Quantum Mechanics and Atomic Structure 1


 Cathleen Johnson
 4 years ago
 Views:
Transcription
1 Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents of elements are atom and are indivisible. In 1930s, it seemed that protons, neutrons, and electrons were the smallest objects into which matter could be divided and they were termed elementary particles which means having no smaller constituent parts, or indivisible. Again, later knowledge changed our understanding and over 100 other elementary particles were discovered between 1930 and the present time. Number of models was proposed from time to time to explain the structure of atoms but none of them could explain satisfactorily till the devolvement of quantum theory. QUANTUM THEORY The birth of quantum mechanics replaced classical mechanics which was used for the description of motion on an atomic scale. In 1900, Planck showed that the description of the distribution of energies of electromagnetic radiation in a cavity requires the quantization of energy. This was quickly followed by the application of quantization of atomic and molecular phenomena. Modern chemistry relies on quantum mechanics for the description of most phenomena. The Origins of Quantum Theory During the latter part of the 19th century, the classical mechanics had successfully explained most of the phenomena in which the physicists were interested. But the, problems arose when the classical laws did not explain certain phenomena on the atomic or molecular level. These problems were the lowtemperature heat capacities of solids, the photoelectric effect, the distribution of radiation from a black body, and the spectra of atoms. By 1925, a new mechanics called quantum mechanics had been invented which successfully explained all these phenomena. Particles A particle has the attributes of mass, momentum, and thus possess kinetic energy. A particle has a definite location in space, and thus is discrete and countable. A particle may carry an electric charge. Wave A wave is a periodic variation of some quantity as a function of location. For example, the wave motion of a vibrating guitar string is defined by the displacement of the string from its center as a
2 2 COMPREHENSIVE PHYSICAL CHEMISTRY function of distance along the string. A sound wave consists of variations in the pressure with location. A wave is characterized by its wavelength l and frequency u, which are related by l = u/u where u is the velocity of propagation of the disturbance in the medium. Wave Theory of Light In 1860s James Clerk Maxwell developed his electromagnetic theory and showed theoretically that when an electric charge is accelerated (by being made to oscillate within a piece of wire, for example), electrical energy will be lost, and an equivalent amount of energy is radiated into space, spreading out as a series of waves extending in all directions. These waves consist of periodic variations in the electrostatic and electromagnetic field strengths. These variations occur at right angles to each other. Each electrostatic component of the wave induces a magnetic component, which then creates a new electrostatic component, so that the wave, once formed, continues to propagate through space, essentially feeding on itself. Black Body Radiation When radiation falls on an object, a part of it is reflected, a part is absorbed and the remaining part is transmitted. This is due to the fact that no object is a perfect absorber. In contrast to this, we may visualize a black body which completely absorbs all radiations that falls on it and retains all the radiant energy that strikes it. For experimental purposes, a black body is generally blackened metallic surface of a hollow sphere and blackened from inside with a hole. All radiations that enter through the hole will be absorbed completely by successive reflections inside the enclosure. Such a material is called a black body and a good example of it is an empty container with a pinhole maintained at a constant temperature. Thus a black body may be defined as one that absorbs and emits all radiations (frequencies). A black body behaves not only a perfect absorber of radiant energy, but is also an idealized radiator. The radiation emerging from the hole will also be very nearly equal to that of the black body and is called black body radiation. It has been shown that the energy which radiates is dependent on the temperature of the enclosure but independent of the nature of the interior material. A plot of the intensity of black body radiation versus wavelength at different temperatures are shown in Fig Fig. 1.1 Emission of radiation from a blackbody at different temperatures. The area under the curve between two different wavelengths gives the energy in calories emitted by 1 cm 2 surface of a blackbody in the specified range of wavelengths The shape of the curves could not be explained on the basis of classical electromagnetic theory in which it was assumed that the body radiates energy continuously. The experimental observations are contrary to the classical view. For each temperature there is a maximum in the curve corresponding to a particular wavelength, indicating the maximum radiation of energy. At higher temperatures, the position of the maximum in the curve shifts towards shorter wavelength and becomes more pronounced. To explain the distribution of black body radiation as function of frequency or wavelength of radiation,
3 QUANTUM MECHANICS AND ATOMIC STRUCTURE 3 Max Planck in 1900 resolved this discrepancy by postulating the revolutionary assumption that the black body radiated energy not continuously but discontinuously in the form of energy packets called quanta, given by E= hn...(1.1) and the energy (E n ) can only have integral values of a quantum, i.e., E n = n hn (n = 0,1,2...) where E is quantum of energy radiated, n is the frequency of radiation and h is the Planck s constant having a value erg sec or J s, and n is a positive integer. On the basis of this equation, Planck obtained an expression (Eqn 1.2) which correctly gives the distribution of energy in black body radiation: 8πhc 1 de = r dl where r = 5 hc / λkt...(1.2) λ e 1 where e means energy divided by volume. This expression fits the experimental curve at all wavelengths. Equation (1.1) is the fundamental relation of the quantum theory of radiation. Planck s theory of quantized radiation of black body led Einstein to propose a generalization of the quantum theory. Einstein stated that all radiations absorbed or emitted by a body must be in quanta and their magnitude depends on the frequency according to eqn. (1.1) or multiple thereof. Heat Capacities of Solids French scientists PierreL. Dulong and Alexis T. Petit determined the heat capacities of a number of monatomic solids and, in 1819, proposed their law that atoms of all simple bodies have exactly the same heat capacity. In other words, the molar heat capacities of all monatomic solids are nearly equal to 3R (25 JK 1 mol 1. This value could be predicted from the relation de C v,m = dt = 3R = 24.9 JK 1... (1.3) V where the molar internal energy is given by E = 3N A kt = 3RT (since N A k = R)... (1.4) where N A is Avagadro s number, k is Boltzmann constant and R is the Gas constant. This law could easily be explained in terms of classical mechanics. But marked deviations from this law was noticed when the heat capacities were measured at low temperatures. The value of molar heat capacities of all metals were found to decrease with decreasing temperature and even becomes zero at T = 0. Therefore, important advancements in the calculation of atomic heat capacities was made by A. Einstein in 1907 on the basis of quantum theory. Quantum Theory Einstein Model According to classical theory the specific heat should be independent of temperature but it markedly depends on temperature. All specific heats increase with temperature. According to Planck, a harmonic oscillator does not have a continuous energy spectrum, as assumed in the classical theory, but can accept only energy values equal to integer times h n, where h is Planck s constant and n is the frequency. The possible energy levels of an oscillator may thus be represented by e n = n hv, n = 0,1,2,3... In their model it is supposed that all the atoms vibrate with the same frequency, but with different amplitudes, i.e., with different amount of vibrational energy.
4 4 COMPREHENSIVE PHYSICAL CHEMISTRY According to Planck, the average energy of an oscillator ε oscillating in one direction in space, at a temperature T, is given by ε =...(1.5) hv / kt e 1 The vibrational energy of a solid element containing N atoms oscillating in three directions is equal to E = 3Nε = 3N...(1.6) e / ht 1 The specific heat at constant volume is therefore, obtained by differentiating E with respect to T. i.e., C v, m = 2 / kt de e 3R dt = kt ( e 1) / kt 2...(1.7) when kt >> hn i.e., hn /kt is small in comparison with unity, then C v = 3R (Classical result) when T is very low, C v decreases and tends to zero. To discuss this behaviour, it is convenient to express the frequency of oscillation of the atoms in terms of Einstein temperature, q E defined as q E = h ν...(1.8) K Thus, Eqn. (1.7) may be written in the form θe / T θe e C v = 3R T θe / T e 1...(1.9) or C ν 3R θ T = E f E where f E = θe / T θ E e T θe / T e 1 f E is called Einstein function. It determines the ratio of the specific heat at a temperature T and the classical value (high temperature value) 3R. In the high temperature range, when T << q E, the observed and theoretical specific heat values are in good agreement. However, at very low temperatures there is deviation. At very low temperatures, majority of the atoms will have small or zero energy and the contribution to the heat capacity will be / small. At T << q E, eqn. (1.9) suggests that specific heat is proportional to E T i.e., / C e θ E T ν α...(1.10) It means Einstein function will fall more rapidly at low temperature and at T = 0, the value of f E = 0. This failure arises from Einstein s assumption that all the atoms oscillate with the same frequency. It is not correct. In fact they oscillate over a range of frequencies from zero up to a maximum, n m. Debye solved this problem by averaging overall the frequencies. e θ
5 QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 Debye Model Close, examination of the Einstein s model has shown that at low temperature, the specific heat fall off more rapidly than do the experimental values. It is not correct, therefore, that all the N atoms in 1g. atom of a crystal oscillate at the same frequency and a more reasonable postulate would be that the g. atom involves a coupled system of 3N oscillators i.e. one can write r= 3N r E =...(1.11) r kt r= 1 e / 1 where n r is the frequency for a particular value of r which can vary from 1 to 3N. By the theory of elasticity the number of such vibrations per unit volume (dz) in between the frequency n and n + dn is found to be 2 dν d z = 9Nν...(1.12) ν 3 m where n m represents the maximum of 3N vibration frequencies. 9N νm 2 E = ν dν 2 0 / kt ν...(1.13) m ( e 1) So on differentiating E with respect to temperature, T the Debye heat capacity equation is written as 9R νm 2 C n = ν dv 2 0 / kt ν (where R = kn)...(1.14) ( e 1) m Further, the quantity kt can be replaced by the variable x, therefore one can write 3 kt m/ kt exdx C n = 3R...(1.15) h 0 x 2 νm ( e 1) The quantity hn m /k is called the characteristic temperature and is represented by the symbol q D. Thus m q D =...(1.16) k h e ν / kt when the temperature is large, m is small and therefore, C v = 3R The Debye equation at low temperatures is written as C v = a T 3...(1.17) where a is a constant for a particular substance. Thus it is clear that the principle of quantization must be introduced in order to explain the thermal properties of solids. x 4 The Photoelectric Effect The first important application of the quantum theory of radiation was the explanation of the photoelectric effect given by Einstein in 1905 which put the quantum theory on a sound footing.
6 6 COMPREHENSIVE PHYSICAL CHEMISTRY When a beam of visible or ultraviolet light falls on a clean metal surface in a vacuum, the surface emits electrons. This effect is known as the photoelectric effect and could not be explained on the basis of classical theory of electromagnetic radiation. The important observations made are: (i) No matter how great the intensity of light is, electrons would not be emitted unless the frequency of light exceeds a certain critical value, u 0, known as the threshold frequency. This is different for different metals. (ii) The kinetic energy of the emitted electron is independent of the intensity of incident light but varies linearly with its frequency. (iii) Increase of intensity of the incident radiation increases the number of electrons emitted per unit time. According to the wave theory, radiant energy is independent of the frequency of radiation; hence it cannot explain the frequency dependence of kinetic energy and the existence of the threshold frequency, u 0. Furthermore, the wave theory predicted that the energy of electrons should increase with the increase of the intensity which is contrary to the experimental fact. Einstein pointed out that the photoelectric effect could be explained by considering that light consisted of discrete particles or photons of energy hu. When a photon of frequency u strikes the metal surface, it knocks out the electrons. In doing so, a certain amount of energy is used up in extricating the electron from the metal. The remaining energy, which will be the difference between the energy hu imparted by the incident photon and the energy used up at the surface W, would be given to the emitted electron as kinetic energy. Hence we have hu W = 1 2 mu2...(1.18) It is apparent from this equation that W accounts for the threshold frequency by the relation W = hu 0. Thus equation (1.18) becomes equal to or hu hu 0 = 1 2 mu2 1 2 mu2 = hu hu 0...(1.19) From the equation (1.19) it is clear that if the energy of the incident photon is less than the energy required by an electron to escape from the surface, no emission can take place regardless of the intensity of the incident light, i.e., the number of photons that strikes the surface per second. Now, if the kinetic energy of the ejected electrons is plotted as a function of frequency, a straight line with slope equal to Planck s constant h and intercept equal to hu 0 is obtained. This is shown in Fig This clearly proves the correctness of Einstein s theory of photoelectric emission and incidentally gives a proof in favour of the quantum theory. Fig. 1.2 Variation of energy with frequency of incident light
7 QUANTUM MECHANICS AND ATOMIC STRUCTURE 7 COMPTON EFFECT The Compton effect (also called Compton scattering) is the result of a highenergy photon colliding with a target, which releases loosely bound electrons from the outer shell of the atom or molecule. The scattered radiation experiences a wavelength shift that cannot be explained in terms of classical wave theory, thus supports to Einstein s photon theory. The effect was first demonstrated in 1923 by Arthur Holly Compton (for which he received a Nobel Prize in 1927). In Compton scattering, the incoming photon scatters off an electron that is initially at rest. The electron gains energy and the scattered photon have a frequency less than that of the incoming photon (Fig. 1.3). The effect is important because it demonstrates that light cannot be explained purely as a wave phenomenon. Fig.1.3 Compton scattering Differences between Classical Laws and Quantum Mechanics Classical mechanics is called Newtonian mechanics and normally assume bodies to be rigid and continuous. Quantum mechanics, however is different and explains the way subatomic particles behave. It provides a mathematical way to describe an atomic system. This new theory also provide a set of rules to determine the behaviour of the quantum system in the same way as Newton s laws determine the behaviour of a classical system. However, this new theory of quantum mechanics is by no means equivalent to Newton s laws. Some major differences between classical and quantum mechanics which are given below: 1. In classical mechanics a particle can have any energy and any speed. In quantum mechanics these quantities are quantized. This means that a particle in a quantum system can only have certain values for its energy, and certain values for its speed (or momentum). These special values of the energy or momentum are called eigenvalues of the quantum system. Associated with each eigenvalue there is a special state called an eigenstate. The eigenvalues and eigenstates of a quantum system are the most important features for characterizing the behaviour of that system s. In contrast, there are no eigenvalues or eigenstates in classical mechanics. 2. Newton s laws allow one, in principle, to determine the exact location and velocity of a particle at some future time. Quantum mechanics, on the other hand, only determines the probability for a particle to be in a particular location with a certain velocity at some future time. The probabilistic nature of quantum mechanics makes it very different from classical mechanics.
8 8 COMPREHENSIVE PHYSICAL CHEMISTRY 3. Quantum mechanics incorporates the Heisenberg uncertainty principle. This principle states that one cannot know the location and velocity of a quantum particle with infinite accuracy. 4. Quantum mechanics permits superpositions of states. This means that a quantum particle can be in two different states at the same time. For instance, a particle can actually be located in two different places at one time. This phenomenon is not possible at all in classical mechanics. 5. Quantum mechanical systems can exhibit a number of other very interesting features, such as tunneling and entanglement. These features are also not observed in classical mechanics. Electromagnetic Radiation A beam of light has oscillating electric and magnetic fields associated with it. It is characterized by the properties such as frequency, wavelength and wave number. We can understand all these properties by considering a wave propagating in one dimension (Fig. 1.4). Fig. 1.4 A beam of electromagnetic radiation, showing the electric (E) and magnetic (M ) components Electromagnetic theory of light depicts propagation of light through space, as oscillating electric and magnetic fields; these fields are mutually perpendicular and also perpendicular to the direction of propagation of light. Wavelength (l) is the distance between two successive crests or troughs. The length between X and Y in Fig. 1.4 is equal to the wavelength. The frequency (u) is the number of waves passing per second. Its unit is hertz (Hz). In fact, one hertz is equal to second 1 (s 1 ). Wavelength and frequency are related as (Eqn. 1.20) c l =...(1.20) υ where c is the velocity of light and in vacuum (c = ms 1 ). The reciprocal of wavelength is called the wave number ( υ ) and is defined as 1 υ υ = =...(1.21) λ c The SI unit of wave number, υ is m 1 although most of the literature values are in cm 1. The peak height (P) or trough depth (Q) is called the amplitude of the wave. Spectra Dispersion of visible radiation from prisms is called spectra. Characteristic spectra can be obtained from substances by causing them to emit radiation. This can be done by heating a substance or by
9 QUANTUM MECHANICS AND ATOMIC STRUCTURE 9 subjecting it to electrical stimulation or excitations by using an electric arc or discharge. A variety of emission spectra can be obtained. (a) Continuous spectra: Continuous spectra show the presence of radiation of all wavelength over a wide range. Such spectra are given by incandescent solids, i.e., the filament in an electric light bulb. (b) Band spectra: Band spectra consist of a series of bands of overlapping lines. They are formed by the radiation emitted from excited molecules. (c) Line spectra: These consist of a series of sharply defined lines each corresponding to a definite wavelength. These are obtained when the atoms in a substance are excited so that they can emit radiation. The light from a mercury vapour lamp or from solid sodium chloride heated in a Bunsen flame provides a line spectrum. Because line spectra are caused by energy changes taking place within an atom they may also be called atomic spectra. They give informations about the energy changes taking place within an atom. These informations lead to the elucidation of the arrangement of electrons in the atoms. HYDROGEN SPECTRA Balmer in 1885 examined the radiations obtained from the hydrogen atom in the excited state. He observed number of lines in the spectrum (Fig. 1.5) and proposed an empirical relationship to explain these lines υ = 1 λ = R (1.22) 2 n where υ is the frequency in wave number, n is an integer greater than 2 and R is a constant known as Rydgberg s constant (R = cm 1 for Hydrogen). By choosing a particular value of n, the wavelength of a line in the spectrum can be calculated. Fig. 1.5 Spectrum of hydrogen atom (Balmer series) However, the complete spectrum of hydrogen consist of a few more groups of lines. It was shown by J. J. Rydgberg that the wavelengths of the other series of lines may be expressed by general empirical relationship written as
10 10 COMPREHENSIVE PHYSICAL CHEMISTRY 1 l = υ = R (1.23) n1 n2 where n 1 and n 2 are integers that may assume values 1, 2, 3,..., with the condition that n 2 is always greater than n 1. The values of n 1 and n 2 for various spectral series of hydrogen are given in Table 1.1. Table 1.1 The atomic spectrum of hydrogen Series n 1 n 2 Region of electromagnetic spectrum Lyman 1 2, 3, 4 Ultraviolet Balmer 2 3, 4, 5 Visible Paschen 3 4, 5, 6 Near infrared Bracket 4 5, 6, 7 Infrared Pfund 5 6, 7, 8 Infrared Humphrey 6 7, 8, 9 Far IR BOHR S ATOMIC MODEL In order to explain the atomic spectra of hydrogen, Niel Bohr in 1913 presented a simple picture of atom by using the concept of quantum theory. He made following assumptions: 1. Electrons revolve around the nucleus in a circular path only in certain allowed energy states called stationary states (also called orbits). 2. The motion of electron is restricted in such a manner that angular momentum (mvr) is quantized and is an integral multiple of h/2p. Thus nh mvr =...(1.24) 2π where m is the mass of the electron, v its tangential velocity, r the radius of circular path and h is Planck s constant. n is an integer having values 1, 2, 3 for the first, second, third etc. of Bohr orbits. 3. When electron jumps from one stationary state to another i.e., during electronic transition, the energy is being emitted or absorbed. This energy change occurs in a fixed amount, the lowest, being one quantum. If E 1 and E 2 are the energies of two states, then one can write E 2 E 1 = hu (E 2 > E 1 ) so that u = E 2  E 1...(1.25) h where u is the frequency of emitted radiation.
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problemsolving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
More informationChapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
More informationWave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
More informationPHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Setup to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
More informationReview of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
More informationTIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
More informationTHE CURRENTVOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259
DSH 2004 THE CURRENTVOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (18581947) was an early pioneer in the field of quantum physics.
More informationAtomic Structure Ron Robertson
Atomic Structure Ron Robertson r2 n:\files\courses\111020\2010 possible slides for web\atomicstructuretrans.doc I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is
More informationThe Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
More informationLight as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
More informationBlackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
More informationWAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
More information5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the StefanBoltzmann Law Light has
More information thus, the total number of atoms per second that absorb a photon is
Stimulated Emission of Radiation  stimulated emission is referring to the emission of radiation (a photon) from one quantum system at its transition frequency induced by the presence of other photons
More informationEnergy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
More informationAtomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
More informationAtoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
More informationPhotons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
More informationSolar Energy. Outline. Solar radiation. What is light? Electromagnetic Radiation. Light  Electromagnetic wave spectrum. Electromagnetic Radiation
Outline MAE 493R/593V Renewable Energy Devices Solar Energy Electromagnetic wave Solar spectrum Solar global radiation Solar thermal energy Solar thermal collectors Solar thermal power plants Photovoltaics
More informationBlackbody radiation derivation of Planck s radiation low
Blackbody radiation derivation of Planck s radiation low 1 Classical theories of Lorentz and Debye: Lorentz (oscillator model): Electrons and ions of matter were treated as a simple harmonic oscillators
More informationwhere h = 6.62 1034 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecularlevel phenomena
More informationDO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
More informationHow To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a secondorder
More informationElectron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
More informationInfrared Spectroscopy: Theory
u Chapter 15 Infrared Spectroscopy: Theory An important tool of the organic chemist is Infrared Spectroscopy, or IR. IR spectra are acquired on a special instrument, called an IR spectrometer. IR is used
More informationCHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
More informationQuantum Phenomena and the Theory of Quantum Mechanics
Quantum Phenomena and the Theory of The Mechanics of the Very Small Waseda University, SILS, Introduction to History and Philosophy of Science . Two Dark Clouds In 1900 at a Friday Evening lecture at the
More informationChemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
More informationPhysical Principle of Formation and Essence of Radio Waves
Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the
More informationAP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0,  1/ for the three
More informationDoes Quantum Mechanics Make Sense? Size
Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why
More informationPrinciple of Thermal Imaging
Section 8 All materials, which are above 0 degrees Kelvin (273 degrees C), emit infrared energy. The infrared energy emitted from the measured object is converted into an electrical signal by the imaging
More information13 What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1 What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) 3.48 x 1017 J b) 2.18 x 1019 J c) 1.55 x 1019 J d) 2.56 x 1019
More informationConcept 2. A. Description of lightmatter interaction B. Quantitatities in spectroscopy
Concept 2 A. Description of lightmatter interaction B. Quantitatities in spectroscopy Dipole approximation Rabi oscillations Einstein kinetics in twolevel system B. Absorption: quantitative description
More informationPhysics 9e/Cutnell. correlated to the. College Board AP Physics 1 Course Objectives
Physics 9e/Cutnell correlated to the College Board AP Physics 1 Course Objectives Big Idea 1: Objects and systems have properties such as mass and charge. Systems may have internal structure. Enduring
More informationLevel 3 Achievement Scale
Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that
More informationPHYSICAL QUANTITIES AND UNITS
1 PHYSICAL QUANTITIES AND UNITS Introduction Physics is the study of matter, its motion and the interaction between matter. Physics involves analysis of physical quantities, the interaction between them
More informationIndiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
More informationRadiation Transfer in Environmental Science
Radiation Transfer in Environmental Science with emphasis on aquatic and vegetation canopy media Autumn 2008 Prof. Emmanuel Boss, Dr. Eyal Rotenberg Introduction Radiation in Environmental sciences Most
More informationAS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
More informationChapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE
Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 13, 1315, 19, 2325, 3132, 43, 4546, 49c, 50a, 50b, 57c, 58 (b,c,d), 6162, 69, 7174, 7788, 9194 9.5 LIGHT: Electromagnetic Radiation
More informationATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
More informationExperiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight
Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,
More informationChemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light  Energy travels through space in the form of electromagnetic radiation (EMR).  Examples of types of EMR: radio waves, xrays, microwaves, visible
More informationEnergy Transport. Focus on heat transfer. Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids)
Energy Transport Focus on heat transfer Heat Transfer Mechanisms: Conduction Radiation Convection (mass movement of fluids) Conduction Conduction heat transfer occurs only when there is physical contact
More informationThe Models of the Atom
The Models of the Atom All life, whether in the form of trees, whales, mushrooms, bacteria or amoebas, consists of cells. Similarly, all matter, whether in the form of aspirin, gold, vitamins, air or minerals,
More informationHistory of the Atom & Atomic Theory
Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations
More informationRaman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu)
Introduction Raman Scattering Theory David W. Hahn Department of Mechanical and Aerospace Engineering University of Florida (dwhahn@ufl.edu) The scattering of light may be thought of as the redirection
More informationPhysical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
More informationInterference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
More informationArrangement of Electrons in Atoms
CHAPTER 4 PRETEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
More informationChapters 2129. Magnetic Force. for a moving charge. F=BQvsinΘ. F=BIlsinΘ. for a current
Chapters 2129 Chapter 21:45,63 Chapter 22:25,49 Chapter 23:35,38,53,55,58,59 Chapter 24:17,18,20,42,43,44,50,52,53.59,63 Chapter 26:27,33,34,39,54 Chapter 27:17,18,34,43,50,51,53,56 Chapter 28: 10,11,28,47,52
More informationCHAPTER 6 ATOMIC ORBITS AND PHOTONS. Mass and Radiation. Quantum of action and Planck's constant. Particle waves and fixed atomic orbits.
CHAPTER 6 ATOMIC ORBITS AND PHOTONS Mass and Radiation Quantum of action and Planck's constant Particle waves and fixed atomic orbits The Photon The velocity of light Only a few hundred years ago Copernicus
More informationMain properties of atoms and nucleus
Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom
More informationPOROUS BURNER  A New Approach to Infrared
Page: 1 POROUS BURNER  A New Approach to Infrared 1. Preface There are several possibilities to produce infrared radiation in the technical sense. Regarding the source of energy you can distinguish between
More informationOverview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
More informationAP1 Waves. (A) frequency (B) wavelength (C) speed (D) intensity. Answer: (A) and (D) frequency and intensity.
1. A fire truck is moving at a fairly high speed, with its siren emitting sound at a specific pitch. As the fire truck recedes from you which of the following characteristics of the sound wave from the
More informationExperiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
More informationObjectives. PAM1014 Introduction to Radiation Physics. Constituents of Atoms. Atoms. Atoms. Atoms. Basic Atomic Theory
PAM1014 Introduction to Radiation Physics Basic Atomic Theory Objectives Introduce and Molecules The periodic Table Electronic Energy Levels Atomic excitation & deexcitation Ionisation Molecules Constituents
More informationTheory of electrons and positrons
P AUL A. M. DIRAC Theory of electrons and positrons Nobel Lecture, December 12, 1933 Matter has been found by experimental physicists to be made up of small particles of various kinds, the particles of
More informationHEAT UNIT 1.1 KINETIC THEORY OF GASES. 1.1.1 Introduction. 1.1.2 Postulates of Kinetic Theory of Gases
UNIT HEAT. KINETIC THEORY OF GASES.. Introduction Molecules have a diameter of the order of Å and the distance between them in a gas is 0 Å while the interaction distance in solids is very small. R. Clausius
More informationphysics 1/12/2016 Chapter 20 Lecture Chapter 20 Traveling Waves
Chapter 20 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 20 Traveling Waves Chapter Goal: To learn the basic properties of traveling waves. Slide
More informationD.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K.
PHYSICAL BASIS OF REMOTE SENSING D.S. Boyd School of Earth Sciences and Geography, Kingston University, U.K. Keywords: Remote sensing, electromagnetic radiation, wavelengths, target, atmosphere, sensor,
More informationVacuum Evaporation Recap
Sputtering Vacuum Evaporation Recap Use high temperatures at high vacuum to evaporate (eject) atoms or molecules off a material surface. Use ballistic flow to transport them to a substrate and deposit.
More informationBohr's Theory of the Hydrogen Atom
OpenStaxCNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe
More informationThe rate of change of velocity with respect to time. The average rate of change of distance/displacement with respect to time.
H2 PHYSICS DEFINITIONS LIST Scalar Vector Term Displacement, s Speed Velocity, v Acceleration, a Average speed/velocity Instantaneous Velocity Newton s First Law Newton s Second Law Newton s Third Law
More informationAtomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number
2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number  number of protons number of protons = number of electrons IF positive
More informationLight. What is light?
Light What is light? 1. How does light behave? 2. What produces light? 3. What type of light is emitted? 4. What information do you get from that light? Methods in Astronomy Photometry Measure total amount
More informationSample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
More informationGRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
More informationMeasurement of ChargetoMass (e/m) Ratio for the Electron
Measurement of ChargetoMass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron chargetomass ratio e/m by studying the electron trajectories in a uniform magnetic
More informationCambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level
Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *0123456789* PHYSICS 9702/02 Paper 2 AS Level Structured Questions For Examination from 2016 SPECIMEN
More informationPhysics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
More information particle with kinetic energy E strikes a barrier with height U 0 > E and width L.  classically the particle cannot overcome the barrier
Tunnel Effect:  particle with kinetic energy E strikes a barrier with height U 0 > E and width L  classically the particle cannot overcome the barrier  quantum mechanically the particle can penetrated
More informationLecture 3: Optical Properties of Bulk and Nano. 5 nm
Lecture 3: Optical Properties of Bulk and Nano 5 nm The Previous Lecture Origin frequency dependence of χ in real materials Lorentz model (harmonic oscillator model) 0 e  n( ) n' n '' n ' = 1 + Nucleus
More informationmomentum change per impact The average rate of change of momentum = Time interval between successive impacts 2m x 2l / x m x m x 2 / l P = l 2 P = l 3
Kinetic Molecular Theory This explains the Ideal Gas Pressure olume and Temperature behavior It s based on following ideas:. Any ordinary sized or macroscopic sample of gas contains large number of molecules.
More informationTreasure Hunt. Lecture 2 How does Light Interact with the Environment? EMR Principles and Properties. EMR and Remote Sensing
Lecture 2 How does Light Interact with the Environment? Treasure Hunt Find and scan all 11 QR codes Choose one to watch / read in detail Post the key points as a reaction to http://www.scoop.it/t/env202502w2
More informationChem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
More informationRate Equations and Detailed Balance
Rate Equations and Detailed Balance Initial question: Last time we mentioned astrophysical masers. Why can they exist spontaneously? Could there be astrophysical lasers, i.e., ones that emit in the optical?
More informationHeating & Cooling in Molecular Clouds
Lecture 8: Cloud Stability Heating & Cooling in Molecular Clouds Balance of heating and cooling processes helps to set the temperature in the gas. This then sets the minimum internal pressure in a core
More informationBritish Physics Olympiad
1 British Physics Olympiad Paper 3. 2005 Monday 28 February 2005. Time allowed 3hrs plus 15 minutes reading time. All questions should be attempted. Question 1 carries 40 marks, the other questions 20
More informationelectron does not become part of the compound; one electron goes in but two electrons come out.
Characterization Techniques for Organic Compounds. When we run a reaction in the laboratory or when we isolate a compound from nature, one of our first tasks is to identify the compound that we have obtained.
More informationFriday 18 January 2013 Morning
Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied
More informationCode number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.
Series ONS SET1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the
More informationState Newton's second law of motion for a particle, defining carefully each term used.
5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding
More informationCopyright 2008 Pearson Education, Inc., publishing as Pearson AddisonWesley.
Chapter 20. Traveling Waves You may not realize it, but you are surrounded by waves. The waviness of a water wave is readily apparent, from the ripples on a pond to ocean waves large enough to surf. It
More informationPHYS 1624 University Physics I. PHYS 2644 University Physics II
PHYS 1624 Physics I An introduction to mechanics, heat, and wave motion. This is a calculus based course for Scientists and Engineers. 4 hours (3 lecture/3 lab) Prerequisites: Credit for MATH 2413 (Calculus
More informationDetermination of Molecular Structure by MOLECULAR SPECTROSCOPY
Determination of Molecular Structure by MOLEULAR SPETROSOPY hemistry 3 B.Z. Shakhashiri Fall 29 Much of what we know about molecular structure has been learned by observing and analyzing how electromagnetic
More information2. Molecular stucture/basic
2. Molecular stucture/basic spectroscopy The electromagnetic spectrum Spectral region for atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, AddisonWesley Publishing Company,1987 Spectral regions
More informationCalculating particle properties of a wave
Calculating particle properties of a wave A light wave consists of particles (photons): The energy E of the particle is calculated from the frequency f of the wave via Planck: E = h f (1) A particle can
More informationFLAP P11.2 The quantum harmonic oscillator
F L E X I B L E L E A R N I N G A P P R O A C H T O P H Y S I C S Module P. Opening items. Module introduction. Fast track questions.3 Ready to study? The harmonic oscillator. Classical description of
More informationBoardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
More informationFrom lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
More informationMolecular Spectroscopy:
: How are some molecular parameters determined? Bond lengths Bond energies What are the practical applications of spectroscopic knowledge? Can molecules (or components thereof) be identified based on differences
More informationThe University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device
More informationCandidate Number. General Certificate of Education Advanced Level Examination June 2014
entre Number andidate Number Surname Other Names andidate Signature General ertificate of Education dvanced Level Examination June 214 Physics PHY4/1 Unit 4 Fields and Further Mechanics Section Wednesday
More informationCHAPTER 13 MOLECULAR SPECTROSCOPY
CHAPTER 13 MOLECULAR SPECTROSCOPY Our most detailed knowledge of atomic and molecular structure has been obtained from spectroscopy study of the emission, absorption and scattering of electromagnetic radiation
More informationVacuum Technology. Kinetic Theory of Gas. Dr. Philip D. Rack
Kinetic Theory of Gas Assistant Professor Department of Materials Science and Engineering University of Tennessee 603 Dougherty Engineering Building Knoxville, TN 379300 Phone: (865) 9745344 Fax (865)
More informationAcoustics: the study of sound waves
Acoustics: the study of sound waves Sound is the phenomenon we experience when our ears are excited by vibrations in the gas that surrounds us. As an object vibrates, it sets the surrounding air in motion,
More information4.1 Studying Atom. Early evidence used to develop models of atoms.
4.1 Studying Atom Early evidence used to develop models of atoms. Democritus said that all matter consisted of extremely small particles that could NOT be divided called these particles atoms from the
More information