WAVES AND ELECTROMAGNETIC RADIATION
|
|
|
- Tobias Wilson
- 9 years ago
- Views:
Transcription
1 WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,): the number of waves produced per unit time. Wavelength and frequency are inversely proportional. Speed (c): tells how fast waves travel through space. Energy travels through space as electromagnetic radiation. This radiation takes many forms, such as sunlight, microwaves, radio waves, etc. In vacuum, all electromagnetic waves travel at the speed of light (3.00 x 10 8 m/s), and differ from each other in their frequency and wavelength. The classification of electromagnetic waves according to their frequency is called electromagnetic spectrum. These waves range from gamma rays (short λ, high f) to radio waves (long λ, low f). 1
2 ATOMIC SPECTRA When white light is passed through a glass prism, it is dispersed into a spectrum of colors. This is evidence of the wave nature of light. Scientists also have much evidence that light beams act as a stream of tiny particles, called photons. Scientists also discovered that when atoms are energized (by heat, light or electricity), they often reemit the energy as light. Neon lights are an example of this property of atoms. The absorption and emission of light by atoms is due to the interaction of light with the electrons in the atom. As a result, atoms of different elements exhibit a unique color and wavelength of light. For example, mercury atoms emit light that appears blue, hydrogen atoms emit light that appears pink and helium atoms emit light that appears yellow-orange. These lines indicate that light is formed only at certain wavelengths and frequencies that correspond to specific colors. Each element possesses a unique line spectrum that can be used to identify it. 2
3 BOHR MODEL OF THE ATOM Neils Bohr, a Danish physicist, studied the hydrogen atom extensively, and developed a model for the atom that was able to explain the line spectrum. Bohr s model of the atom consisted of electrons orbiting the nucleus at different distances from the nucleus, called energy levels. In this model, the electrons could only occupy particular energy levels, and could jump to higher levels by absorbing energy. The energy of each Bohr orbit, specified by a quantum number (n=1, 2, 3.) is fixed or quantized. Bohr s orbits are like steps on a ladder. It is possible to stand on one step or another, but impossible to stand between steps. The lowest energy level is called ground state, and the higher energy levels are called excited states. When electrons absorb energy through heating or electricity, they move to higher energy levels and become excited. When excited electrons return to the ground state, energy is emitted as a photon of light is released. The color (wavelength) of the light emitted is determined by the difference in energy between the two states (excited and ground). The atomic spectrum is produced by many of these transitions between excited and ground states. 3
4 Examples: 1. Rank the electromagnetic radiation listed below in order of (i) increasing wavelength, and (ii) increasing energy per photon. radio waves infrared microwaves ultraviolet increasing wavelength: increasing energy/photon: 2. In the Bohr model, what happens when an electron makes a transition between energy levels: a) Energy only increases b) Energy only decreases c) Energy increases or decreases d) Energy does not change 3. Two of the emission wavelengths in the hydrogen emission spectrum are 656 nm and 486 nm One of these is due to the n=4 to n=2 transition, and the other is due to the n=3 to n=2 transition. Which wavelength goes with which transition? 4
5 QUANTUM MECHANICAL MODEL OF THE ATOM In 1926 Erwin Shrodinger created a mathematical model that showed electrons as both particles and waves. This model was called the quantum mechanical model. This model predicted electrons to be located in a probability region called orbitals. An orbital is defined as a region around the nucleus where there is a high probability of finding an electron. Based on this model, there are discrete principal energy levels within the atom. Principal energy levels are designated by n. The electrons in an atom can exist in any principal energy level. As n increases, the energy of the electrons increases. Each principal energy level is subdivided into sublevels. The sublevels are designated by the letters s, p, d and f. As n increases, the number of sublevels increases. Within the sublevels, the electrons are located in orbitals. The orbitals are also designated by the letters s, p, d and f. The number of orbitals within the sublevels vary with their type. s sublevel = 1 orbital p sublevel = 3 orbitals d sublevel = 5 orbitals f sublevel = 7 orbitals An orbital can hold a maximum of 2 electrons. 5
6 ORBITAL SHAPES Each orbital type can be represented by a geometric shape that encompasses the volume where the electron in likely to be found. These shapes for the s, p and d orbitals are shown below: 6
7 Examples: 1. How would the 4d orbital be similar to the 3d orbital? 2. How would the 4d orbital differ from the 3d orbital? 3. Which electron is, on average, farther from the nucleus: an electron in a 3p orbital or an electron in a 4p orbital? 4. Which of the following orbitals in not permissible? 3p 2d 4p 3s 3f 7
8 ELECTRON CONFIGURATION Similarities of behavior in the periodic table are due to the similarities in the electron arrangement of the atoms. This arrangement is called electron configuration. The modern model of the atom describes the electron cloud consisting of separate energy levels, each containing a fixed number of electrons. Each orbital can be occupied by no more than 2 electrons, each with opposite spins. (Pauli exclusion principle) The electrons occupy the orbitals form the lowest energy level to the highest level. The energy of the orbitals on any level are in the following order: s < p < d < f. When orbitals of identical energy are available, each orbital is occupied by a single electron before a second electron enters the orbital (Hund s rule). For example, all three p orbitals must contain one electron before a second electron enters a p orbital. Electron configurations are written as shown below: 2 p 6 Number of electrons in orbitals Principal energy level Type of orbital Another notation, called the orbital notation, is shown below: Electrons in orbital with opposing spins Principal energy level 1s Type of orbital 8
9 Element Orbital Notation Configuration Li Be B C N O F Ne Na Mg Al Si P S 1s 2s 1s 2s 1s 2s 2p 1s 2s 2p 1s 2s 2p 1s 2s 2p 1s 2s 2p 1s 2s 2p 1s 2s 2p 3s 1s 2s 2p 3s 1s 2s 2p 3s 3p 1s 2s 2p 3s 3p 1s 2s 2p 3s 3p 1s 2s 2p 3s 3p 9
10 ELECTRON CONFIGURATION OF LARGER ATOMS As electrons occupy the 3 rd energy level and higher, some anomalies occur in the order of the energy of the orbitals. Knowledge of these anomalies is important in order to determine the correct electron configuration for the atoms. The study aid shown on the right is used by beginning students to remember these exceptions to the order of orbital energies. The order of the energy of the orbitals is determined by following the tail of each arrow to the head and continuing to the next arrow in the same manner. Listed below is the order of energy of the orbitals found in this manner: 1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s The electrons in an atom fill from the lowest to the highest orbitals. The knowledge of the location of the orbitals on the periodic table can greatly help the writing of electron configurations for large atoms. The energy order of the sublevels are shown below. Note that different sublevels within the same principle shell have different energies. 10
11 ELECTRON CONFIGURATION AND PERIODIC TABLE The horizontal rows in the periodic table are called periods. The period number corresponds to the number of energy levels that are occupied in that atom. The vertical columns in the periodic table are called groups or families. For the main-group elements, the group number corresponds to the number of electrons in the outermost filled energy level (valence electrons). The valence electrons configuration for the elements in periods 1-3 are shown below. Note that elements in the same group have similar electron configurations. The location of the different orbital types in the periodic table is shown below: 11
12 ELECTRON CONFIGURATION SUMMARY Electrons occupy orbitals so as to minimize the energy of the atom. Therefore, low energy orbitals fill before higher energy orbitals. Orbitals can hold no more than two electrons each. When two electrons occupy the same orbital, they must have opposite spins. This is known as the Pauli exclusion principle. When orbitals of identical energy are available, they are first occupied singly with parallel spins rather than in pairs. This is known as Hund s rule. Examples: 1. Use the periodic table to write complete electron configuration for phosphorus. phosphorous, Z = electron configuration: 2. Draw an orbital diagram for silicon (Si) and determine the number of unpaired electrons. The available orbitals are listed below. Si, Z = orbital notation: 12
13 ABBREVIATED ELECTRON CONFIGURATION When writing electron configurations for larger atoms, an abbreviated configuration is used. In writing this configuration, the non-valence (core) electrons are summarized by writing the symbol of the noble gas prior to the element in brackets followed by configuration of the valence electrons. For example: K 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 or [Ar] 4s 1 complete configuration abbreviated configuration Br 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 5 or [Ar] 4s 2 3d 10 4p 5 complete configuration abbreviated configuration Examples: 1. Write abbreviated electron configurations for each element listed below: a) Fe (Z=26): b) Sb (Z=51): 2. Give the symbol of the element with each of the following electron configurations: a) [Ne] 3s 2 3p 1 b) [Ar] 4s 2 3d 8 13
Chapter 7. Electron Structure of the Atom. Chapter 7 Topics
Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
Arrangement of Electrons in Atoms
CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19
Sample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
CHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
MODERN ATOMIC THEORY AND THE PERIODIC TABLE
CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek
Electron Arrangements
Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
Atomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged
CHEMSITRY NOTES Chapter 13. Electrons in Atoms
CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE
Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation
Electron Configuration Worksheet (and Lots More!!)
Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration
electron configuration
electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1
2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England
CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered
9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.
John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of
UNIT (2) ATOMS AND ELEMENTS
UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called
AP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three
Ernest Rutherford Atomic Model 1911. Plum Pudding Model J.J. Thomson 1897
1 The arrangement of electrons in an atom determine most of the chemical properties of that atom. Electrons are what actually do the reacting. Plum Pudding Model J.J. Thomson 1897 Ernest Rutherford Atomic
3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A
1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.
Name: Worksheet: Electron Configurations. I Heart Chemistry!
1. Which electron configuration represents an atom in an excited state? 1s 2 2s 2 2p 6 3p 1 1s 2 2s 2 2p 6 3s 2 3p 2 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2 2s 2 2p 6 3s 2 Worksheet: Electron Configurations Name:
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
Ch. 9 - Electron Organization. The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7]
Ch. 9 - Electron Organization The Bohr Model [9.4] Orbitals [9.5, 9.6] Counting Electrons, configurations [9.7] Predicting ion charges from electron configurations. CHEM 100 F07 1 Organization of Electrons
Molecular Models & Lewis Dot Structures
Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
Flame Tests & Electron Configuration
Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the
Atoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Level 3 Achievement Scale
Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
CHAPTER 11: MODERN ATOMIC THEORY
CHAPTER 11: MODERN ATOMIC THEORY Active Learning Questions: 1-2, 8-10, 14-18; End-of-Chapter Problems: 3-9, 11-13, 16, 18, 20-36, 45-54, 56-64, 66b, 67, 69-91, 98, 101-102, 108, 110, 113, 116, 11.2 ELECTROMAGNETIC
The Atom and the Periodic Table. Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams
The Atom and the Periodic Table Electron Cloud Structure Energy Levels Rows on the Periodic Table Bohr Models Electron Dot Diagrams Review The vertical columns in the periodic table are called groups.
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the
Chemistry CP Unit 2 Atomic Structure and Electron Configuration. Learning Targets (Your exam at the end of Unit 2 will assess the following:)
Chemistry CP Unit 2 Atomic Structure and Electron Learning Targets (Your exam at the end of Unit 2 will assess the following:) 2. Atomic Structure and Electron 2-1. Give the one main contribution to the
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
18.2 Comparing Atoms. Atomic number. Chapter 18
As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,
It takes four quantum numbers to describe an electron. Additionally, every electron has a unique set of quantum numbers.
So, quantum mechanics does not define the path that the electron follows; rather, quantum mechanics works by determining the energy of the electron. Once the energy of an electron is known, the probability
KEY. Honors Chemistry Assignment Sheet- Unit 3
KEY Honors Chemistry Assignment Sheet- Unit 3 Extra Learning Objectives (beyond regular chem.): 1. Related to electron configurations: a. Be able to write orbital notations for s, p, & d block elements.
Chapter Test. Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a.
Assessment Chapter Test A Teacher Notes and Answers 5 The Periodic Law TEST A 1. b 2. d 3. b 4. b 5. d 6. a 7. b 8. b 9. b 10. a 11. c 12. a 13. c 14. d 15. c 16. b 17. d 18. a 19. d 20. c 21. d 22. a
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number
2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive
The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010
The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of
Electron Configurations, Isoelectronic Elements, & Ionization Reactions. Chemistry 11
Electron Configurations, Isoelectronic Elements, & Ionization Reactions Chemistry 11 Note: Of the 3 subatomic particles, the electron plays the greatest role in determining the physical and chemical properties
Untitled Document. 1. Which of the following best describes an atom? 4. Which statement best describes the density of an atom s nucleus?
Name: Date: 1. Which of the following best describes an atom? A. protons and electrons grouped together in a random pattern B. protons and electrons grouped together in an alternating pattern C. a core
Arrangement of Electrons in Atoms
CHAPTER 4 Arrangement of Electrons in Atoms The emission of light is fundamentally related to the behavior of electrons. Neon Walkway The Development of a New Atomic Model T he Rutherford model of the
Multi-electron atoms
Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
Homework #10 (749508)
Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points
Question: Do all electrons in the same level have the same energy?
Question: Do all electrons in the same level have the same energy? From the Shells Activity, one important conclusion we reached based on the first ionization energy experimental data is that electrons
Student Exploration: Electron Configuration
Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion
Unit 2: Chemical Bonding and Organic Chemistry
Chemistry AP Unit : Chemical Bonding and Organic Chemistry Unit : Chemical Bonding and Organic Chemistry Chapter 7: Atomic Structure and Periodicity 7.1: Electromagnetic Radiation Electromagnetic (EM)
History of the Atom & Atomic Theory
Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations
6.5 Periodic Variations in Element Properties
324 Chapter 6 Electronic Structure and Periodic Properties of Elements 6.5 Periodic Variations in Element Properties By the end of this section, you will be able to: Describe and explain the observed trends
Bohr s Model of the Atom
Bohr Models Bohr s Model of the Atom Focuses on electrons and their arrangement. Bohr stated that electrons move with constant speed in fixed orbits around the nucleus, like planets around a sun. Bohr
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni
SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni Which metal in the list above has the most metallic character? Explain. Cesium as the
Department of Physics and Geology The Elements and the Periodic Table
Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev
Periodic Table Questions
Periodic Table Questions 1. The elements characterized as nonmetals are located in the periodic table at the (1) far left; (2) bottom; (3) center; (4) top right. 2. An element that is a liquid at STP is
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Copyrighted by Gabriel Tang B.Ed., B.Sc.
Chapter 8: The Periodic Table 8.1: Development of the Periodic Table Johann Dobereiner: - first to discover a pattern of a group of elements like Cl, Br, and I (called triads). John Newland: - suggested
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
Review of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory
PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents
The Electromagnetic Spectrum
INTRODUCTION The Electromagnetic Spectrum I. What is electromagnetic radiation and the electromagnetic spectrum? What do light, X-rays, heat radiation, microwaves, radio waves, and gamma radiation have
Lecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus
Q1. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum.
Q. The diagram below shows the range of wavelengths and frequencies for all the types of radiation in the electromagnetic spectrum. X rays, which have frequencies in the range 0 8 0 2 Hz are already marked
47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25. 4 Atoms and Elements
47374_04_p25-32.qxd 2/9/07 7:50 AM Page 25 4 Atoms and Elements 4.1 a. Cu b. Si c. K d. N e. Fe f. Ba g. Pb h. Sr 4.2 a. O b. Li c. S d. Al e. H f. Ne g. Sn h. Au 4.3 a. carbon b. chlorine c. iodine d.
Chapter 2. Quantum Theory
Chapter 2 Quantum Theory 2.0 Introduction 2.6 Orbital Shapes, Signs, and Sizes 2.1 The Nature of Light 2.7 Electron Configurations 2.2 Quantization 2.8 Quantum Theory and the Periodic Table 2.3 Bohr Model
ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE
ATOMS AND THE PERIODIC TABLE CHAPTER 3 PHYSICAL SCIENCE Chapter 3 Vocabulary Words (27 words) Nucleus Atomic number Proton Mass number Neutron Isotopes Electron Atomic mass unit (amu) Energy level Average
Models of the Atom and periodic Trends Exam Study Guide
Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic
Electromagnetic Radiation
Chapter 7 A Quantum Model of Atoms Chapter Objectives: Understand the relationships between wavelength, frequency, and energy of light. Understand the origin of atomic line spectra. Learn how the quantum
IONISATION ENERGY CONTENTS
IONISATION ENERGY IONISATION ENERGY CONTENTS What is Ionisation Energy? Definition of t Ionisation Energy What affects Ionisation Energy? General variation across periods Variation down groups Variation
Unit 2 Periodic Behavior and Ionic Bonding
Unit 2 Periodic Behavior and Ionic Bonding 6.1 Organizing the Elements I. The Periodic Law A. The physical and chemical properties of the elements are periodic functions of their atomic numbers B. Elements
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
5.4 Trends in the Periodic Table
5.4 Trends in the Periodic Table Think about all the things that change over time or in a predictable way. For example, the size of the computer has continually decreased over time. You may become more
P. Table & E Configuration Practice TEST
P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
Chapter 3. Elements, Atoms, Ions, and the Periodic Table
Chapter 3. Elements, Atoms, Ions, and the Periodic Table The Periodic Law and the Periodic Table In the early 1800's many elements had been discovered and found to have different properties. In 1817 Döbreiner's
Chapter 8 Basic Concepts of the Chemical Bonding
Chapter 8 Basic Concepts of the Chemical Bonding 1. There are paired and unpaired electrons in the Lewis symbol for a phosphorus atom. (a). 4, 2 (b). 2, 4 (c). 4, 3 (d). 2, 3 Explanation: Read the question
PROTONS AND ELECTRONS
reflect Imagine that you have a bowl of oranges, bananas, pineapples, berries, pears, and watermelon. How do you identify each piece of fruit? Most likely, you are familiar with the characteristics of
Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
Periodic Table Trends in Element Properties Ron Robertson
Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW
CHAPTER 9 ATOMIC STRUCTURE AND THE PERIODIC LAW Quantum mechanics can account for the periodic structure of the elements, by any measure a major conceptual accomplishment for any theory. Although accurate
PERIODIC TABLE. reflect
reflect Suppose you wanted to organize your locker at school. How could you separate and arrange everything in an organized way? You could place the books, notebooks, and folders on a shelf that is separate
Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
