dim violet further removed, royal blue, blue-green, 3 green lines close together with the last being ghostly in appearance, orange-yellow, and 2 reds). Measure the angles of as many as you can see in first order. Data Analysis: Analyze the data in Excel in four sections: 1. Color Table First, prepare a table showing the wavelength ranges of the colors in the visible spectrum. The following cutoffs are necessarily somewhat arbitrary, but suffice for our purposes: Color Wavelength Range (nm) Red 630 700 Orange 590 630 Yellow 570 590 Green 500 570 Blue 450 500 Violet 400 450 3

2. Theory of Hydrogen Atom Next, calculate the wavelengths of hydrogen from Eq. (7) and confirm that only four lines lie in the visible range: Rydberg constant R (1/m) 1.097e7 n1 Lyman Wavelengths (nf=1) Balmer Wavelengths (nf=2) Balmer Colors Paschen Wavelengths (nf=3) (nm) (nm) (nm) 2 <formula> 3 <formula> <formula> <color> 4 <formula> <formula> <color> <formula> 5 <formula> <formula> <color> <formula> 6 <formula> <formula> <color> <formula> 7 <formula> <formula> <formula> 8 <formula> <formula> <formula> where <formula> = 1e9/$R/(1/nf^2 1/ni^2), the values of ni and nf are tabulated abouve, and <color> is identified from the Color Table in Sec. 1, adding modifiers such as Light and Dark if two wavelengths have the same nominal color. 3. Experimental Hydrogen Spectrum Third, fill in the following table of the observed colors and angles for each visible line of hydrogen and use Eqs. (9) and (10) to determine d by matching the observed colors with the wavelengths of the nearest theoretical colors. Then compute an average d as explained below. The bottom angular scale under the magnifying lens gives the number of degrees to within 0.5 and the upper vernier scale gives up to 30' of arc: zero angle (rad) =radians(degrees+minutes/60) Observed Color Raw Angle Corrected Angle Theoretical Wavelength Groove Spacing (rad) (rad) (nm) (micrometer) Enter the observed four colors, use the same formula as for the zero angle above to compute the raw angles for each color, compute the corrected angle as the absolute value of the raw minus the zero angle, copy and Paste Special...(values) the four appropriate theoretical wavelengths corresponding to each observed color from Table 2 above, and finally compute the groove spacing by multiplying each theoretical wavelength multiplied by 1e 3 to convert to µm and divided by the sine of the corrected angle, in accord with Eq. (9). Below the table, type the following: average groove spacing d (micrometer) grating ruling (lines/mm) =average(<column>) =1e3/d where <column> means click and drag over the four numerical values of the groove spacings above. Typical rulings range from a few hundred to a few thousand lines/mm. Make sure your answer lies in this range. 4

4. Experimental Helium Spectrum Finally, make a table of observed colors and angles for each visible line of helium and compute their experimental wavelengths using Eq. (9) with the average value of d found above, remembering to multiply by 1e3 to convert back to nm. Observed Color Raw Angle Corrected Angle Computed Wavelength (rad) (rad) (nm) Discuss in your results section how well the computed wavelengths agree with the observed colors by referring to your color table above. Supplemental Questions: 1. Solve Eqs. (1) and (2) simultaneously to get expressions for r and in terms of n and fundamental constants only. Hence, compute the radius of the ground state orbit in Å (10 10 m); this is known as the Bohr radius and is usually denoted by a 0. Find the speed of the electron in this orbit expressed as a percentage of c, the speed of light. Also substitute your two general expressions for r and into Eq. (3) to verify the theoretical form of Eq. (4), i.e., the first equality. 2. Plug the values of the various constants into Eq. (4) and verify the computed value for the proportionality constant, i.e., the second equality including units. Referring to Table 2 of your Excel spreadsheet, prepare an energy level diagram to scale (in Excel preferably) of horizontal lines marking energy levels 2 through 6 only, with the spacings between the lines proportional to the energy differences between the levels. Then draw arrows to indicate the emission processes for decay from n i = 3, 4, 5, and 6 to n f = 2, similar to the proportion of a figure you will find in your textbook (e.g., Fig. 4 on page 1071 of Halliday, Resnick, and Krane; Fig. 30.11 of Cutnell & Johnson). Do not photocopy a textbook figure; prepare your own showing levels 2 to 6 only and filling up most of a page so it s easy to read! 3. Verify the theoretical and numerical values of Eq. (8), i.e., verify the first equality by manipulating the appropriate equations and then verify the second equality by substituting in the appropriate numbers including units. 5

. EMSSON SPECTRA 2000-10,000 A (Continued) HELUM Wave length Arc Discharge tube Wave Length Arc Discharge tube Wave length Arc Discharge tube 2252.71 3705.00.. 30 5015.67 0 2306.22.. 20 3732.86 5047.74.. 15 2385.42.. 30 3819.61.. 50 5411.55.. 50 2511.22.. 50 3867.48.. 15 5875.62 00 2723.19 3888.65 00 5875.87 2733.32 0 3964.73.. 50 6560.13 0 2763.80.. 20 4009.27 6678.15 0 2829.07.. 40 4026.19.. 70 7065.19.. 70 2945.10 0 4120.81.. 25 7065.70 3187.74.. 200 4143.76.. 15 7281.35.. 30 3203.14 0 4387.93.. 30 7816.16.. 12 3354.55 4437.55 9463.66.. 60 3447.59.. 15 4471.48 0 9516.70.. 30 3587.25 4685.75.. 300 9526.17 3613.64.. 30 4713.14.. 40 9702.76 3634.23.. 15 4921.93.. 50 6

HOLMUM Wavelength Arc Spark Wavelength Arc Spark Wavelength Arc Spark 2431.03.. 20 3281.98 12 15 3837.45 15 6 n 2433.00.. 20 3289.38 10 20 3854.05 10 20 2439.33.. 20 3338.76 12 20 3861.68 40 20 2442.76.. 20 3343.56 20 20 3888.95 40 20 2452.69.. 20 3372.79 12 15 3891.02 200 40 2511.12.. 20 3398.98 40 60 3905.55 15 8 2597.51.. 20 3410.25 20 15 3905.78 30 6 2636.50.. 70 3414.92 30 30 3955.74 15 4 2677.95.. 20 3416.46 30 40 3998.28 40 6 2681.18.. 20 3421.64 20 20 4040.84 150 30 2774.70.. 300 3425.35 40 40 4045.43 200 80 2812.87.. 20 3428.13 40 40 4053.92 400 200 2814.74 10 20 3429.19 10 15 4101.09 40 40 2824.19 20 3 3453.13 30 20 4103.84 400 400 2826.63 3 20 n 3456.00 60 60 4108.63 100 40 2828.14.. 20 n 3461.96 20 20 4120.20 50 25 2831.60.. 70 3474.25 40 20 4125.65 20 15 2845.64.. 70 n 3484.73 40 30 4127.16 150 60 2847.50.. 40 3494.77 30 40 4136.24 40 25 2849.10 10 20 3515.58 40 40 4152.54 30 30 2867.82.. 40 n 3531.74 10 20 4152.75 30 40 2880.27 20 10 3545.97 20 20 4163.03 100 100 2880.99 20 10 3556.76 15 40 4173.23 50.. 2894.99 20 10 3574.78 10 20 4194.34 30 15 2897.36.. 20 n 3598.77 40 30 4254.43 100 20 2909.42 40 10 3626.70 20 15 4264.07 15 8 2928.79 0 3627.18 15 15 4350.73 40 15 2936.77 00 r 3662.27 20 10 5468.46 20.. 7