Diffraction of Laser Light
|
|
|
- Paula Hopkins
- 9 years ago
- Views:
Transcription
1 Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic light is a single color or wavelength. The wavelength of the red laser light is 670 nm (nm = nanometer = 10-9 m). In this experiment, the diffraction patterns of a single slit, a double slit, a human hair, and a circular aperture are examined. Theory Diffraction is produced when light passes through an opening whose size is the same order of magnitude as its wavelength. As the light spreads outward from the opening, the light waves travel different distances, producing an interference pattern at the screen. A bright spot is formed when the light waves interfere constructively and a dark spot is formed when they interfere destructively. For example, in a double slit experiment light from one slit travels a different distance than light from the second slit. A bright spot will be formed if the difference in distances is an integral number of wavelengths. A dark spot will be formed if the difference is a half-integral number of wavelengths (e.g.1/2, 3/2, 5/2, etc.). As can be seen from the above diagram, a bright spot will be formed when r 2 r 1 = mλ = dsinθ. For small angles (where R >> y), sinθ tanθ = y /R, so Pattern produced by a double slit. y = mλr (1) where m = 0, 1, 2, for a bright spot d and m = 1/2, 3/2, 5/2,...for a dark spot. 82
2 Pattern produced by a single slit. For a single slit, the condition for a dark spot is sinθ = mλ /d (2) where d is the width of the slit and m = 1,2,3,... for dark spots. The diffraction pattern produced by a human hair is the same as that which would be produced if a slit the width of the hair were used. If, instead of a single slit, we use a small circular opening of diameter d, we will observe a circular diffraction pattern instead of a linear diffraction pattern. The equation for the minima has the same form as that for the linear case, namely d sinθ = mλ. (3) However, m is no longer an integer but is the zero solutions to first order Bessel function divided by p. That is, m = l.220, 2.233, 3.283, 4.241,... Apparatus 1. laser 4. caliper 2. Single and double slits 3. optical bench, screen Procedure: 1. Double slit experiment: Shine the laser through a double slit and observe the diffraction pattern on a screen across the room. Sketch the pattern on the data sheet and measure the distance between the first minima on either side of the central bright spot. Repeat the measurement for the second minima. Divide the distance by 2 and find the angle Θ, then use Equation (1) to find d. Compare with known value. Repeat for a second slit 2. Single Slit Experiment Shine the laser through a single slit and observe the diffraction pattern. Sketch the pattern on the data sheet. Repeat the measurement in procedure 1 and find d for the slit. Compare with the known value. Repeat for a second single slit 83
3 3. Circular Aperture The diameter of circular opening can be determined by using laser light. Rotate the Slit Disk until the laser light shines through a circular opening. Now place the slits between 6 to 8 cm from the laser and place the screen on the optical bench.l You should see a pattern on the screen characterized by two or three dark rings. Sketch the diffraction pattern and measure the diameter of the ring. From the radius of the rings calculate the angle θ and from Equation (3) find the diameter of the ring. 4. Human hair Data Remove single slit disk and stretch a hair across the opening and tape the hair to the lens holders. Shine a laser across the hair. Repeat the same measurements and sketch as in procedure 1 and 2. Find the diameter of the hair. Double Slit Diffraction: A. First double slit R = B. Second double slit Known value of d = R = Sketch the diffraction pattern below 84
4 Single Slit Diffraction: A. First single slit R = B. Second Single Slit A. % difference = Circular Aperture R = 85
5 Human Hair Diffraction R = QUESTIONS: 1. On the single slit disk, there is a single slit whose width varies as the disk is rotated. How does the distance between the bright and dark spot vary as the disk is rotated from a small value d to a larger value of d? 2. On the double slit disk, the distance between the double slits varies from 0.02 mm to 0.08 mm. How does the distance between the bright and dark spot vary as the disk is rotated from a small value of d to a larger value of d? 86
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Diffraction and Young s Single Slit Experiment
Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
Interference and Diffraction
Chapter 14 nterference and Diffraction 14.1 Superposition of Waves... 14-14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment... 14-7 14.3 ntensity Distribution... 14-8 Example
PHYS 222 Spring 2012 Final Exam. Closed books, notes, etc. No electronic device except a calculator.
PHYS 222 Spring 2012 Final Exam Closed books, notes, etc. No electronic device except a calculator. NAME: (all questions with equal weight) 1. If the distance between two point charges is tripled, the
USING CDs AND DVDs AS DIFFRACTION GRATINGS
USING CDs AND DVDs AS DIFFRACTION GRATINGS Rama Balachandran Riverwood High School Atlanta, GA Karen Porter-Davis Chamblee Charter High School Chamblee, GA Copyright Georgia Institute of Technology 2009
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
A Guide to Acousto-Optic Modulators
A Guide to Acousto-Optic Modulators D. J. McCarron December 7, 2007 1 Introduction Acousto-optic modulators (AOMs) are useful devices which allow the frequency, intensity and direction of a laser beam
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND
DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE FIRST KIND THE THREE-DIMENSIONAL DISTRIBUTION OF THE RADIANT FLUX DENSITY AT THE FOCUS OF A CONVERGENCE BEAM
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
THE BOHR QUANTUM MODEL
THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with
Physics 111 Homework Solutions Week #9 - Tuesday
Physics 111 Homework Solutions Week #9 - Tuesday Friday, February 25, 2011 Chapter 22 Questions - None Multiple-Choice 223 A 224 C 225 B 226 B 227 B 229 D Problems 227 In this double slit experiment we
Physics 41 Chapter 38 HW Key
Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a 0.300-mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? 7 6.38 10 sin θ.11
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
Using light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
Friday 18 January 2013 Morning
Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
What s so special about the laser?
What s so special about the laser? A guide for taking LaserFest into the classroom. Developed by 2010 SPS SOCK interns Patrick Haddox & Jasdeep Maggo. www.spsnational.org Activity 1: Exploring laser light
- the. or may. scales on. Butterfly wing. magnified about 75 times.
Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
3.5.4.2 One example: Michelson interferometer
3.5.4.2 One example: Michelson interferometer mirror 1 mirror 2 light source 1 2 3 beam splitter 4 object (n object ) interference pattern we either observe fringes of same thickness (parallel light) or
Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 )
1 of 13 2/17/2016 5:28 PM Signed in as Weida Wu, Instructor Help Sign Out Rutgers Analytical Physics 750:228, Spring 2016 ( RUPHY228S16 ) My Courses Course Settings University Physics with Modern Physics,
INTERFERENCE OBJECTIVES PRE-LECTURE. Aims
53 L4 INTERFERENCE Aims OBJECTIVES When you have finished this chapter you should understand how the wave model of light can be used to explain the phenomenon of interference. You should be able to describe
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet
4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES HW/Study Packet Required: READ Hamper pp 115-134 SL/HL Supplemental: Cutnell and Johnson, pp 473-477, 507-513 Tsokos, pp 216-242 REMEMBER TO. Work through all
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing
Bio 321 Lightmicroscopy Electronmicrosopy Image Processing Urs Ziegler Center for Microscopy and Image Analysis Light microscopy (Confocal Laser Scanning Microscopy) Light microscopy (Confocal Laser Scanning
Revision problem. Chapter 18 problem 37 page 612. Suppose you point a pinhole camera at a 15m tall tree that is 75m away.
Revision problem Chapter 18 problem 37 page 612 Suppose you point a pinhole camera at a 15m tall tree that is 75m away. 1 Optical Instruments Thin lens equation Refractive power Cameras The human eye Combining
Automatic and Objective Measurement of Residual Stress and Cord in Glass
Automatic and Objective Measurement of Residual Stress and Cord in Glass GlassTrend - ICG TC15/21 Seminar SENSORS AND PROCESS CONTROL 13-14 October 2015, Eindhoven Henning Katte, ilis gmbh copyright ilis
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
v = fλ PROGRESSIVE WAVES 1 Candidates should be able to :
PROGRESSIVE WAVES 1 Candidates should be able to : Describe and distinguish between progressive longitudinal and transverse waves. With the exception of electromagnetic waves, which do not need a material
Optical Storage Technology. Optical Disc Storage
Optical Storage Technology Optical Disc Storage Introduction Since the early 1940s, magnetic recording has been the mainstay of electronic information storage worldwide. Magnetic tape has been used extensively
Basic Physical Optics
F UNDAMENTALS OF PHOTONICS Module 1.4 Basic Physical Optics Leno S. Pedrotti CORD Waco, Texas In Module 1-3, Basic Geometrical Optics, we made use of light rays to demonstrate reflection and refraction
DIFFRACTION AND INTERFERENCE
DIFFRACTION AND INTERFERENCE In this experiment you will emonstrate the wave nature of light by investigating how it bens aroun eges an how it interferes constructively an estructively. You will observe
Physics 10. Lecture 29A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton
Physics 10 Lecture 29A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton Converging Lenses What if we wanted to use refraction to converge parallel
Pinhole Optics. OBJECTIVES To study the formation of an image without use of a lens.
Pinhole Otics Science, at bottom, is really anti-intellectual. It always distrusts ure reason and demands the roduction of the objective fact. H. L. Mencken (1880-1956) OBJECTIVES To study the formation
Introduction to microstructure
Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term crystal
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
Light Control and Efficacy using Light Guides and Diffusers
Light Control and Efficacy using Light Guides and Diffusers LEDs 2012 Michael Georgalis, LC Marketing Manager, Fusion Optix October 11, 2012 Agenda Introduction What Is Light Control? Improves Application
Lab 9: The Acousto-Optic Effect
Lab 9: The Acousto-Optic Effect Incoming Laser Beam Travelling Acoustic Wave (longitudinal wave) O A 1st order diffracted laser beam A 1 Introduction qb d O 2qb rarefractions compressions Refer to Appendix
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Interference of Light Waves
Chapter 37 Interference of Light Waves CHAPTER OUTLINE 37.1 Conditions for Interference 37.2 Young s Double-Slit Experiment 37.3 Intensity Distribution of the Double-Slit Interference Pattern 37.4 Phasor
Optical laser beam scanner lens relay system
1. Introduction Optical laser beam scanner lens relay system Laser beam scanning is used most often by far in confocal microscopes. There are many ways by which a laser beam can be scanned across the back
Rodenstock Photo Optics
Rogonar Rogonar-S Rodagon Apo-Rodagon N Rodagon-WA Apo-Rodagon-D Accessories: Modular-Focus Lenses for Enlarging, CCD Photos and Video To reproduce analog photographs as pictures on paper requires two
Lecture 12: Cameras and Geometry. CAP 5415 Fall 2010
Lecture 12: Cameras and Geometry CAP 5415 Fall 2010 The midterm What does the response of a derivative filter tell me about whether there is an edge or not? Things aren't working Did you look at the filters?
Study Guide for Exam on Light
Name: Class: Date: Study Guide for Exam on Light Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which portion of the electromagnetic spectrum is used
Refraction of Light at a Plane Surface. Object: To study the refraction of light from water into air, at a plane surface.
Refraction of Light at a Plane Surface Object: To study the refraction of light from water into air, at a plane surface. Apparatus: Refraction tank, 6.3 V power supply. Theory: The travel of light waves
Waves and Light Extra Study Questions
Waves and Light Extra Study Questions Short Answer 1. Determine the frequency for each of the following. (a) A bouncing spring completes 10 vibrations in 7.6 s. (b) An atom vibrates 2.5 10 10 times in
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL
CONFOCAL LASER SCANNING MICROSCOPY TUTORIAL Robert Bagnell 2006 This tutorial covers the following CLSM topics: 1) What is the optical principal behind CLSM? 2) What is the spatial resolution in X, Y,
PRECISION INTERFEROMETER
Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Models OS-9255A thru OS-9258A 012-07137A 5/99 PRECISION INTERFEROMETER 1990 PASCO
waves rays Consider rays of light from an object being reflected by a plane mirror (the rays are diverging): mirror object
PHYS1000 Optics 1 Optics Light and its interaction with lenses and mirrors. We assume that we can ignore the wave properties of light. waves rays We represent the light as rays, and ignore diffraction.
Today. next two weeks
Today Temporal and spatial coherence Spatially incoherent imaging The incoherent PSF The Optical Transfer Function (OTF) and Modulation Transfer Function (MTF) MTF and contrast comparison of spatially
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots
Beam shaping to generate uniform Laser Light Sheet and Linear Laser Spots Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Generation of Laser Light Sheet
LASER DIAGRAM TABLE OF CONTENTS. SKY Technologies Inc. www.skytechlasers.com. Laser Diagram. Technical Specifications. Laser Operation.
TABLE OF CONTENTS LASER DIAGRAM Laser Diagram 1 Technical Specifications 2 Laser Operation 3 Laser Safety 5 Maintanence 6 Limitation of Liability 7 Warranty 8 Laser Pointer Series Operations Manual Page
Near-field scanning optical microscopy (SNOM)
Adviser: dr. Maja Remškar Institut Jožef Stefan January 2010 1 2 3 4 5 6 Fluorescence Raman and surface enhanced Raman 7 Conventional optical microscopy-limited resolution Two broad classes of techniques
Review for Test 3. Polarized light. Action of a Polarizer. Polarized light. Light Intensity after a Polarizer. Review for Test 3.
Review for Test 3 Polarized light No equation provided! Polarized light In linearly polarized light, the electric field vectors all lie in one single direction. Action of a Polarizer Transmission axis
Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm
Progress In Electromagnetics Research Symposium Proceedings, Taipei, March 5 8, 3 359 Development of Optical Wave Microphone Measuring Sound Waves with No Diaphragm Yoshito Sonoda, Takashi Samatsu, and
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 13 Confocal Laser Scanning Microscopy C. Robert Bagnell, Jr., Ph.D., 2012 You are sitting at your microscope working at high magnification trying to sort out the three-dimensional compartmentalization
Overview of Optical Recording Technology- Current Status and Near Term Projections
Overview of Optical Recording Technology- Current Status and Near Term Projections Koichi Sadashige Sadashige Associates 15 Amherst Rd, Voorhees NJ 08043-4901 Phone: +1-856-767-2644, FAX: +1-856-767-1462
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
Physics 25 Exam 3 November 3, 2009
1. A long, straight wire carries a current I. If the magnetic field at a distance d from the wire has magnitude B, what would be the the magnitude of the magnetic field at a distance d/3 from the wire,
Experiment IV: Atomic Spectra and the Bohr model
P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we
Code number given on the right hand side of the question paper should be written on the title page of the answerbook by the candidate.
Series ONS SET-1 Roll No. Candiates must write code on the title page of the answer book Please check that this question paper contains 16 printed pages. Code number given on the right hand side of the
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
1 Laboratory #5: Grating Spectrometer
SIMG-215-20061: LABORATORY #5 1 Laboratory #5: Grating Spectrometer 1.1 Objective: To observe and measure the spectra of different light sources. 1.2 Materials: 1. OSA optics kit. 2. Nikon digital camera
SURFACE TENSION. Definition
SURFACE TENSION Definition In the fall a fisherman s boat is often surrounded by fallen leaves that are lying on the water. The boat floats, because it is partially immersed in the water and the resulting
Crystal Optics of Visible Light
Crystal Optics of Visible Light This can be a very helpful aspect of minerals in understanding the petrographic history of a rock. The manner by which light is transferred through a mineral is a means
Lenses and Apertures of A TEM
Instructor: Dr. C.Wang EMA 6518 Course Presentation Lenses and Apertures of A TEM Group Member: Anup Kr. Keshri Srikanth Korla Sushma Amruthaluri Venkata Pasumarthi Xudong Chen Outline Electron Optics
Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight
Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,
Measuring the Point Spread Function of a Fluorescence Microscope
Frederick National Laboratory Measuring the Point Spread Function of a Fluorescence Microscope Stephen J Lockett, PhD Principal Scientist, Optical Microscopy and Analysis Laboratory Frederick National
Giant Slinky: Quantitative Exhibit Activity
Name: Giant Slinky: Quantitative Exhibit Activity Materials: Tape Measure, Stopwatch, & Calculator. In this activity, we will explore wave properties using the Giant Slinky. Let s start by describing the
Imaging techniques with refractive beam shaping optics
Imaging techniques with refractive beam shaping optics Alexander Laskin, Vadim Laskin AdlOptica GmbH, Rudower Chaussee 29, 12489 Berlin, Germany ABSTRACT Applying of the refractive beam shapers in real
To explain the basics of how lasers work and let visitors experiment with laser properties.
Laser Lights Activity Goal To explain the basics of how lasers work and let visitors experiment with laser properties. NGSS Domain(s) PS1.A Structure of Matter PS3.B Definitions of Energy PS4.A Wave Properties
AS COMPETITION PAPER 2008
AS COMPETITION PAPER 28 Name School Town & County Total Mark/5 Time Allowed: One hour Attempt as many questions as you can. Write your answers on this question paper. Marks allocated for each question
UNIT I: INTRFERENCE & DIFFRACTION Div. B Div. D Div. F INTRFERENCE
107002: EngineeringPhysics Teaching Scheme: Lectures: 4 Hrs/week Practicals-2 Hrs./week T.W.-25 marks Examination Scheme: Paper-50 marks (2 hrs) Online -50marks Prerequisite: Basics till 12 th Standard
Holography 1 HOLOGRAPHY
Holography 1 HOLOGRAPHY Introduction and Background The aesthetic appeal and commercial usefulness of holography are both related to the ability of a hologram to store a three-dimensional image. Unlike
A-level PHYSICS (7408/1)
SPECIMEN MATERIAL A-level PHYSICS (7408/1) Paper 1 Specimen 2014 Morning Time allowed: 2 hours Materials For this paper you must have: a pencil a ruler a calculator a data and formulae booklet. Instructions
Physics 30 Worksheet # 14: Michelson Experiment
Physics 30 Worksheet # 14: Michelson Experiment 1. The speed of light found by a Michelson experiment was found to be 2.90 x 10 8 m/s. If the two hills were 20.0 km apart, what was the frequency of the
Spectroscopy Using the Tracker Video Analysis Program
Spectroscopy Using the Tracker Video Analysis Program Douglas Brown Cabrillo College Aptos CA 95003 [email protected] Spectroscopy has important applications in many fields and deserves more attention
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US. Hanno zur Loye
X-Ray Diffraction HOW IT WORKS WHAT IT CAN AND WHAT IT CANNOT TELL US Hanno zur Loye X-rays are electromagnetic radiation of wavelength about 1 Å (10-10 m), which is about the same size as an atom. The
The coherence length of black-body radiation
Eur. J. Phys. 19 (1998) 245 249. Printed in the UK PII: S143-87(98)86653-1 The coherence length of black-body radiation Axel Donges Fachhochschule und Berufskollegs NTA Prof. Dr Grübler, Seidenstrasse
Boardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy
5. Scanning Near-Field Optical Microscopy 5.1. Resolution of conventional optical microscopy Resolution of optical microscope is limited by diffraction. Light going through an aperture makes diffraction
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
FIFTH GRADE WORKBOOK
FIFTH GRADE WORKBOOK students Math/Science Nucleus 1990,2001 APPLIED SCIENCE - SCIENCE AND MATH (5A) PROBLEM: Can you learn how to estimate? PREDICTION: MATERIALS: 3 containers filled with items given
Does Quantum Mechanics Make Sense? Size
Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why
Guideline Laser Series
Guideline Laser Series Highly visible alignment laser for visually demanding surfaces Red / Green long visible lines Equal brightness across length of the line Uniform Line (no fading at ends of the line)
FTIR Instrumentation
FTIR Instrumentation Adopted from the FTIR lab instruction by H.-N. Hsieh, New Jersey Institute of Technology: http://www-ec.njit.edu/~hsieh/ene669/ftir.html 1. IR Instrumentation Two types of instrumentation
Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena
Proposed experiment to test the non-locality hypothesis in transient light-interference phenomena Masanori Sato Honda Electronics Co., Ltd., 20 Oyamazuka, Oiwa-cho, Toyohashi, Aichi 441-3193, Japan Abstract
Fiber optic communication
Fiber optic communication Fiber optic communication Outline Introduction Properties of single- and multi-mode fiber Optical fiber manufacture Optical network concepts Robert R. McLeod, University of Colorado
104 Practice Exam 2-3/21/02
104 Practice Exam 2-3/21/02 1. Two electrons are located in a region of space where the magnetic field is zero. Electron A is at rest; and electron B is moving westward with a constant velocity. A non-zero
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
