Physics 41 Chapter 38 HW Key
|
|
|
- Emery Stephens
- 9 years ago
- Views:
Transcription
1 Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? sin θ a y 4. mm 3 y tan θ sin θ θ (for small θ) 1.00 m. A beam of monochromatic green light is diffracted by a slit of width mm. The diffraction pattern forms on a wall.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 4.m. Calculate the wavelength of the light. y P38. The positions of the first-order minima are sin θ ±. Thus, the spacing between these two minima is L a y L and the wavelength is a 3 3 y a L.06 m 547 nm Coherent light of wavelength nm is sent through two parallel slits in a large, flat wall. Each slit is µ m wide. Their centers are.80 µ m apart. The light then falls on a semicylindrical screen, with its axis at the midline between the slits. (a) Predict the direction of each interference imum on the screen as an angle away from the bisector of the line joining the slits. (b) Describe the pattern of light on the screen, specifying the number of bright fringes and the location of each. (c) Find the intensity of light on the screen at the center of each bright fringe, expressed as a fraction of the light intensity at the center of the pattern. Solution: First some review: The total intensity of the double slit interference pattern is a combination of single slit diffraction and the double slit interference. The cosine squared term gives the intensity of the fringes inside the single slit ima. The sine squared terms is the envelope that shapes the fringes. ( πa θ / ) πd sin θ sin sin cos πa sin θ / Without the diffraction envelope all of the fringes would have equal intensity. This is what we were shown in chapter 37, although this pattern doesn t really exist.
2 So for this problem, you use the full expression to find the intensity of the bright fringes. The single slit minima DOMNATE the double slit interference so if a double ima falls on a single slit minima, the spot will be dark. To find the location of the fringes: Double-slit interference ima are at angles given by Single-slit diffraction minima, at asin θ m. dsin θ m. (a) The semicylindrical screen is irrelevant. The point is, they include that because it would be difficult to SEE fringes at large angles unless the screen was curved but it doesn t matter when you are solving for the angles. Double-slit interference ima are at angles given by dsin θ m. For m 0, θ m, (.80 µ m ) sin θ 1( µ m ) : ( ) For 1 θ 1 sin Similarly, for m, 3, 4, 5 and 6, θ 1.0, θ 3 3.5, θ θ, and θ 6 sin ( 1.07) nonexistent Thus, counting the central fringe, there are directions for interference ima. (b) We check for missing orders by looking for single-slit diffraction minima, at asin θ m because the single slit diffraction DOMNATES the double slit interference: For 1 m, ( µ m ) sin θ 1( µ m ) and θ Thus, there is no bright fringe at this angle. There are only nine bright fringes, at θ 0, ± 10.3, ± 1.0, ± 3.5, and ± c) To find the ratio of intensities, you have to use this: ( πa θ / ) πd sin θ sin sin cos πa sin θ /
3 The teacher s solution is using this equation too but they don t explain HOW they use it. That is why reverse engineering the teacher s solution manual can be a waste of time. Let me explain their solution. n part (a) we found angles for which dsin θ m. f you put those angles into this equation, the cosine squared term will always be equal to 1. We solved for the ima. Where the cosine squared term is equal to 1. SO that term drops out and we just end up with using: ( π a sinθ ) sin πasinθ Now what they are doing for the rest of the solution is just solving for the argument and making the units work out because you can t have use both radian and degrees at the same time in your calculator. Check it out. f had just one big equation, see what happens. m going to substitute in the givens and simplify, leaving only the angle: ( π x m θ x m ) ( θ ) sin (.7 10 ) sin ( ) sin sin (.7 10 )sin ( ) sinθ 6 6 π x m θ x m Check it out if you put in an angle, the top argument in the sine is then in radians and you can t have both radians and angles at the same time in your calculator. So the easiest way THNK to do this is to make a substitution: ( β ) sin β where β πa sinθ Then for each angle, solve for β in degree measure and then switch your calculator to radian and put β in and solve for the final answer. Atθ 0, lim sin θ 1and θ Atθ 10.3, use degrees: β ( ) 1.00 π a sinθ π µ m sin which is RADANS µ m Now switch your calculator to radians: ( ) sin OR, if you don t want to switch to radians, then you have to convert β into degrees for the top and then you can keep your calculator in degrees: π asin θ π ( µ ) µ m sin rad m sin And that is what the teacher solution manual did. t works either way but for this intensity formula you can t use both radians and degrees at the same time!!!! So, moral of the story, maybe it is better not to have the teacher solution manual!!!!
4 Similarly, atθ 1.0, Atθ 3.5, Atθ 63.6, π asin θ 1.57 rad 90.0 and π asin θ.36 rad 135 and π asin θ 3.93 rad 5 and The pupil of a cat s eye narrows to a vertical slit of width mm in daylight. What is the angular resolution for horizontally separated mice? Assume that the average wavelength of the light is 500 nm sin θ rad 4 a The mpressionist painter Georges Seurat created paintings with an enormous number of dots of pure pigment, each of which was approximately.00 mm in diameter. The idea was to have colors such as red and green next to each other to form a scintillating canvas. Outside what distance would one be unable to discern individual dots on the canvas? (Assume that 500 nm and that the pupil diameter is 4.00 mm.) Sunday Afternoon on the sland of La Grande Jatte, by Georges Seurat. By Rayleigh s criterion, two dots separated center-to-center by.00 mm would overlap d when θ min 1.. L D Thus, 3 3 (.00 ) ( 4.00 ) 9 ( ) dd L m.
5 5. A circular radar antenna on a Coast Guard ship has a diameter of. and radiates at a frequency of 15.0 GHz. Two small boats are located 9.00 km away from the ship. How close together could the boats be and still be detected as two objects? d P c m D L f D. L m ( m ) ( m ) d m. 6. The hydrogen spectrum includes a red line at 656 n and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines obtained with a diffraction grating that has grooves/cm? P38.1The grating spacing is m d n the 1st-order spectrum, diffraction angles are given by sin θ : sin θ d. so that for red θ and for blue so that θ sin θ The angular separation is in first-order, θ n the second-order spectrum, θ sin sin d d 13. Again, in the third order, θ sin sin d d 6.5 Since the red does not appear in the fourth-order spectrum, the answer is complete. 7. A helium neon laser ( 63.8 nm) is used to calibrate a diffraction grating. f the first-order imum occurs at 0.5, what is the spacing between adjacent grooves in the grating? P38. sin θ : Line spacing 1.81 µ m 63.8 nm nm d sin θ A diffraction grating has 4 00 rulings/cm. On a screen.00 m from the grating, it is found that for a particular order m, the ima corresponding to two closely spaced wavelengths of sodium (589.0 nm and nm) are separated by 1.59 mm. Determine the value of m.
6 P d nm 4 00 cm dsin θ m or 1 m y Ltan θ Ltan sin d 1 m θ sin d and Thus, 1 m 1 m1 y L tan sin tan sin d d For m 1, y (.00 m ) tan sin tan sin mm For m, ( ) ( ) y (.00 m ) tan sin tan sin 1.54 mm For m 3, ( ) ( ) y (.00 m ) tan sin tan sin 5.04 mm Thus, the observed order must be m. 9. Unpolarized light passes through two ideal Polaroid sheets.the axis of the first is vertical and that of the second is at 30.0 to the vertical. What fraction of the incident light is transmitted? P38.34 The average value of the cosine-squared function is one-half, so the first polarizer transmits 1 the light. The second 3 transmits cos f i i 10. The critical angle for total internal reflection for sapphire surrounded by air is Calculate the polarizing angle for sapphire. P sin θ c or n 1 1 n sin θ sin 34.4 Also, tan θ p n. Thus, 1 θ tan ( ) tan 1 p n ( 1.77) c
7 11. The Very Large Array (VLA) is a set of 7 radio telescope dishes in Caton and Socorro Counties, New Mexico (Fig. P38.54). The antennas can be moved apart on railroad tracks, and their combined signals give the resolving power of a synthetic aperture 36.0 km in diameter. (a) f the detectors are tuned to a frequency of 1.40 GHz, what is the angular resolution of the VLA? (b) Clouds of hydrogen radiate at this frequency. What must be the separation distance of two clouds at the center of the galaxy, lightyears away, if they are to be resolved? (c) What f? As the telescope looks up, a circling hawk looks down. Find the angular resolution of the hawk s eye. Assume that that the hawk is most sensitive to green light having a wavelength of 500 nm and that it has a pupil of diameter 1.0 mm. (d) A mouse is on the ground 30.0 m below. By what distance must the mouse s whiskers be separated if the hawk can resolve them? P38.50 (a) v : f s 0.14 m s (b) θ min : min 4 min 1. D 0.14 m θ µ rad s θ min 7.6 µ rad 1.50 arc seconds π d d θminl rad ly ly L θ : ( ) ( ) (c) min 1. D m 1.0 θ θ µ rad ( 10.5 seconds of arc) min 3 (d) d θ L ( )( ) 6 3 min rad 30.0 m mm 1. An American standard television picture is composed of about 485 horizontal lines of varying light intensity. Assume that your ability to resolve the lines is limited only by the Rayleigh criterion and that the pupils of your eyes are 5.00 mm in diameter. Calculate the ratio of minimum viewing distance to the vertical dimension of the picture such that you will not be able to resolve the lines. Assume that the average wavelength of the light coming from the screen is 550 nm. P38.57 The limiting resolution between lines θ 9 ( 550 ) ( 5.00 ) rad. D min 3 Assuming a picture screen with vertical dimension, the minimum viewing distance for no visible lines is found from 485 θ min. The desired ratio is then L L θ rad min ( ) 13. f the interplanar spacing of NaCl is , what is the predicted angle at which X-rays of wavelength nm will be diffracted in a first-order imum? Answer: 14.4
8 14. Suppose a 5-meter diameter telescope were constructed on the dark side of the moon. The viewing there (except for brief periods of sunlight) would be excellent. As an example, what would be the separation between two objects that could just be resolved on the planet Mars in 500 nm light? [The distance to Mars at closest approach is 50 million miles]. Answer: 9.8 km 15. Suppose a 5-meter diameter telescope were constructed on the dark side of the moon. The viewing there (except for brief periods of sunlight) would be excellent. As an example, what would be the separation between two objects that could just be resolved on the planet Mars in 500 nm light? [The distance to Mars at closest approach is 50 million miles]. 16. An unpolarized beam of light is incident on a stack ofideal polarizing filters. The axis of the first filter is perpendicular to the axis of the last filter in the stack. Find the fraction by which the transmitted beam s intensity is reduced in the following three cases. (a) Three filters are in the stack, each with its transmission axis at 45.0 relative to the preceding filter. (b) Four filters are in the stack, each with its transmission axis at 30.0 relative to the preceding filter. (c) Seven filters are in the stack, each with its axis at 15.0 relative to the preceding filter.(d) Comment on comparing the answers to parts (a), (b), and (c). 17. Monochromatic light is beamed into a Michelson interferometer. The movable mirror is displaced 0.38 mm, causing the interferometer pattern to reproduce itself times. Determine the wavelength of the light. What color is it?
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Interference and Diffraction
Chapter 14 nterference and Diffraction 14.1 Superposition of Waves... 14-14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment... 14-7 14.3 ntensity Distribution... 14-8 Example
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
Physics 111 Homework Solutions Week #9 - Tuesday
Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
Diffraction of Laser Light
Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
FTIR Instrumentation
FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation
O6: The Diffraction Grating Spectrometer
2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer
- the. or may. scales on. Butterfly wing. magnified about 75 times.
Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only
Waves and Light Extra Study Questions
Waves and Light Extra Study Questions Short Answer 1. Determine the frequency for each of the following. (a) A bouncing spring completes 10 vibrations in 7.6 s. (b) An atom vibrates 2.5 10 10 times in
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight
Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
Solutions to Exercises, Section 5.1
Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
THE BOHR QUANTUM MODEL
THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with
Experiment 5. Lasers and laser mode structure
Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
Trigonometric Functions and Triangles
Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between
3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
DIFFRACTION AND INTERFERENCE
DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Selecting Receiving Antennas for Radio Tracking
Selecting Receiving Antennas for Radio Tracking Larry B Kuechle, Advanced Telemetry Systems, Inc. Isanti, Minnesota 55040 [email protected] The receiving antenna is an integral part of any radio location
Relevant Reading for this Lecture... Pages 83-87.
LECTURE #06 Chapter 3: X-ray Diffraction and Crystal Structure Determination Learning Objectives To describe crystals in terms of the stacking of planes. How to use a dot product to solve for the angles
INTERFERENCE OF SOUND WAVES
1/2016 Sound 1/8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves.
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 4 - ALTERNATING CURRENT 4 Understand single-phase alternating current (ac) theory Single phase AC
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
Diffraction and Young s Single Slit Experiment
Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single
Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton
Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus
Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:
ANALYTICAL METHODS FOR ENGINEERS
UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations
Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.
Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light
1.1 The Challenge of light 1. Pythagoras' thoughts about light were proven wrong because it was impossible to see A. the light beams B. dark objects C. in the dark D. shiny objects 2. Sir Isaac Newton
STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves
Name: Teacher: Pd. Date: STAAR Science Tutorial 30 TEK 8.8C: Electromagnetic Waves TEK 8.8C: Explore how different wavelengths of the electromagnetic spectrum such as light and radio waves are used to
Using light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
Acousto-optic modulator
1 of 3 Acousto-optic modulator F An acousto-optic modulator (AOM), also called a Bragg cell, uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency).
Experiment 9. The Pendulum
Experiment 9 The Pendulum 9.1 Objectives Investigate the functional dependence of the period (τ) 1 of a pendulum on its length (L), the mass of its bob (m), and the starting angle (θ 0 ). Use a pendulum
Light Waves and Matter
Name: Light Waves and Matter Read from Lesson 2 of the Light Waves and Color chapter at The Physics Classroom: http://www.physicsclassroom.com/class/light/u12l2a.html MOP Connection: Light and Color: sublevel
ENGINEERING METROLOGY
ENGINEERING METROLOGY ACADEMIC YEAR 92-93, SEMESTER ONE COORDINATE MEASURING MACHINES OPTICAL MEASUREMENT SYSTEMS; DEPARTMENT OF MECHANICAL ENGINEERING ISFAHAN UNIVERSITY OF TECHNOLOGY Coordinate Measuring
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
INTERFERENCE OBJECTIVES PRE-LECTURE. Aims
53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72
Physics 202 Problems - Week 8 Worked Problems Chapter 25: 7, 23, 36, 62, 72 Problem 25.7) A light beam traveling in the negative z direction has a magnetic field B = (2.32 10 9 T )ˆx + ( 4.02 10 9 T )ŷ
A comparison of radio direction-finding technologies. Paul Denisowski, Applications Engineer Rohde & Schwarz
A comparison of radio direction-finding technologies Paul Denisowski, Applications Engineer Rohde & Schwarz Topics General introduction to radiolocation Manual DF techniques Doppler DF Time difference
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
Fiber Optics: Fiber Basics
Photonics Technical Note # 21 Fiber Optics Fiber Optics: Fiber Basics Optical fibers are circular dielectric wave-guides that can transport optical energy and information. They have a central core surrounded
Friday 18 January 2013 Morning
Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied
Module 13 : Measurements on Fiber Optic Systems
Module 13 : Measurements on Fiber Optic Systems Lecture : Measurements on Fiber Optic Systems Objectives In this lecture you will learn the following Measurements on Fiber Optic Systems Attenuation (Loss)
Stack Contents. Pressure Vessels: 1. A Vertical Cut Plane. Pressure Filled Cylinder
Pressure Vessels: 1 Stack Contents Longitudinal Stress in Cylinders Hoop Stress in Cylinders Hoop Stress in Spheres Vanishingly Small Element Radial Stress End Conditions 1 2 Pressure Filled Cylinder A
Geometry Notes PERIMETER AND AREA
Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Today. next two weeks
Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially
The coherence length of black-body radiation
Eur. J. Phys. 19 (1998) 245 249. Printed in the UK PII: S143-87(98)86653-1 The coherence length of black-body radiation Axel Donges Fachhochschule und Berufskollegs NTA Prof. Dr Grübler, Seidenstrasse
First let us consider microscopes. Human eyes are sensitive to radiation having wavelengths between
Optical Differences Between Telescopes and Microscopes Robert R. Pavlis, Girard, Kansas USA icroscopes and telescopes are optical instruments that are designed to permit observation of objects and details
Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of this system is: k m therefore, k
Physics 1C Midterm 1 Summer Session II, 2011 Solutions 1. If F = kx, then k m is (a) A (b) ω (c) ω 2 (d) Aω (e) A 2 ω Solution: F = kx is Hooke s law for a mass and spring system. Angular frequency of
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
Spring Simple Harmonic Oscillator. Spring constant. Potential Energy stored in a Spring. Understanding oscillations. Understanding oscillations
Spring Simple Harmonic Oscillator Simple Harmonic Oscillations and Resonance We have an object attached to a spring. The object is on a horizontal frictionless surface. We move the object so the spring
Physics 201 Homework 8
Physics 201 Homework 8 Feb 27, 2013 1. A ceiling fan is turned on and a net torque of 1.8 N-m is applied to the blades. 8.2 rad/s 2 The blades have a total moment of inertia of 0.22 kg-m 2. What is the
ALMA Newsletter. ALMA In-depth. How Will ALMA Make Images? April 2010
How Will ALMA Make Images? Credit: ALMA (ESO / NAOJ / NRAO), Cynthia Collao (ALMA). The invention of the optical telescope by Galileo 400 years ago marked the beginning of modern astronomy. Galileo used
GEOMETRIC MENSURATION
GEOMETRI MENSURTION Question 1 (**) 8 cm 6 cm θ 6 cm O The figure above shows a circular sector O, subtending an angle of θ radians at its centre O. The radius of the sector is 6 cm and the length of the
MICROSCOPY. To demonstrate skill in the proper utilization of a light microscope.
MICROSCOPY I. OBJECTIVES To demonstrate skill in the proper utilization of a light microscope. To demonstrate skill in the use of ocular and stage micrometers for measurements of cell size. To recognize
Trigonometry Hard Problems
Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.
What s so special about the laser?
What s so special about the laser? A guide for taking LaserFest into the classroom. Developed by 2010 SPS SOCK interns Patrick Haddox & Jasdeep Maggo. www.spsnational.org Activity 1: Exploring laser light
Magnetic Field of a Circular Coil Lab 12
HB 11-26-07 Magnetic Field of a Circular Coil Lab 12 1 Magnetic Field of a Circular Coil Lab 12 Equipment- coil apparatus, BK Precision 2120B oscilloscope, Fluke multimeter, Wavetek FG3C function generator,
Class 2 Solar System Characteristics Formation Exosolar Planets
Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System
Planetary Imaging Workshop Larry Owens
Planetary Imaging Workshop Larry Owens Lowell Observatory, 1971-1973 Backyard Telescope, 2005 How is it possible? How is it done? Lowell Observatory Sequence,1971 Acquisition E-X-P-E-R-I-M-E-N-T-A-T-I-O-N!
Review Vocabulary spectrum: a range of values or properties
Standards 7.3.19: Explain that human eyes respond to a narrow range of wavelengths of the electromagnetic spectrum. 7.3.20: Describe that something can be seen when light waves emitted or reflected by
Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
9.4. The Scalar Product. Introduction. Prerequisites. Learning Style. Learning Outcomes
The Scalar Product 9.4 Introduction There are two kinds of multiplication involving vectors. The first is known as the scalar product or dot product. This is so-called because when the scalar product of
Modern Classical Optics
Modern Classical Optics GEOFFREY BROOKER Department of Physics University of Oxford OXPORD UNIVERSITY PRESS Contents 1 Electromagnetism and basic optics 1 1.1 Introduction 1 1.2 The Maxwell equations 1
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
Triangle Trigonometry and Circles
Math Objectives Students will understand that trigonometric functions of an angle do not depend on the size of the triangle within which the angle is contained, but rather on the ratios of the sides of
GLOBAL COLLEGE OF ENGINEERING &TECHNOLOGY: YSR DIST. Unit VII Fiber Optics Engineering Physics
Introduction Fiber optics deals with the light propagation through thin glass fibers. Fiber optics plays an important role in the field of communication to transmit voice, television and digital data signals
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Chapter 6 Circular Motion
Chapter 6 Circular Motion 6.1 Introduction... 1 6.2 Cylindrical Coordinate System... 2 6.2.1 Unit Vectors... 3 6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates... 4 Example
Graphs of Polar Equations
Graphs of Polar Equations In the last section, we learned how to graph a point with polar coordinates (r, θ). We will now look at graphing polar equations. Just as a quick review, the polar coordinate
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Problem Set V Solutions
Problem Set V Solutions. Consider masses m, m 2, m 3 at x, x 2, x 3. Find X, the C coordinate by finding X 2, the C of mass of and 2, and combining it with m 3. Show this is gives the same result as 3
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Z +
Introduction to the Smith Chart for the MSA Sam Wetterlin 10/12/09 Quick Review of Reflection Coefficient The Smith chart is a method of graphing reflection coefficients and impedance, and is often useful
The Vector or Cross Product
The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Interferometric Measurement of Dispersion in Optical Components
Interferometric Measurement of Dispersion in Optical Components Mark Froggatt, Eric Moore, and Matthew Wolfe Luna Technologies, Incorporated, 293-A Commerce Street, Blacksburg, Virginia 246 [email protected].
Experiment IV: Atomic Spectra and the Bohr model
P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we
