THE BOHR QUANTUM MODEL
|
|
|
- Joshua Alexander Hawkins
- 9 years ago
- Views:
Transcription
1 THE BOHR QUANTUM MODEL INTRODUCTION When light from a low-pressure gas is subject to an electric discharge, a discrete line spectrum is emitted. When light from such a low-pressure gas is examined with a spectroscope, it is found to consist of a few bright lines of pure color on a dark background. The wavelength contained in a given line spectrum are characteristic of the particular element emitting the light. Because no two elements emit the same line spectrum, this phenomenon represents a practical and sensitive technique for identifying elements present in unknown samples. In 885, by trial and error, Johann Balmer found a formula that predicted the wavelength for the four visible lines in the emission spectrum of hydrogen. The most general form of the formula is given by λ n f n i = RZ () where n i and n f are integers, Z is the atomic number (Z= for hydrogen), and R is a constant called the Rydberg constant. These four lines of hydrogen are now known as the Balmer series. In 93, Danish physicist, Niels Bohr proposed a revolutionary quantum model that impacted the scientific community. One of the triumphs of the Bohr Quantum Model was its remarkably successful agreement with the formula proposed by Balmer. The objective of this lab is:. To determine the Rydberg constant by analyzing the Balmer series of hydrogen.. To determine the final quantum number n f for the Balmer series. 3. To attempt to determine the initial and final quantum numbers for the electronic transition of Helium for the red, yellow, and purple emission lines by applying the Bohr Quantum Model. EQUIPMENT. Spectrometer (Figure ). Mercury light source 3. Hydrogen light source 4. Helium light source 5. Black cloth (to cover background light) 6. Diffraction grating 7. Bubble level
2 Figure - Spectrometer THEORY From your study of diffraction and interference you learned that the condition for interference maxima for a diffraction grating is given by m λ = d sinθ () where m is the order number, λ is the wavelength, and θ is the angle between the m th order and the central maxima. Bohr derived the expression λ n f n i = RZ () from his quantum model. Initially he derived it for the hydrogen atom but extended it to other atoms in which all but one electron had been removed. Some examples are Li +, Be 3+ and He +.
3 EQUIPMENT SETUP Focusing the Spectrometer. Level the spectrometer by adjusting the three thumbscrews on the bottom of the table. A bubble level is provided for this purpose.. Swing the telescope arm around to roughly 90 o from the line of the collimator so that you can view a distant object with the telescope. 3. Point the telescope at a distant object. While looking through the eyepiece, adjust it to give a clear image of the cross hair. Rotate the graticule until one of the crosshairs is vertical. 4. While still looking at the distant object, adjust the position of the objective lens for a clear image of the object in the plane of the crosshairs. There should be no parallax between the object and the crosshairs when proper adjustment is reached. No parallax means that there will be no relative motion between the object and the crosshairs when you move your eye laterally. Focusing the Collimator. Align the telescope directly opposite the collimator.. Looking through the telescope, adjust the focus of the collimator and, if necessary, the rotation of the telescope until the slit comes into sharp focus. 3. Tighten the telescope rotation lock-screw, then use the fine adjust knob to align the vertical line of the granicule with the fixed edge of the slit. 4. Adjust the slit width for a clear, bright image. Measuring Angles of Diffraction When analyzing a light source, angles of diffraction are measured using the vernier scale. However, the scale only measures the relative rotational positions of the telescope and the spectrometer table base. Therefore, before making a measurement, it is important to establish a vernier reading for the undeflected beam. All angles of diffraction are then made relative to this initial reading. See figure. Figure 3
4 Aligning the Grating To accurately calculate wavelengths on the basis of diffraction angles, the grating must be perpendicular to the beam of light from the collimator.. The telescope must be directly opposite the collimator with the slit in sharp focus and aligned with the vertical cross-hair. Perform steps -5 with reference to Figure 3. Figure 3. Loosen the spectroscope table lock-screw. Align the engraved line on the spectrometer table so that it s collinear with the optical axes of the telescope and the collimator. Tighten the lock-screw. 3. Using the thumbscrews, attach the grating mount so it is perpendicular to the engraved lines. 4. Insert the diffraction grating into the clips of the mount. The grating should spread the spectral lines horizontally. 5. Place the mercury light source approximately cm from the slit. The mercury light sources have a built in green filter to protect your eyes. Perform steps 6-9 reference to Figure 4 on the following page. 4
5 Figure 4 6. Rotate the telescope arm to the right until you see the first spectral line. Align the vertical cross-hair with the fixed edge of the image and carefully measure the angle of diffraction. 7. Rotate the telescope arm to the left until you see the first spectral line. Align the vertical cross-hair with the fixed edge of the image and carefully measure the angle of diffraction. 8. If θ R = θ L (within minute of arc), then proceed to collect data. If the angles are not equal, then repeat steps 6-8 until they re approximately equal. (REFER TO LAST PAGE OF LAB TO LEARN HOW TO MAKE THE ANGLE READING WITH THE VERNIER SCALE) PROCEDURE Wavelength of Mercury. With your spectrometer properly aligned, use the mercury source to obtain data for as many angles θ as you can on both sides of the central maxima (m =0). The wavelength of this green line in the Hg spectrum is 546. nm. Compare your calculated average to this value before proceeding to the next section. You should have a small % error. Spectral Lines of Hydrogen. Obtain data for the first order maxima on both sides for the spectral lines of hydrogen.. The Balmer series spectrum of hydrogen has the same final quantum number n f for the electronic transition. There should be four emission lines. Compute the wavelength of each spectral line. 3. Correlate each of the spectral lines with a color and initial quantum number n i. Use your textbook as reference if needed. 4. Using equation () from the Bohr Quantum Model plot a graph of /λ i vs. / n i such that you get the best linear curve fit. 5
6 5. Calculate the Rydberg constant R and also the final quantum number n f from the equation of the best curve-fit. Spectral Lines of Helium. Obtain data for the first order maxima on both sides for the spectral lines of helium.. Calculate the wavelengths of the red, yellow, and purple emission lines of helium. 3. For each calculated λ try to determine the initial and final quantum numbers n i and n f. This may me accomplished by fitting the data into equation (a): λrz n f n i = (a) For a given λ and Z the left side of this equation is just a constant. Thus, one can obtain, by trial and error, the initial and final quantum numbers n i and n f for the electronic transition that gives off the characteristic λ. For example you can set n i = 5 and then vary n f =,,3 and 4 until both sides of the equation are equal. When this occurs you have found the correct quantum numbers! Do this for n i 5 for each of the calculated wavelengths using Z =. k( Ze)( e) 4. In deriving equation (a) you used U ( r) = for the potential energy function for r single-electron atoms. For multiple electron atoms an electron will be subject to the Coulomb attractive force of the nucleus and to the Coulomb repulsive force of all other electrons in the atom. These forces will generally cancel each other, leaving a net effective k( Z eff e)( e) field with potential energy U eff ( r) =. In this equation Z eff is the effective atomic r number that an electron sees and will generally be different for different electrons. The difference in Z eff values for different electrons can be attributed to the shielding or screening effects of intervening electrons. For the ground state (n=) of Helium the ionization energy is 4.58eV and Z eff =.34. For higher energy states (n >) Z eff. Repeat (3) for Z eff =.34 and Z eff =. ANALYSIS FOR HYDROGEN SPECTRUM. Compare the Rydberg constant R with the expected value.. How does the final quantum number n f compare with the expected value? 3. Explain any systematic and random errors involved in the experiment and how they effected the outcome. 4. Based on your data did the Bohr Quantum Model successfully describe the Hydrogen spectrum? 6
7 ANALYSIS FOR HELIUM SPECTRUM. Based on your experimental data for Z = can you associate any of the spectral lines with the initial and final quantum numbers n i and n f? Using Z = explain why or why not did the Bohr Quantum Model successfully describe the helium spectrum?. Based on your experimental data for Z eff = can you associate any of the spectral lines with the initial and final quantum numbers n i and n f? Using Z eff = explain why or why not did the Bohr Quantum Model successfully describe the helium spectrum? 3. Based on your experimental data for Z eff =.34 can you associate any of the spectral lines with the initial and final quantum numbers n i and n f? For Z eff =.34 explain why or why not did the Bohr Quantum Model successfully describe the helium spectrum? 4. If systematic and random errors could be neglected, would you expect the Bohr Model to successfully explain the He spectral lines? How about the spectral lines of other atoms? Give supporting evidence/argument to explain your answer. REFERENCES:. PASCO scientific, Instruction Manual for Model SP-968 Student Spectrometer, 99. Modern Physics, Serway, Moses, and Moyer, nd Ed. 7
8 8
WAVELENGTH OF LIGHT - DIFFRACTION GRATING
PURPOSE In this experiment we will use the diffraction grating and the spectrometer to measure wavelengths in the mercury spectrum. THEORY A diffraction grating is essentially a series of parallel equidistant
ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.
1 ATOMIC SPECTRA Objective: To measure the wavelengths of visible light emitted by atomic hydrogen and verify the measured wavelengths against those predicted by quantum theory. To identify an unknown
GRID AND PRISM SPECTROMETERS
FYSA230/2 GRID AND PRISM SPECTROMETERS 1. Introduction Electromagnetic radiation (e.g. visible light) experiences reflection, refraction, interference and diffraction phenomena when entering and passing
O6: The Diffraction Grating Spectrometer
2B30: PRACTICAL ASTROPHYSICS FORMAL REPORT: O6: The Diffraction Grating Spectrometer Adam Hill Lab partner: G. Evans Tutor: Dr. Peter Storey 1 Abstract The calibration of a diffraction grating spectrometer
Experiment #12: The Bohr Atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes, Holder, and Variac Flashlight
Experiment #12: The Bohr Atom Purpose: To observe the visible spectrum of hydrogen and helium and verify the Bohr model of the hydrogen atom. Equipment: Spectroscope Hydrogen and Helium Gas Discharge Tubes,
Experiment IV: Atomic Spectra and the Bohr model
P19: INTRODUCTORY PHYSICS III Experiment IV: Atomic Spectra and the Bohr model Department of Physics and Astronomy Dartmouth College 6127 Wilder Laboratory Hanover, NH 03755 USA Overview In this lab, we
Review of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
Atoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
Interference. Physics 102 Workshop #3. General Instructions
Interference Physics 102 Workshop #3 Name: Lab Partner(s): Instructor: Time of Workshop: General Instructions Workshop exercises are to be carried out in groups of three. One report per group is due by
Austin Peay State University Department of Chemistry Chem 1111. The Use of the Spectrophotometer and Beer's Law
Purpose To become familiar with using a spectrophotometer and gain an understanding of Beer s law and it s relationship to solution concentration. Introduction Scientists use many methods to determine
Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
Diffraction of Laser Light
Diffraction of Laser Light No Prelab Introduction The laser is a unique light source because its light is coherent and monochromatic. Coherent light is made up of waves, which are all in phase. Monochromatic
Blackbody Radiation References INTRODUCTION
Blackbody Radiation References 1) R.A. Serway, R.J. Beichner: Physics for Scientists and Engineers with Modern Physics, 5 th Edition, Vol. 2, Ch.40, Saunders College Publishing (A Division of Harcourt
PHYA2. General Certificate of Education Advanced Subsidiary Examination June 2010. Mechanics, Materials and Waves
Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Physics A Unit 2 For this paper you must have: a ruler a calculator a Data and Formulae Booklet.
6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?
Test IV Name 1) In a single slit diffraction experiment, the width of the slit is 3.1 10-5 m and the distance from the slit to the screen is 2.2 m. If the beam of light of wavelength 600 nm passes through
Bohr's Theory of the Hydrogen Atom
OpenStax-CNX module: m42596 1 Bohr's Theory of the Hydrogen Atom OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Describe
Experiment 5. Lasers and laser mode structure
Northeastern University, PHYS5318 Spring 2014, 1 1. Introduction Experiment 5. Lasers and laser mode structure The laser is a very important optical tool that has found widespread use in science and industry,
ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = 3 + 4 = 9 + 16 = 25 or 2
Forensic Spectral Anaylysis: Warm up! The study of triangles has been done since ancient times. Many of the early discoveries about triangles are still used today. We will only be concerned with the "right
Basic Optics System OS-8515C
40 50 30 60 20 70 10 80 0 90 80 10 20 70 T 30 60 40 50 50 40 60 30 C 70 20 80 10 90 90 0 80 10 70 20 60 50 40 30 Instruction Manual with Experiment Guide and Teachers Notes 012-09900B Basic Optics System
Building your own Spectroscope
Building your own Spectroscope 0-0.341-0.445-0.606-0.872-1.36 Lyman Balmer Paschen n=4 n=8 n=7 n=6 n=5 n=4 ENERGY/10-19 J -2.42-5.45 E 5 2 E 4 2 E 3 2 E E 5 3 4 3 n=3 n=2 (Many other transitions beyond
1 Laboratory #5: Grating Spectrometer
SIMG-215-20061: LABORATORY #5 1 Laboratory #5: Grating Spectrometer 1.1 Objective: To observe and measure the spectra of different light sources. 1.2 Materials: 1. OSA optics kit. 2. Nikon digital camera
Diffraction of a Circular Aperture
Diffraction of a Circular Aperture Diffraction can be understood by considering the wave nature of light. Huygen's principle, illustrated in the image below, states that each point on a propagating wavefront
Diffraction and Young s Single Slit Experiment
Diffraction and Young s Single Slit Experiment Developers AB Overby Objectives Preparation Background The objectives of this experiment are to observe Fraunhofer, or far-field, diffraction through a single
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
Flame Tests & Electron Configuration
Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the
Theremino System Theremino Spectrometer Technology
Theremino System Theremino Spectrometer Technology theremino System - Theremino Spectrometer Technology - August 15, 2014 - Page 1 Operation principles By placing a digital camera with a diffraction grating
Friday 18 January 2013 Morning
Friday 18 January 2013 Morning AS GCE PHYSICS B (ADVANCING PHYSICS) G492/01 Understanding Processes / Experimentation and Data Handling *G411640113* Candidates answer on the Question Paper. OCR supplied
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Experiment #5: Qualitative Absorption Spectroscopy
Experiment #5: Qualitative Absorption Spectroscopy One of the most important areas in the field of analytical chemistry is that of spectroscopy. In general terms, spectroscopy deals with the interactions
P R E A M B L E. Facilitated workshop problems for class discussion (1.5 hours)
INSURANCE SCAM OPTICS - LABORATORY INVESTIGATION P R E A M B L E The original form of the problem is an Experimental Group Research Project, undertaken by students organised into small groups working as
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
EXPERIMENT 11 UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions. Outcomes After completing this experiment, the student should be able to: 1. Prepare
Physics 41, Winter 1998 Lab 1 - The Current Balance. Theory
Physics 41, Winter 1998 Lab 1 - The Current Balance Theory Consider a point at a perpendicular distance d from a long straight wire carrying a current I as shown in figure 1. If the wire is very long compared
Solution Derivations for Capa #14
Solution Derivations for Capa #4 ) An image of the moon is focused onto a screen using a converging lens of focal length (f = 34.8 cm). The diameter of the moon is 3.48 0 6 m, and its mean distance from
Care and Use of the Compound Microscope
Revised Fall 2011 Care and Use of the Compound Microscope Objectives After completing this lab students should be able to 1. properly clean and carry a compound and dissecting microscope. 2. focus a specimen
Spectroscopy Using the Tracker Video Analysis Program
Spectroscopy Using the Tracker Video Analysis Program Douglas Brown Cabrillo College Aptos CA 95003 [email protected] Spectroscopy has important applications in many fields and deserves more attention
FirstView 3 Reflector Telescope Owner s Manual
FirstView 3 Reflector Telescope Owner s Manual 1. Horizontal Locking Auxiliary Screw 2. Main Mount 3. Pitching Auxiliary Knob 4. Pitching Shaft Screw 5. Rack and Pinion Focusing Knob 6. Thumb Nut for Finder
Interferometers. OBJECTIVES To examine the operation of several kinds of interferometers. d sin = n (1)
Interferometers The true worth of an experimenter consists in his pursuing not only what he seeks in his experiment, but also what he did not seek. Claude Bernard (1813-1878) OBJECTIVES To examine the
Polarization of Light
Polarization of Light References Halliday/Resnick/Walker Fundamentals of Physics, Chapter 33, 7 th ed. Wiley 005 PASCO EX997A and EX999 guide sheets (written by Ann Hanks) weight Exercises and weights
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light
AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light Name: Period: Date: MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Reflection,
EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab
EXPERIMENT O-6 Michelson Interferometer Abstract A Michelson interferometer, constructed by the student, is used to measure the wavelength of He-Ne laser light and the index of refraction of a flat transparent
Physics 41 Chapter 38 HW Key
Physics 41 Chapter 38 HW Key 1. Helium neon laser light (63..8 nm) is sent through a 0.300-mm-wide single slit. What is the width of the central imum on a screen 1.00 m from the slit? 7 6.38 10 sin θ.11
SSO Transmission Grating Spectrograph (TGS) User s Guide
SSO Transmission Grating Spectrograph (TGS) User s Guide The Rigel TGS User s Guide available online explains how a transmission grating spectrograph (TGS) works and how efficient they are. Please refer
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
1051-232 Imaging Systems Laboratory II. Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002
05-232 Imaging Systems Laboratory II Laboratory 4: Basic Lens Design in OSLO April 2 & 4, 2002 Abstract: For designing the optics of an imaging system, one of the main types of tools used today is optical
Helium-Neon Laser. Figure 1: Diagram of optical and electrical components used in the HeNe laser experiment.
Helium-Neon Laser Experiment objectives: assemble and align a 3-mW HeNe laser from readily available optical components, record photographically the transverse mode structure of the laser output beam,
USING CDs AND DVDs AS DIFFRACTION GRATINGS
USING CDs AND DVDs AS DIFFRACTION GRATINGS Rama Balachandran Riverwood High School Atlanta, GA Karen Porter-Davis Chamblee Charter High School Chamblee, GA Copyright Georgia Institute of Technology 2009
Measurement of Charge-to-Mass (e/m) Ratio for the Electron
Measurement of Charge-to-Mass (e/m) Ratio for the Electron Experiment objectives: measure the ratio of the electron charge-to-mass ratio e/m by studying the electron trajectories in a uniform magnetic
Using light scattering method to find The surface tension of water
Experiment (8) Using light scattering method to find The surface tension of water The aim of work: The goals of this experiment are to confirm the relationship between angular frequency and wave vector
Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
WAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher)
What s in the Mix? Liquid Color Spectroscopy Lab (Randy Landsberg & Bill Fisher) Introduction: There is more to a color than a name. Color can tell us lots of information. In this lab you will use a spectrophotometer
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law
GENERAL SCIENCE LABORATORY 1110L Lab Experiment 6: Ohm s Law OBJECTIVES: To verify Ohm s law, the mathematical relationship among current, voltage or potential difference, and resistance, in a simple circuit.
Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure
Name Class Date Laboratory Investigation 4B Chapter 4: Cell Structure The Microscope: A Tool of the Scientist You may refer to pages 66-67, 72-73 in your textbook for a general discussion of microscopes.
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry
Spectrophotometry and the Beer-Lambert Law: An Important Analytical Technique in Chemistry Jon H. Hardesty, PhD and Bassam Attili, PhD Collin College Department of Chemistry Introduction: In the last lab
Chemistry 111 Lab: Intro to Spectrophotometry Page E-1
Chemistry 111 Lab: Intro to Spectrophotometry Page E-1 SPECTROPHOTOMETRY Absorption Measurements & their Application to Quantitative Analysis study of the interaction of light (or other electromagnetic
2 Spectrophotometry and the Analysis of Riboflavin
2 Spectrophotometry and the Analysis of Riboflavin Objectives: A) To become familiar with operating the Platereader; B) to learn how to use the Platereader in determining the absorption spectrum of a compound
A Beer s Law Experiment
A Beer s Law Experiment Introduction There are many ways to determine concentrations of a substance in solution. So far, the only experiences you may have are acid-base titrations or possibly determining
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance. Your name Lab section
Pre-lab Quiz/PHYS 224 Magnetic Force and Current Balance Your name Lab section 1. What do you investigate in this lab? 2. Two straight wires are in parallel and carry electric currents in opposite directions
THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259
DSH 2004 THE CURRENT-VOLTAGE CHARACTERISTICS OF AN LED AND A MEASUREMENT OF PLANCK S CONSTANT Physics 258/259 I. INTRODUCTION Max Planck (1858-1947) was an early pioneer in the field of quantum physics.
PHYSICS PAPER 1 (THEORY)
PHYSICS PAPER 1 (THEORY) (Three hours) (Candidates are allowed additional 15 minutes for only reading the paper. They must NOT start writing during this time.) ---------------------------------------------------------------------------------------------------------------------
Geometric Optics Converging Lenses and Mirrors Physics Lab IV
Objective Geometric Optics Converging Lenses and Mirrors Physics Lab IV In this set of lab exercises, the basic properties geometric optics concerning converging lenses and mirrors will be explored. The
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
PUMPED Nd:YAG LASER. Last Revision: August 21, 2007
PUMPED Nd:YAG LASER Last Revision: August 21, 2007 QUESTION TO BE INVESTIGATED: How can an efficient atomic transition laser be constructed and characterized? INTRODUCTION: This lab exercise will allow
Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40
Absorbance Spectrophotometry: Analysis of FD&C Red Food Dye #40 Note: there is a second document that goes with this one! 2046 - Absorbance Spectrophotometry - Calibration Curve Procedure. The second document
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
Using the Spectrophotometer
Using the Spectrophotometer Introduction In this exercise, you will learn the basic principals of spectrophotometry and and serial dilution and their practical application. You will need these skills to
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012
Chapter 1 Parts C. Robert Bagnell, Jr., Ph.D., 2012 Figure 1.1 illustrates the parts of an upright compound microscope and indicates the terminology that I use in these notes. Figure 1.1. Parts of a Compound
6/2016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES. PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields.
6/016 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply,
Alignement of a ring cavity laser
Alignement of a ring cavity laser 1 Introduction This manual describes a procedure to align the cavity of our Ti:Sapphire ring laser and its injection with an Argon-Ion pump laser beam. The setup is shown
VISM Evolution Scope Series
1 VISM Evolution Scope Series Congratulations on the purchase of your New VISM Evolution (EVO) Series Scope! The EVO Series of Scopes give you many great high end features and various magnification ranges
Procedure: Geometrical Optics. Theory Refer to your Lab Manual, pages 291 294. Equipment Needed
Theory Refer to your Lab Manual, pages 291 294. Geometrical Optics Equipment Needed Light Source Ray Table and Base Three-surface Mirror Convex Lens Ruler Optics Bench Cylindrical Lens Concave Lens Rhombus
Determining the Free Chlorine Content of Swimming Pool Water. HOCl H + + OCl. Evaluation copy
Determining the Free Chlorine Content of Swimming Pool Water Computer 33 Physicians in the nineteenth century used chlorine water as a disinfectant. Upon the discovery that certain diseases were transmitted
FORCE ON A CURRENT IN A MAGNETIC FIELD
7/16 Force current 1/8 FORCE ON A CURRENT IN A MAGNETIC FIELD PURPOSE: To study the force exerted on an electric current by a magnetic field. BACKGROUND: When an electric charge moves with a velocity v
E/M Experiment: Electrons in a Magnetic Field.
E/M Experiment: Electrons in a Magnetic Field. PRE-LAB You will be doing this experiment before we cover the relevant material in class. But there are only two fundamental concepts that you need to understand.
Physics 441/2: Transmission Electron Microscope
Physics 441/2: Transmission Electron Microscope Introduction In this experiment we will explore the use of transmission electron microscopy (TEM) to take us into the world of ultrasmall structures. This
Modeling the Expanding Universe
H9 Modeling the Expanding Universe Activity H9 Grade Level: 8 12 Source: This activity is produced by the Universe Forum at NASA s Office of Space Science, along with their Structure and Evolution of the
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
Scientific Graphing in Excel 2010
Scientific Graphing in Excel 2010 When you start Excel, you will see the screen below. Various parts of the display are labelled in red, with arrows, to define the terms used in the remainder of this overview.
Experiment 2 - Grating Spectrometer
Experiment 2 - Grating Spectrometer References: Optics by Eugene Hecht. Section 10.2.8 contains a good discussion of gratings and grating spectroscopy. Quantum Physics of Atoms, Molecules, Solids, Nuclei,
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Magnetic Fields and Their Effects
Name Date Time to Complete h m Partner Course/ Section / Grade Magnetic Fields and Their Effects This experiment is intended to give you some hands-on experience with the effects of, and in some cases
Chapter 17: Light and Image Formation
Chapter 17: Light and Image Formation 1. When light enters a medium with a higher index of refraction it is A. absorbed. B. bent away from the normal. C. bent towards from the normal. D. continues in the
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Origins of the Cosmos Summer 2016. Pre-course assessment
Origins of the Cosmos Summer 2016 Pre-course assessment In order to grant two graduate credits for the workshop, we do require you to spend some hours before arriving at Penn State. We encourage all of
Microscope Lab Introduction to the Microscope Lab Activity
Microscope Lab Introduction to the Microscope Lab Activity Wendy Kim 3B 24 Sep 2010 http://www.mainsgate.com/spacebio/modules/gs_resource/ CellDivisionMetaphase.jpeg 1 Introduction Microscope is a tool
Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer
Experient Index of refraction of an unknown liquid --- Abbe Refractoeter Principle: The value n ay be written in the for sin ( δ +θ ) n =. θ sin This relation provides us with one or the standard ethods
PROFESSIONAL REFRACTOR MODEL 78-0040 25
30 0 30 60 90 1 2 3 4 PROFESSIONAL REFRACTOR MODEL 78-0040 25 24 22 21 20 19 5 9060 18 6 7 17 16 15 8 14 13 9 11 12 10 Figure 1 1. Objective Lens 2. Mounting Screws (2) 3. Declination Axis 4. Equatorial
Understanding astigmatism Spring 2003
MAS450/854 Understanding astigmatism Spring 2003 March 9th 2003 Introduction Spherical lens with no astigmatism Crossed cylindrical lenses with astigmatism Horizontal focus Vertical focus Plane of sharpest
Experiment #8: Magnetic Forces
Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
Using Photometric Data to Derive an HR Diagram for a Star Cluster
Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and
Features: Mounting the Optic
MICRO GREEN DOT with INTEGRATED RED LASER The Patented Micro Green Dot with Integrated Red Laser is a compact optical system packed with many features. The Green Dot is designed as the primary targeting
Fraunhofer Diffraction
Physics 334 Spring 1 Purpose Fraunhofer Diffraction The experiment will test the theory of Fraunhofer diffraction at a single slit by comparing a careful measurement of the angular dependence of intensity
Total Station Setup and Operation. Sokkia SET Total Station
Total Station Setup and Operation Sokkia SET Total Station Parts of the SET Total Station Parts of the SET Total Station Sokkia SET 550 Total Station Keys/Screen SET 550 Menu Pages SET 550 Menu Pages Leveling
Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
FREE FALL. Introduction. Reference Young and Freedman, University Physics, 12 th Edition: Chapter 2, section 2.5
Physics 161 FREE FALL Introduction This experiment is designed to study the motion of an object that is accelerated by the force of gravity. It also serves as an introduction to the data analysis capabilities
