Quantum Mechanics and Atomic Structure 1

Size: px
Start display at page:

Download "Quantum Mechanics and Atomic Structure 1"

Transcription

1 Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents of elements are atom and are indivisible. In 1930s, it seemed that protons, neutrons, and electrons were the smallest objects into which matter could be divided and they were termed elementary particles which means having no smaller constituent parts, or indivisible. Again, later knowledge changed our understanding and over 100 other elementary particles were discovered between 1930 and the present time. Number of models was proposed from time to time to explain the structure of atoms but none of them could explain satisfactorily till the devolvement of quantum theory. QUANTUM THEORY The birth of quantum mechanics replaced classical mechanics which was used for the description of motion on an atomic scale. In 1900, Planck showed that the description of the distribution of energies of electromagnetic radiation in a cavity requires the quantization of energy. This was quickly followed by the application of quantization of atomic and molecular phenomena. Modern chemistry relies on quantum mechanics for the description of most phenomena. The Origins of Quantum Theory During the latter part of the 19th century, the classical mechanics had successfully explained most of the phenomena in which the physicists were interested. But the, problems arose when the classical laws did not explain certain phenomena on the atomic or molecular level. These problems were the lowtemperature heat capacities of solids, the photoelectric effect, the distribution of radiation from a black body, and the spectra of atoms. By 1925, a new mechanics called quantum mechanics had been invented which successfully explained all these phenomena. Particles A particle has the attributes of mass, momentum, and thus possess kinetic energy. A particle has a definite location in space, and thus is discrete and countable. A particle may carry an electric charge. Wave A wave is a periodic variation of some quantity as a function of location. For example, the wave motion of a vibrating guitar string is defined by the displacement of the string from its center as a

2 2 COMPREHENSIVE PHYSICAL CHEMISTRY function of distance along the string. A sound wave consists of variations in the pressure with location. A wave is characterized by its wavelength l and frequency u, which are related by l = u/u where u is the velocity of propagation of the disturbance in the medium. Wave Theory of Light In 1860s James Clerk Maxwell developed his electromagnetic theory and showed theoretically that when an electric charge is accelerated (by being made to oscillate within a piece of wire, for example), electrical energy will be lost, and an equivalent amount of energy is radiated into space, spreading out as a series of waves extending in all directions. These waves consist of periodic variations in the electrostatic and electromagnetic field strengths. These variations occur at right angles to each other. Each electrostatic component of the wave induces a magnetic component, which then creates a new electrostatic component, so that the wave, once formed, continues to propagate through space, essentially feeding on itself. Black Body Radiation When radiation falls on an object, a part of it is reflected, a part is absorbed and the remaining part is transmitted. This is due to the fact that no object is a perfect absorber. In contrast to this, we may visualize a black body which completely absorbs all radiations that falls on it and retains all the radiant energy that strikes it. For experimental purposes, a black body is generally blackened metallic surface of a hollow sphere and blackened from inside with a hole. All radiations that enter through the hole will be absorbed completely by successive reflections inside the enclosure. Such a material is called a black body and a good example of it is an empty container with a pin-hole maintained at a constant temperature. Thus a black body may be defined as one that absorbs and emits all radiations (frequencies). A black body behaves not only a perfect absorber of radiant energy, but is also an idealized radiator. The radiation emerging from the hole will also be very nearly equal to that of the black body and is called black body radiation. It has been shown that the energy which radiates is dependent on the temperature of the enclosure but independent of the nature of the interior material. A plot of the intensity of black body radiation versus wavelength at different temperatures are shown in Fig Fig. 1.1 Emission of radiation from a blackbody at different temperatures. The area under the curve between two different wavelengths gives the energy in calories emitted by 1 cm 2 surface of a black-body in the specified range of wavelengths The shape of the curves could not be explained on the basis of classical electromagnetic theory in which it was assumed that the body radiates energy continuously. The experimental observations are contrary to the classical view. For each temperature there is a maximum in the curve corresponding to a particular wavelength, indicating the maximum radiation of energy. At higher temperatures, the position of the maximum in the curve shifts towards shorter wavelength and becomes more pronounced. To explain the distribution of black body radiation as function of frequency or wavelength of radiation,

3 QUANTUM MECHANICS AND ATOMIC STRUCTURE 3 Max Planck in 1900 resolved this discrepancy by postulating the revolutionary assumption that the black body radiated energy not continuously but discontinuously in the form of energy packets called quanta, given by E= hn...(1.1) and the energy (E n ) can only have integral values of a quantum, i.e., E n = n hn (n = 0,1,2...) where E is quantum of energy radiated, n is the frequency of radiation and h is the Planck s constant having a value erg sec or J s, and n is a positive integer. On the basis of this equation, Planck obtained an expression (Eqn 1.2) which correctly gives the distribution of energy in black body radiation: 8πhc 1 de = r dl where r = 5 hc / λkt...(1.2) λ e 1 where e means energy divided by volume. This expression fits the experimental curve at all wavelengths. Equation (1.1) is the fundamental relation of the quantum theory of radiation. Planck s theory of quantized radiation of black body led Einstein to propose a generalization of the quantum theory. Einstein stated that all radiations absorbed or emitted by a body must be in quanta and their magnitude depends on the frequency according to eqn. (1.1) or multiple thereof. Heat Capacities of Solids French scientists Pierre-L. Dulong and Alexis T. Petit determined the heat capacities of a number of monatomic solids and, in 1819, proposed their law that atoms of all simple bodies have exactly the same heat capacity. In other words, the molar heat capacities of all monatomic solids are nearly equal to 3R (25 JK 1 mol 1. This value could be predicted from the relation de C v,m = dt = 3R = 24.9 JK 1... (1.3) V where the molar internal energy is given by E = 3N A kt = 3RT (since N A k = R)... (1.4) where N A is Avagadro s number, k is Boltzmann constant and R is the Gas constant. This law could easily be explained in terms of classical mechanics. But marked deviations from this law was noticed when the heat capacities were measured at low temperatures. The value of molar heat capacities of all metals were found to decrease with decreasing temperature and even becomes zero at T = 0. Therefore, important advancements in the calculation of atomic heat capacities was made by A. Einstein in 1907 on the basis of quantum theory. Quantum Theory Einstein Model According to classical theory the specific heat should be independent of temperature but it markedly depends on temperature. All specific heats increase with temperature. According to Planck, a harmonic oscillator does not have a continuous energy spectrum, as assumed in the classical theory, but can accept only energy values equal to integer times h n, where h is Planck s constant and n is the frequency. The possible energy levels of an oscillator may thus be represented by e n = n hv, n = 0,1,2,3... In their model it is supposed that all the atoms vibrate with the same frequency, but with different amplitudes, i.e., with different amount of vibrational energy.

4 4 COMPREHENSIVE PHYSICAL CHEMISTRY According to Planck, the average energy of an oscillator ε oscillating in one direction in space, at a temperature T, is given by ε =...(1.5) hv / kt e 1 The vibrational energy of a solid element containing N atoms oscillating in three directions is equal to E = 3Nε = 3N...(1.6) e / ht 1 The specific heat at constant volume is therefore, obtained by differentiating E with respect to T. i.e., C v, m = 2 / kt de e 3R dt = kt ( e 1) / kt 2...(1.7) when kt >> hn i.e., hn /kt is small in comparison with unity, then C v = 3R (Classical result) when T is very low, C v decreases and tends to zero. To discuss this behaviour, it is convenient to express the frequency of oscillation of the atoms in terms of Einstein temperature, q E defined as q E = h ν...(1.8) K Thus, Eqn. (1.7) may be written in the form θe / T θe e C v = 3R T θe / T e 1...(1.9) or C ν 3R θ T = E f E where f E = θe / T θ E e T θe / T e 1 f E is called Einstein function. It determines the ratio of the specific heat at a temperature T and the classical value (high temperature value) 3R. In the high temperature range, when T << q E, the observed and theoretical specific heat values are in good agreement. However, at very low temperatures there is deviation. At very low temperatures, majority of the atoms will have small or zero energy and the contribution to the heat capacity will be / small. At T << q E, eqn. (1.9) suggests that specific heat is proportional to E T i.e., / C e θ E T ν α...(1.10) It means Einstein function will fall more rapidly at low temperature and at T = 0, the value of f E = 0. This failure arises from Einstein s assumption that all the atoms oscillate with the same frequency. It is not correct. In fact they oscillate over a range of frequencies from zero up to a maximum, n m. Debye solved this problem by averaging overall the frequencies. e θ

5 QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 Debye Model Close, examination of the Einstein s model has shown that at low temperature, the specific heat fall off more rapidly than do the experimental values. It is not correct, therefore, that all the N atoms in 1g. atom of a crystal oscillate at the same frequency and a more reasonable postulate would be that the g. atom involves a coupled system of 3N oscillators i.e. one can write r= 3N r E =...(1.11) r kt r= 1 e / 1 where n r is the frequency for a particular value of r which can vary from 1 to 3N. By the theory of elasticity the number of such vibrations per unit volume (dz) in between the frequency n and n + dn is found to be 2 dν d z = 9Nν...(1.12) ν 3 m where n m represents the maximum of 3N vibration frequencies. 9N νm 2 E = ν dν 2 0 / kt ν...(1.13) m ( e 1) So on differentiating E with respect to temperature, T the Debye heat capacity equation is written as 9R νm 2 C n = ν dv 2 0 / kt ν (where R = kn)...(1.14) ( e 1) m Further, the quantity kt can be replaced by the variable x, therefore one can write 3 kt m/ kt exdx C n = 3R...(1.15) h 0 x 2 νm ( e 1) The quantity hn m /k is called the characteristic temperature and is represented by the symbol q D. Thus m q D =...(1.16) k h e ν / kt when the temperature is large, m is small and therefore, C v = 3R The Debye equation at low temperatures is written as C v = a T 3...(1.17) where a is a constant for a particular substance. Thus it is clear that the principle of quantization must be introduced in order to explain the thermal properties of solids. x 4 The Photoelectric Effect The first important application of the quantum theory of radiation was the explanation of the photoelectric effect given by Einstein in 1905 which put the quantum theory on a sound footing.

6 6 COMPREHENSIVE PHYSICAL CHEMISTRY When a beam of visible or ultraviolet light falls on a clean metal surface in a vacuum, the surface emits electrons. This effect is known as the photoelectric effect and could not be explained on the basis of classical theory of electromagnetic radiation. The important observations made are: (i) No matter how great the intensity of light is, electrons would not be emitted unless the frequency of light exceeds a certain critical value, u 0, known as the threshold frequency. This is different for different metals. (ii) The kinetic energy of the emitted electron is independent of the intensity of incident light but varies linearly with its frequency. (iii) Increase of intensity of the incident radiation increases the number of electrons emitted per unit time. According to the wave theory, radiant energy is independent of the frequency of radiation; hence it cannot explain the frequency dependence of kinetic energy and the existence of the threshold frequency, u 0. Furthermore, the wave theory predicted that the energy of electrons should increase with the increase of the intensity which is contrary to the experimental fact. Einstein pointed out that the photoelectric effect could be explained by considering that light consisted of discrete particles or photons of energy hu. When a photon of frequency u strikes the metal surface, it knocks out the electrons. In doing so, a certain amount of energy is used up in extricating the electron from the metal. The remaining energy, which will be the difference between the energy hu imparted by the incident photon and the energy used up at the surface W, would be given to the emitted electron as kinetic energy. Hence we have hu W = 1 2 mu2...(1.18) It is apparent from this equation that W accounts for the threshold frequency by the relation W = hu 0. Thus equation (1.18) becomes equal to or hu hu 0 = 1 2 mu2 1 2 mu2 = hu hu 0...(1.19) From the equation (1.19) it is clear that if the energy of the incident photon is less than the energy required by an electron to escape from the surface, no emission can take place regardless of the intensity of the incident light, i.e., the number of photons that strikes the surface per second. Now, if the kinetic energy of the ejected electrons is plotted as a function of frequency, a straight line with slope equal to Planck s constant h and intercept equal to hu 0 is obtained. This is shown in Fig This clearly proves the correctness of Einstein s theory of photoelectric emission and incidentally gives a proof in favour of the quantum theory. Fig. 1.2 Variation of energy with frequency of incident light

7 QUANTUM MECHANICS AND ATOMIC STRUCTURE 7 COMPTON EFFECT The Compton effect (also called Compton scattering) is the result of a high-energy photon colliding with a target, which releases loosely bound electrons from the outer shell of the atom or molecule. The scattered radiation experiences a wavelength shift that cannot be explained in terms of classical wave theory, thus supports to Einstein s photon theory. The effect was first demonstrated in 1923 by Arthur Holly Compton (for which he received a Nobel Prize in 1927). In Compton scattering, the incoming photon scatters off an electron that is initially at rest. The electron gains energy and the scattered photon have a frequency less than that of the incoming photon (Fig. 1.3). The effect is important because it demonstrates that light cannot be explained purely as a wave phenomenon. Fig.1.3 Compton scattering Differences between Classical Laws and Quantum Mechanics Classical mechanics is called Newtonian mechanics and normally assume bodies to be rigid and continuous. Quantum mechanics, however is different and explains the way subatomic particles behave. It provides a mathematical way to describe an atomic system. This new theory also provide a set of rules to determine the behaviour of the quantum system in the same way as Newton s laws determine the behaviour of a classical system. However, this new theory of quantum mechanics is by no means equivalent to Newton s laws. Some major differences between classical and quantum mechanics which are given below: 1. In classical mechanics a particle can have any energy and any speed. In quantum mechanics these quantities are quantized. This means that a particle in a quantum system can only have certain values for its energy, and certain values for its speed (or momentum). These special values of the energy or momentum are called eigenvalues of the quantum system. Associated with each eigenvalue there is a special state called an eigenstate. The eigenvalues and eigenstates of a quantum system are the most important features for characterizing the behaviour of that system s. In contrast, there are no eigenvalues or eigenstates in classical mechanics. 2. Newton s laws allow one, in principle, to determine the exact location and velocity of a particle at some future time. Quantum mechanics, on the other hand, only determines the probability for a particle to be in a particular location with a certain velocity at some future time. The probabilistic nature of quantum mechanics makes it very different from classical mechanics.

8 8 COMPREHENSIVE PHYSICAL CHEMISTRY 3. Quantum mechanics incorporates the Heisenberg uncertainty principle. This principle states that one cannot know the location and velocity of a quantum particle with infinite accuracy. 4. Quantum mechanics permits superpositions of states. This means that a quantum particle can be in two different states at the same time. For instance, a particle can actually be located in two different places at one time. This phenomenon is not possible at all in classical mechanics. 5. Quantum mechanical systems can exhibit a number of other very interesting features, such as tunneling and entanglement. These features are also not observed in classical mechanics. Electromagnetic Radiation A beam of light has oscillating electric and magnetic fields associated with it. It is characterized by the properties such as frequency, wavelength and wave number. We can understand all these properties by considering a wave propagating in one dimension (Fig. 1.4). Fig. 1.4 A beam of electromagnetic radiation, showing the electric (E) and magnetic (M ) components Electromagnetic theory of light depicts propagation of light through space, as oscillating electric and magnetic fields; these fields are mutually perpendicular and also perpendicular to the direction of propagation of light. Wavelength (l) is the distance between two successive crests or troughs. The length between X and Y in Fig. 1.4 is equal to the wavelength. The frequency (u) is the number of waves passing per second. Its unit is hertz (Hz). In fact, one hertz is equal to second 1 (s 1 ). Wavelength and frequency are related as (Eqn. 1.20) c l =...(1.20) υ where c is the velocity of light and in vacuum (c = ms 1 ). The reciprocal of wavelength is called the wave number ( υ ) and is defined as 1 υ υ = =...(1.21) λ c The SI unit of wave number, υ is m 1 although most of the literature values are in cm 1. The peak height (P) or trough depth (Q) is called the amplitude of the wave. Spectra Dispersion of visible radiation from prisms is called spectra. Characteristic spectra can be obtained from substances by causing them to emit radiation. This can be done by heating a substance or by

9 QUANTUM MECHANICS AND ATOMIC STRUCTURE 9 subjecting it to electrical stimulation or excitations by using an electric arc or discharge. A variety of emission spectra can be obtained. (a) Continuous spectra: Continuous spectra show the presence of radiation of all wavelength over a wide range. Such spectra are given by incandescent solids, i.e., the filament in an electric light bulb. (b) Band spectra: Band spectra consist of a series of bands of overlapping lines. They are formed by the radiation emitted from excited molecules. (c) Line spectra: These consist of a series of sharply defined lines each corresponding to a definite wavelength. These are obtained when the atoms in a substance are excited so that they can emit radiation. The light from a mercury vapour lamp or from solid sodium chloride heated in a Bunsen flame provides a line spectrum. Because line spectra are caused by energy changes taking place within an atom they may also be called atomic spectra. They give informations about the energy changes taking place within an atom. These informations lead to the elucidation of the arrangement of electrons in the atoms. HYDROGEN SPECTRA Balmer in 1885 examined the radiations obtained from the hydrogen atom in the excited state. He observed number of lines in the spectrum (Fig. 1.5) and proposed an empirical relationship to explain these lines υ = 1 λ = R (1.22) 2 n where υ is the frequency in wave number, n is an integer greater than 2 and R is a constant known as Rydgberg s constant (R = cm 1 for Hydrogen). By choosing a particular value of n, the wavelength of a line in the spectrum can be calculated. Fig. 1.5 Spectrum of hydrogen atom (Balmer series) However, the complete spectrum of hydrogen consist of a few more groups of lines. It was shown by J. J. Rydgberg that the wavelengths of the other series of lines may be expressed by general empirical relationship written as

10 10 COMPREHENSIVE PHYSICAL CHEMISTRY 1 l = υ = R (1.23) n1 n2 where n 1 and n 2 are integers that may assume values 1, 2, 3,..., with the condition that n 2 is always greater than n 1. The values of n 1 and n 2 for various spectral series of hydrogen are given in Table 1.1. Table 1.1 The atomic spectrum of hydrogen Series n 1 n 2 Region of electromagnetic spectrum Lyman 1 2, 3, 4 Ultraviolet Balmer 2 3, 4, 5 Visible Paschen 3 4, 5, 6 Near infrared Bracket 4 5, 6, 7 Infrared Pfund 5 6, 7, 8 Infrared Humphrey 6 7, 8, 9 Far IR BOHR S ATOMIC MODEL In order to explain the atomic spectra of hydrogen, Niel Bohr in 1913 presented a simple picture of atom by using the concept of quantum theory. He made following assumptions: 1. Electrons revolve around the nucleus in a circular path only in certain allowed energy states called stationary states (also called orbits). 2. The motion of electron is restricted in such a manner that angular momentum (mvr) is quantized and is an integral multiple of h/2p. Thus nh mvr =...(1.24) 2π where m is the mass of the electron, v its tangential velocity, r the radius of circular path and h is Planck s constant. n is an integer having values 1, 2, 3 for the first, second, third etc. of Bohr orbits. 3. When electron jumps from one stationary state to another i.e., during electronic transition, the energy is being emitted or absorbed. This energy change occurs in a fixed amount, the lowest, being one quantum. If E 1 and E 2 are the energies of two states, then one can write E 2 E 1 = hu (E 2 > E 1 ) so that u = E 2 - E 1...(1.25) h where u is the frequency of emitted radiation.

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics

Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics 13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options

More information

Chapter 18: The Structure of the Atom

Chapter 18: The Structure of the Atom Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.

More information

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum

Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability

More information

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS

PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.

More information

Review of the isotope effect in the hydrogen spectrum

Review of the isotope effect in the hydrogen spectrum Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in

More information

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.

More information

THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259

THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.

More information

Atomic Structure Ron Robertson

Atomic Structure Ron Robertson Atomic Structure Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is

More information

The Phenomenon of Photoelectric Emission:

The Phenomenon of Photoelectric Emission: The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of

More information

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation

Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered

More information

Blackbody Radiation References INTRODUCTION

Blackbody Radiation References INTRODUCTION Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt

More information

WAVES AND ELECTROMAGNETIC RADIATION

WAVES AND ELECTROMAGNETIC RADIATION WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):

More information

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves

5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves 5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has

More information

- thus, the total number of atoms per second that absorb a photon is

- thus, the total number of atoms per second that absorb a photon is Stimulated Emission of Radiation - stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons

More information

Energy. Mechanical Energy

Energy. Mechanical Energy Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance

More information

Atomic Structure: Chapter Problems

Atomic Structure: Chapter Problems Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand

More information

Atoms Absorb & Emit Light

Atoms Absorb & Emit Light Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions

More information

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:

Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of: ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which

More information

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation

Solar Energy. Outline. Solar radiation. What is light?-- Electromagnetic Radiation. Light - Electromagnetic wave spectrum. Electromagnetic Radiation Outline MAE 493R/593V- Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics

More information

Blackbody radiation derivation of Planck s radiation low

Blackbody radiation derivation of Planck s radiation low Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators

More information

where h = 6.62 10-34 J s

where h = 6.62 10-34 J s Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena

More information

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS

DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.

More information

How To Understand Light And Color

How To Understand Light And Color PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order

More information

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:

Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit: Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of

More information

Infrared Spectroscopy: Theory

Infrared Spectroscopy: Theory u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used

More information

CHEM 1411 Chapter 5 Homework Answers

CHEM 1411 Chapter 5 Homework Answers 1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of

More information

Quantum Phenomena and the Theory of Quantum Mechanics

Quantum Phenomena and the Theory of Quantum Mechanics Quantum Phenomena and the Theory of The Mechanics of the Very Small Waseda University, SILS, Introduction to History and Philosophy of Science . Two Dark Clouds In 1900 at a Friday Evening lecture at the

More information

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total

Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency

More information

Physical Principle of Formation and Essence of Radio Waves

Physical Principle of Formation and Essence of Radio Waves Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the

More information

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1

AP* Atomic Structure & Periodicity Free Response Questions KEY page 1 AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three

More information

Does Quantum Mechanics Make Sense? Size

Does Quantum Mechanics Make Sense? Size Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why

More information

Principle of Thermal Imaging

Principle of Thermal Imaging Section 8 All materials, which are above 0 degrees Kelvin (-273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging

More information

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2

13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2 Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19

More information

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy

Concept 2. A. Description of light-matter interaction B. Quantitatities in spectroscopy Concept 2 A. Description of light-matter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in two-level system B. Absorption: quantitative description

More information

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives

Physics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring

More information

Level 3 Achievement Scale

Level 3 Achievement Scale Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that

More information

PHYSICAL QUANTITIES AND UNITS

PHYSICAL QUANTITIES AND UNITS 1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them

More information

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.

Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance. .1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations

More information

Radiation Transfer in Environmental Science

Radiation Transfer in Environmental Science Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most

More information

AS COMPETITION PAPER 2008

AS COMPETITION PAPER 2008 AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question

More information

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE

Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation

More information

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block. 1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown

More information

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight

Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,

More information

Chemistry 102 Summary June 24 th. Properties of Light

Chemistry 102 Summary June 24 th. Properties of Light Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible

More information

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)

Energy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact

More information

The Models of the Atom

The Models of the Atom The Models of the Atom All life, whether in the form of trees, whales, mushrooms, bacteria or amoebas, consists of cells. Similarly, all matter, whether in the form of aspirin, gold, vitamins, air or minerals,

More information

History of the Atom & Atomic Theory

History of the Atom & Atomic Theory Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations

More information

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)

Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection

More information

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with

More information

Interference. Physics 102 Workshop #3. General Instructions

Interference. Physics 102 Workshop #3. General Instructions Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by

More information

Arrangement of Electrons in Atoms

Arrangement of Electrons in Atoms CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital

More information

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current

Chapters 21-29. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current Chapters 21-29 Chapter 21:45,63 Chapter 22:25,49 Chapter 23:35,38,53,55,58,59 Chapter 24:17,18,20,42,43,44,50,52,53.59,63 Chapter 26:27,33,34,39,54 Chapter 27:17,18,34,43,50,51,53,56 Chapter 28: 10,11,28,47,52

More information

CHAPTER 6 ATOMIC ORBITS AND PHOTONS. Mass and Radiation. Quantum of action and Planck's constant. Particle waves and fixed atomic orbits.

CHAPTER 6 ATOMIC ORBITS AND PHOTONS. Mass and Radiation. Quantum of action and Planck's constant. Particle waves and fixed atomic orbits. CHAPTER 6 ATOMIC ORBITS AND PHOTONS Mass and Radiation Quantum of action and Planck's constant Particle waves and fixed atomic orbits The Photon The velocity of light Only a few hundred years ago Copernicus

More information

Main properties of atoms and nucleus

Main properties of atoms and nucleus Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom

More information

POROUS BURNER - A New Approach to Infrared

POROUS BURNER - A New Approach to Infrared Page: 1 POROUS BURNER - A New Approach to Infrared 1. Preface There are several possibilities to produce infrared radiation in the technical sense. Regarding the source of energy you can distinguish between

More information

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What

More information

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.

AP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity. 1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the

More information

Experiment #5: Qualitative Absorption Spectroscopy

Experiment #5: Qualitative Absorption Spectroscopy Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions

More information

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory

Objectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & de-excitation Ionisation Molecules Constituents

More information

Theory of electrons and positrons

Theory of electrons and positrons P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of

More information

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases

HEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius

More information

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves

physics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide

More information

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.

D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,

More information

Vacuum Evaporation Recap

Vacuum Evaporation Recap Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.

More information

Bohr's Theory of the Hydrogen Atom

Bohr's Theory of the Hydrogen Atom OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe

More information

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.

The rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time. H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law

More information

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number

Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number 2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive

More information

Light. What is light?

Light. What is light? Light What is light? 1. How does light behave? 2. What produces light? 3. What type of light is emitted? 4. What information do you get from that light? Methods in Astronomy Photometry Measure total amount

More information

Sample Exercise 6.1 Concepts of Wavelength and Frequency

Sample Exercise 6.1 Concepts of Wavelength and Frequency Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the

More information

GRID AND PRISM SPECTROMETERS

GRID AND PRISM SPECTROMETERS FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing

More information

Measurement of Charge-to-Mass (e/m) Ratio for the Electron

Measurement of Charge-to-Mass (e/m) Ratio for the Electron Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN

More information

Physics 30 Worksheet # 14: Michelson Experiment

Physics 30 Worksheet # 14: Michelson Experiment Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the

More information

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier

- particle with kinetic energy E strikes a barrier with height U 0 > E and width L. - classically the particle cannot overcome the barrier Tunnel Effect: - particle with kinetic energy E strikes a barrier with height U 0 > E and width L - classically the particle cannot overcome the barrier - quantum mechanically the particle can penetrated

More information

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Lecture 3: Optical Properties of Bulk and Nano. 5 nm Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e - n( ) n' n '' n ' = 1 + Nucleus

More information

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3

momentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3 Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.

More information

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing

Treasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202-502-w2

More information

Chem 1A Exam 2 Review Problems

Chem 1A Exam 2 Review Problems Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?

More information

Rate Equations and Detailed Balance

Rate Equations and Detailed Balance Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?

More information

Heating & Cooling in Molecular Clouds

Heating & Cooling in Molecular Clouds Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core

More information

British Physics Olympiad

British Physics Olympiad 1 British Physics Olympiad Paper 3. 2005 Monday 28 February 2005. Time allowed 3hrs plus 15 minutes reading time. All questions should be attempted. Question 1 carries 40 marks, the other questions 20

More information

electron does not become part of the compound; one electron goes in but two electrons come out.

electron does not become part of the compound; one electron goes in but two electrons come out. Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.

More information

Friday 18 January 2013 Morning

Friday 18 January 2013 Morning Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied

More information

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.

Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate. Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley. Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It

More information

PHYS 1624 University Physics I. PHYS 2644 University Physics II

PHYS 1624 University Physics I. PHYS 2644 University Physics II PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus- based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus

More information

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY

Determination of Molecular Structure by MOLECULAR SPECTROSCOPY Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic

More information

2. Molecular stucture/basic

2. Molecular stucture/basic 2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Spectral regions

More information

Calculating particle properties of a wave

Calculating particle properties of a wave Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can

More information

FLAP P11.2 The quantum harmonic oscillator

FLAP P11.2 The quantum harmonic oscillator F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of

More information

Boardworks AS Physics

Boardworks AS Physics Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to

More information

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?

From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly

More information

Molecular Spectroscopy:

Molecular Spectroscopy: : How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m. P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2014

Candidate Number. General Certificate of Education Advanced Level Examination June 2014 entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday

More information

CHAPTER 13 MOLECULAR SPECTROSCOPY

CHAPTER 13 MOLECULAR SPECTROSCOPY CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation

More information

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack

Vacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 3793-00 Phone: (865) 974-5344 Fax (865)

More information

Acoustics: the study of sound waves

Acoustics: the study of sound waves Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,

More information

4.1 Studying Atom. Early evidence used to develop models of atoms.

4.1 Studying Atom. Early evidence used to develop models of atoms. 4.1 Studying Atom Early evidence used to develop models of atoms. Democritus said that all matter consisted of extremely small particles that could NOT be divided called these particles atoms from the

More information