Atomic Structure Ron Robertson
|
|
|
- Iris Thomas
- 9 years ago
- Views:
Transcription
1 Atomic Structure Ron Robertson r2 n:\files\courses\ \2010 possible slides for web\atomicstructuretrans.doc
2 I. What is Light? Debate in 1600's: Since waves or particles can transfer energy, what is light? Newton light energy is transferred by particles Huygens light energy is transferred by waves Types of Waves: Transverse and longitudinal Properties of Waves Rectilinear propagation Reflection Refraction Diffraction Interference Since diffraction and interference can only be explained using wave ideas, the electromagnetic wave theory of light was generally accepted by the middle 1800's. Atomic Structure Slide 1
3 Parts of a wave wavelength (l) meters, centimeters, Angstroms frequency (n) cycles per second or Hertz velocity (v) meters per second, centimeters per second amplitude v = ln Light waves are also called electromagnetic waves because they have both and electric and magnetic wave components. Atomic Structure Slide 2
4 There are many types of electromagnetic radiation all of which travel at the same speed in a vacuum (3 x 10 8 m/s) but have different average speeds in different materials. The symbol c is often used for the speed of light in equations. Types (in increasing order of frequency) Radio waves, microwaves, infrared, visible, ultraviolet, x rays and gamma rays. High frequency radiation is more dangerous than low frequency. The next slide shows us why. Atomic Structure Slide 3
5 Problems with the wave formulation of light 1. According to classical wave theory the energy of a light wave should depend on its amplitude, but this does not match the results from light emitted by a hot object. Solution: Max Planck proposed that the electromagnetic energy radiated by a hot object is bundled in packets called quanta. These packets are now called photons. E=hn h (Planck's constant) = 6.63 x J/Hz Thus high frequency light has more energy per packet and more destructive power. Atomic Structure Slide 4
6 2. Photoelectric Effect - emission of electrons from a surface when electromagnetic radiation of appropriate frequency is shone on the surface. (This is how "Solar Cells" work.) If the intensity of light was increased, there was no increase in the KE of emitted electrons, but as the frequency of light increased, the KE of electrons did increase. Solution: Albert Einstein proposed that light energy hitting the surface was bundled in Planck's packets (photons) with E=hn per packet. E = f + KE f = energy needed to get electron off surface KE = energy of emitted electron E = energy of incoming photon = hn Atomic Structure Slide 5
7 As a result our modern idea of light incorporates a dual nature. Light can have wave and particle characteristics. And if light can have a dual nature, what about electrons and other particles? Atomic Structure Slide 6
8 The Atomic Model Thomson (1900) Discovery of electron and proton properties Proposed "jelly-filled doughnut" model of the atom Rutherford (1910) Gold foil leaf experiment proved small, dense positively charged nucleus with lots of empty space Diameters Atom Nucleus m m Proton 10-15m Neutron Electron m Atomic Structure Slide 7
9 Bohr ( ) 1. Electrons are particles that travel in circular orbits about the nucleus. 2. Orbits are quantized - only certain ones are allowed- the lowest one is called the ground state. 3. Energy is absorbed going from lower to higher orbits (lower ones are closer to the nucleus, higher ones are farther away). Energy is emitted going from higher to lower. 4. Energy levels get closer together as we go farther from the nucleus. Chadwick Discovered neutron about Why so late? The Bohr model works well for hydrogen but not for any other element. We need a better model! Atomic Structure Slide 8
10 A new approach - Quantum Mechanics debroglie - wave particle duality λ = h mv Heisenberg uncertainty principle p x Schrodinger wave equation Incorporates ideas of Bohr, debroglie and Heisenberg to give a wave equation (Y) which describes the motion of the electron around the nucleus as a type of wave motion. The electron s path is quantized because it must form an integral number of wavelengths. h 4π Atomic Structure Slide 9
11 The Big Idea Quantum mechanics makes use of the Schrodinger equation to study the behavior of small particles going at high speeds. Classical mechanics studies large particles going at relatively slow speeds. Since electrons are small particles going at high speeds the electron (and thus chemistry) can only be understood through the use of quantum mechanics. Atomic Structure Slide 10
12 Quantum numbers Four numbers (conditions) must be met to solve the Schrodinger equation. These are called quantum numbers. They can be thought of as an electron's address. letter Name Property Values n principal quantum number energy level 1,2,3... l angular momentum quantum energy sublevel 0 to (n-1) number m l magnetic quantum number # of orbitals in -l to +l (momentum in z direction) sublevel ms spin quantum number # of electrons in 1/2 an orbital Atomic Structure Slide 11
13 How are the quantum numbers used? 1) Each individual number can be used to calculate the numerical value of a property of the electron. n energy l angular momentum ml angular momentum in the z (magnetic) direction ms spin Good to remember - max # of electrons in any energy level = 2n 2 2) Together they can be used to get the wave function Y. How can Y then be used? 1. First choose a set of n, l, ml, and ms and solve for Y Atomic Structure Slide 12
14 2. Dirac found that Y 2 is a probability function (tells us how likely it is to find the electron at a location) so square the function Y. 3. Into Y 2 substitute values for x, y, and z coordinates to get the probability of the electron being at that point 4. Repeat for all space 5. This generates a "shape" for that electron location - this shape is called the electron cloud Shapes 1. Each sublevel is spherical 2. Sublevels are divided into orbitals The quantum numbers generate the electron cloud shapes so that we know the size, shape, and orientation of the electron probability cloud in space for each electron as follows : n size of cloud Atomic Structure Slide 13
15 l m l shape of cloud orientation of cloud in space There are special letter names that we give to the l quantum number sublevels The l=0 sublevel is the s sublevel. s orbitals are spherical. The l=1 sublevel is the p sublevel. The 3 p orbitals are dumbbell shaped and combine to make a spherical cloud. The l=2 sublevel is the d sublevel. The 5 d orbitals combine to make a spherical cloud. The l=3 sublevel is the f sublevel. The 7 f orbitals combine to make a spherical cloud. Atomic Structure Slide 14
16 Spectroscopic notation When writing electron addresses chemists often use a shorthand notation called spectroscopic notation for electron configurations. To write in this notation remember that: l = 0 s sublevel 1 orbital 2 electrons l = 1 p sublevel 3 orbitals 6 electrons l = 2 d sublevel 5 orbitals 10 electrons l = 3 f sublevel 7 orbitals 14 electrons This allows for a condensed form of notation. For example the 6 electrons in energy level 2 and the p sublevel would be referred to as 2p 6 Atomic Structure Slide 15
17 Now let s write electron configurations for the elements on the periodic table. This will enable us to understand better and somewhat predict oxidation numbers, bonding, shapes of molecules, properties of compounds and more! You can see that this is a very important skill. Thankfully the placement of the elements in the periodic table is on the basis of electron configuration. Atomic Structure Slide 16
18 Electron Configurations The filling of electron orbitals To predict how many electrons will be in each energy level and sublevel we need to know the energies of electron orbitals. We will use as a general rule the idea that electrons will fill the lowest energy orbitals available. This is called the Aufbau principle. Due to the increasing closeness of the energy levels and the sublevel splitting of the energy level the energy sublevels from one level start to overlap the sublevels of the next energy level at n = 3. As a result of the overlap described above the electrons fill the orbitals of energy level 1 and 2 completely but do not fill energy level 3 completely until part of energy level 4 is filled. Atomic Structure Slide 17
19 Electron configurations The filling of the energy levels, sublevels, and orbitals is often summarized with the following 3 laws. 1. Aufbau principle - electrons fill the lowest energy levels first (notice that all p orbitals are equal in energy to each other, they are degenerate; the same holds for d and f orbitals) Use the Periodic Table as your guide. 2. Hund's Rule - "electrons don't pair unless they have to" the minimum energy (most stable) configuration is to have the maximum number of electrons in a sublevel unpaired and to have all with the same value for ms. 3. No two electrons can have the same set of quantum numbers. This is the Pauli Exclusion principle this is shown in the solving of the Schrodinger equation. Atomic Structure Slide 18
20 The Periodic Table is an invaluable aid in determining the order of sublevel filling. Remember: blocks of two will correspond to the filling of the s sublevel (alkali and alkaline earth metals) blocks of 6 the p sublevel (this includes the halogens and noble gases) blocks of 10 the d sublevel (the transition metals) blocks of 14 the f sublevel. (the lanthanide and actinide series) Atomic Structure Slide 19
21 Exceptions: 1. Major (know) Cr and Mo are s 1 d 5 and not s 2 d 4. This can be explained by the extra stability of a half-filled d sublevel Cu, Ag and Au are s 1 s 10 not s 2 d 9. This can be explained by the extra stability of a full sublevel. 2. Minor (be aware) Nb, Ru, Rh, Pd, Pt Many of the Lanthanide and Actinide series Atomic Structure Slide 20
22 Unpaired Spins The condensed notation we have used above does not show the individual orbitals. According to Hund s rule there should be unpaired electrons in some of the elements. These unpaired electrons result in diamagnetism and paramagnetism. Paramagnetic substances are those that contain unpaired spins and are attracted by a magnet. Diamagnetic substances do not contain unpaired spins. We can predict and show these unpaired spins by writing the outermost electron configuration showing the individual orbitals such as p x, p y, p z. For example a configuration of 2p 4 for oxygen could be shown as 2p x 2, 2p y 1, 2p z 1. Another useful way to visually show this is by using an orbital diagram using box notation where boxes represent orbitals. Atomic Structure Slide 21
Chemistry - Elements Electron Configurations The Periodic Table. Ron Robertson
Chemistry - Elements Electron Configurations The Periodic Table Ron Robertson History of Chemistry Before 16 th Century Alchemy Attempts (scientific or otherwise) to change cheap metals into gold no real
Name Date Class ELECTRONS IN ATOMS. Standard Curriculum Core content Extension topics
13 ELECTRONS IN ATOMS Conceptual Curriculum Concrete concepts More abstract concepts or math/problem-solving Standard Curriculum Core content Extension topics Honors Curriculum Core honors content Options
Arrangement of Electrons in Atoms
CHAPTER 4 PRE-TEST Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the following orbital
Atomic Structure: Chapter Problems
Atomic Structure: Chapter Problems Bohr Model Class Work 1. Describe the nuclear model of the atom. 2. Explain the problems with the nuclear model of the atom. 3. According to Niels Bohr, what does n stand
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total
Chemistry 2 Chapter 13: Electrons in Atoms Please do not write on the test Use an answer sheet! 1 point/problem 45 points total 1. Calculate the energy in joules of a photon of red light that has a frequency
Chapter 7. Electron Structure of the Atom. Chapter 7 Topics
Chapter 7 Electron Structure of the Atom Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Chapter 7 Topics 1. Electromagnetic radiation 2. The Bohr model of
CHEMSITRY NOTES Chapter 13. Electrons in Atoms
CHEMSITRY NOTES Chapter 13 Electrons in Atoms Goals : To gain an understanding of : 1. Atoms and their structure. 2. The development of the atomic theory. 3. The quantum mechanical model of the atom. 4.
WAVES AND ELECTROMAGNETIC RADIATION
WAVES AND ELECTROMAGNETIC RADIATION All waves are characterized by their wavelength, frequency and speed. Wavelength (lambda, ): the distance between any 2 successive crests or troughs. Frequency (nu,):
Chapter 18: The Structure of the Atom
Chapter 18: The Structure of the Atom 1. For most elements, an atom has A. no neutrons in the nucleus. B. more protons than electrons. C. less neutrons than electrons. D. just as many electrons as protons.
CHEM 1411 Chapter 5 Homework Answers
1 CHEM 1411 Chapter 5 Homework Answers 1. Which statement regarding the gold foil experiment is false? (a) It was performed by Rutherford and his research group early in the 20 th century. (b) Most of
13- What is the maximum number of electrons that can occupy the subshell 3d? a) 1 b) 3 c) 5 d) 2
Assignment 06 A 1- What is the energy in joules of an electron undergoing a transition from n = 3 to n = 5 in a Bohr hydrogen atom? a) -3.48 x 10-17 J b) 2.18 x 10-19 J c) 1.55 x 10-19 J d) -2.56 x 10-19
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS
DO PHYSICS ONLINE FROM QUANTA TO QUARKS QUANTUM (WAVE) MECHANICS Quantum Mechanics or wave mechanics is the best mathematical theory used today to describe and predict the behaviour of particles and waves.
Sample Exercise 6.1 Concepts of Wavelength and Frequency
Sample Exercise 6.1 Concepts of Wavelength and Frequency Two electromagnetic waves are represented in the margin. (a) Which wave has the higher frequency? (b) If one wave represents visible light and the
Elements in the periodic table are indicated by SYMBOLS. To the left of the symbol we find the atomic mass (A) at the upper corner, and the atomic num
. ATOMIC STRUCTURE FUNDAMENTALS LEARNING OBJECTIVES To review the basics concepts of atomic structure that have direct relevance to the fundamental concepts of organic chemistry. This material is essential
Part I: Principal Energy Levels and Sublevels
Part I: Principal Energy Levels and Sublevels As you already know, all atoms are made of subatomic particles, including protons, neutrons, and electrons. Positive protons and neutral neutrons are found
AP* Atomic Structure & Periodicity Free Response Questions KEY page 1
AP* Atomic Structure & Periodicity ree Response Questions KEY page 1 1980 a) points 1s s p 6 3s 3p 6 4s 3d 10 4p 3 b) points for the two electrons in the 4s: 4, 0, 0, +1/ and 4, 0, 0, - 1/ for the three
Unit 1, Lesson 03: Answers to Homework 1, 0, +1 2, 1, 0, +1, +2 1, 0, +1 2, 1, 0, +1, +2 3, 2, 1, 0, +1, +2, +3. n = 3 l = 2 m l = -2 m s = -½
Unit, Lesson : Answers to Homework Summary: The allowed values for quantum numbers for each principal quantum level n : n l m l m s corresponding sub-level number of orbitals in this sub-level n = s n
Chemistry 102 Summary June 24 th. Properties of Light
Chemistry 102 Summary June 24 th Properties of Light - Energy travels through space in the form of electromagnetic radiation (EMR). - Examples of types of EMR: radio waves, x-rays, microwaves, visible
Light as a Wave. The Nature of Light. EM Radiation Spectrum. EM Radiation Spectrum. Electromagnetic Radiation
The Nature of Light Light and other forms of radiation carry information to us from distance astronomical objects Visible light is a subset of a huge spectrum of electromagnetic radiation Maxwell pioneered
Wave Function, ψ. Chapter 28 Atomic Physics. The Heisenberg Uncertainty Principle. Line Spectrum
Wave Function, ψ Chapter 28 Atomic Physics The Hydrogen Atom The Bohr Model Electron Waves in the Atom The value of Ψ 2 for a particular object at a certain place and time is proportional to the probability
Ernest Rutherford Atomic Model 1911. Plum Pudding Model J.J. Thomson 1897
1 The arrangement of electrons in an atom determine most of the chemical properties of that atom. Electrons are what actually do the reacting. Plum Pudding Model J.J. Thomson 1897 Ernest Rutherford Atomic
Electron Arrangements
Section 3.4 Electron Arrangements Objectives Express the arrangement of electrons in atoms using electron configurations and Lewis valence electron dot structures New Vocabulary Heisenberg uncertainty
Unit 2: Chemical Bonding and Organic Chemistry
Chemistry AP Unit : Chemical Bonding and Organic Chemistry Unit : Chemical Bonding and Organic Chemistry Chapter 7: Atomic Structure and Periodicity 7.1: Electromagnetic Radiation Electromagnetic (EM)
The Phenomenon of Photoelectric Emission:
The Photoelectric Effect. The Wave particle duality of light Light, like any other E.M.R (electromagnetic radiation) has got a dual nature. That is there are experiments that prove that it is made up of
Electrons in Atoms & Periodic Table Chapter 13 & 14 Assignment & Problem Set
Electrons in Atoms & Periodic Table Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Electrons in Atoms & Periodic Table 2 Study Guide: Things You
History of the Atom & Atomic Theory
Chapter 5 History of the Atom & Atomic Theory You re invited to a Thinking Inside the Box Conference Each group should nominate a: o Leader o Writer o Presenter You have 5 minutes to come up with observations
The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010
The Advanced Placement Examination in Chemistry Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010 Atomic Theory and Periodicity Part I 1984 1. Which of
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1. Photons 2. Photoelectric Effect 3. Experimental Set-up to study Photoelectric Effect 4. Effect of Intensity, Frequency, Potential on P.E.
Section 11.3 Atomic Orbitals Objectives
Objectives 1. To learn about the shapes of the s, p and d orbitals 2. To review the energy levels and orbitals of the wave mechanical model of the atom 3. To learn about electron spin A. Electron Location
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D
Electrons In Atoms Mr. O Brien (SFHS) Chapter 5 Standard 1D Electrons in Atoms (std.1d) What are Bohr Models? planetary model in which the negatively-charged electrons orbit a small, positively-charged
Chem 1A Exam 2 Review Problems
Chem 1A Exam 2 Review Problems 1. At 0.967 atm, the height of mercury in a barometer is 0.735 m. If the mercury were replaced with water, what height of water (in meters) would be supported at this pressure?
5. The Nature of Light. Does Light Travel Infinitely Fast? EMR Travels At Finite Speed. EMR: Electric & Magnetic Waves
5. The Nature of Light Light travels in vacuum at 3.0. 10 8 m/s Light is one form of electromagnetic radiation Continuous radiation: Based on temperature Wien s Law & the Stefan-Boltzmann Law Light has
Multi-electron atoms
Multi-electron atoms Today: Using hydrogen as a model. The Periodic Table HWK 13 available online. Please fill out the online participation survey. Worth 10points on HWK 13. Final Exam is Monday, Dec.
MODERN ATOMIC THEORY AND THE PERIODIC TABLE
CHAPTER 10 MODERN ATOMIC THEORY AND THE PERIODIC TABLE SOLUTIONS TO REVIEW QUESTIONS 1. Wavelength is defined as the distance between consecutive peaks in a wave. It is generally symbolized by the Greek
APS Science Curriculum Unit Planner
APS Science Curriculum Unit Planner Grade Level/Subject Chemistry Stage 1: Desired Results Enduring Understanding Topic 1: Elements and the Periodic Table: The placement of elements on the periodic table
Atomic Calculations. 2.1 Composition of the Atom. number of protons + number of neutrons = mass number
2.1 Composition of the Atom Atomic Calculations number of protons + number of neutrons = mass number number of neutrons = mass number - number of protons number of protons = number of electrons IF positive
Level 3 Achievement Scale
Unit 1: Atoms Level 3 Achievement Scale Can state the key results of the experiments associated with Dalton, Rutherford, Thomson, Chadwick, and Bohr and what this lead each to conclude. Can explain that
How To Understand Light And Color
PRACTICE EXAM IV P202 SPRING 2004 1. In two separate double slit experiments, an interference pattern is observed on a screen. In the first experiment, violet light (λ = 754 nm) is used and a second-order
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Questions - Chapter 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which one of the following represents an impossible set of
3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A
1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c Answer: E 2) The wavelength of light emitted from a traffic light having a frequency of 5.75 1014 Hz is.
Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE
Chapter 9: ELECTRONS IN ATOMS AND THE PERIODIC TABLE Problems: 1-3, 13-15, 19, 23-25, 31-32, 43, 45-46, 49c, 50a, 50b, 57c, 58 (b,c,d), 61-62, 69, 71-74, 77-88, 91-94 9.5 LIGHT: Electromagnetic Radiation
9/13/2013. However, Dalton thought that an atom was just a tiny sphere with no internal parts. This is sometimes referred to as the cannonball model.
John Dalton was an English scientist who lived in the early 1800s. Dalton s atomic theory served as a model for how matter worked. The principles of Dalton s atomic theory are: 1. Elements are made of
Periodic Table Trends in Element Properties Ron Robertson
Periodic Table Trends in Element Properties Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\ch9trans2.doc The Periodic Table Quick Historical Review Mendeleev in 1850 put together
Photons. ConcepTest 27.1. 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy. Which has more energy, a photon of:
ConcepTest 27.1 Photons Which has more energy, a photon of: 1) red light 2) yellow light 3) green light 4) blue light 5) all have the same energy 400 nm 500 nm 600 nm 700 nm ConcepTest 27.1 Photons Which
Name period AP chemistry Unit 2 worksheet Practice problems
Name period AP chemistry Unit 2 worksheet Practice problems 1. What are the SI units for a. Wavelength of light b. frequency of light c. speed of light Meter hertz (s -1 ) m s -1 (m/s) 2. T/F (correct
electron configuration
electron configuration Electron Configuration Knowing the arrangement of electrons in atoms will better help you understand chemical reactivity and predict an atom s reaction behavior. We know when n=1
Flame Tests & Electron Configuration
Flame Tests & Electron Configuration INTRODUCTION Many elements produce colors in the flame when heated. The origin of this phenomenon lies in the arrangement, or configuration of the electrons in the
2. John Dalton did his research work in which of the following countries? a. France b. Greece c. Russia d. England
CHAPTER 3 1. Which combination of individual and contribution is not correct? a. Antoine Lavoisier - clarified confusion over cause of burning b. John Dalton - proposed atomic theory c. Marie Curie - discovered
Waves Sound and Light
Waves Sound and Light r2 c:\files\courses\1710\spr12\wavetrans.doc Ron Robertson The Nature of Waves Waves are a type of energy transmission that results from a periodic disturbance (vibration). They are
Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect
Objectives: PS-7.1 Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect Illustrate ways that the energy of waves is transferred by interaction with
Chemistry. The student will be able to identify and apply basic safety procedures and identify basic equipment.
Chemistry UNIT I: Introduction to Chemistry The student will be able to describe what chemistry is and its scope. a. Define chemistry. b. Explain that chemistry overlaps many other areas of science. The
CHAPTER 11: MODERN ATOMIC THEORY
CHAPTER 11: MODERN ATOMIC THEORY Active Learning Questions: 1-2, 8-10, 14-18; End-of-Chapter Problems: 3-9, 11-13, 16, 18, 20-36, 45-54, 56-64, 66b, 67, 69-91, 98, 101-102, 108, 110, 113, 116, 11.2 ELECTROMAGNETIC
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of
The Periodic Table; Chapter 5: Section 1 - History of the Periodic Table Objectives: Explain the roles of Mendeleev and Moseley in the development of the periodic table. Describe the modern periodic table.
Electromagnetic Radiation
Chapter 7 A Quantum Model of Atoms Chapter Objectives: Understand the relationships between wavelength, frequency, and energy of light. Understand the origin of atomic line spectra. Learn how the quantum
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation?
From lowest energy to highest energy, which of the following correctly orders the different categories of electromagnetic radiation? From lowest energy to highest energy, which of the following correctly
Does Quantum Mechanics Make Sense? Size
Does Quantum Mechanics Make Sense? Some relatively simple concepts show why the answer is yes. Size Classical Mechanics Quantum Mechanics Relative Absolute What does relative vs. absolute size mean? Why
Unit 3 Study Guide: Electron Configuration & The Periodic Table
Name: Teacher s Name: Class: Block: Date: Unit 3 Study Guide: Electron Configuration & The Periodic Table 1. For each of the following elements, state whether the element is radioactive, synthetic or both.
Review of the isotope effect in the hydrogen spectrum
Review of the isotope effect in the hydrogen spectrum 1 Balmer and Rydberg Formulas By the middle of the 19th century it was well established that atoms emitted light at discrete wavelengths. This is in
Preview of Period 3: Electromagnetic Waves Radiant Energy II
Preview of Period 3: Electromagnetic Waves Radiant Energy II 3.1 Radiant Energy from the Sun How is light reflected and transmitted? What is polarized light? 3.2 Energy Transfer with Radiant Energy How
18.2 Comparing Atoms. Atomic number. Chapter 18
As you know, some substances are made up of only one kind of atom and these substances are called elements. You already know something about a number of elements you ve heard of hydrogen, helium, silver,
UNIT (2) ATOMS AND ELEMENTS
UNIT (2) ATOMS AND ELEMENTS 2.1 Elements An element is a fundamental substance that cannot be broken down by chemical means into simpler substances. Each element is represented by an abbreviation called
where h = 6.62 10-34 J s
Electromagnetic Spectrum: Refer to Figure 12.1 Molecular Spectroscopy: Absorption of electromagnetic radiation: The absorptions and emissions of electromagnetic radiation are related molecular-level phenomena
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points
TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS 3650, Exam 2 Section 1 Version 1 October 31, 2005 Total Weight: 100 points 1. Check your examination for completeness prior to starting.
Semester Exam Practice Questions
Name: Class: _ Date: _ Semester Exam Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is not a material? a. air
Bonding & Molecular Shape Ron Robertson
Bonding & Molecular Shape Ron Robertson r2 n:\files\courses\1110-20\2010 possible slides for web\00bondingtrans.doc The Nature of Bonding Types 1. Ionic 2. Covalent 3. Metallic 4. Coordinate covalent Driving
P. Table & E Configuration Practice TEST
P. Table & E Configuration Practice TEST Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A line spectrum is produced when an electron moves from one energy
Main properties of atoms and nucleus
Main properties of atoms and nucleus. Atom Structure.... Structure of Nuclei... 3. Definition of Isotopes... 4. Energy Characteristics of Nuclei... 5. Laws of Radioactive Nuclei Transformation... 3. Atom
Quantum Mechanics and Atomic Structure 1
Quantum Mechanics and Atomic Structure 1 INTRODUCTION The word atom is derived from the Greek word, atomos, which means uncut or indivisible. It was Dalton (1808) who established that elementary constituents
Student Exploration: Electron Configuration
Name: Date: Student Exploration: Electron Configuration Vocabulary: atomic number, atomic radius, Aufbau principle, chemical family, diagonal rule, electron configuration, Hund s rule, orbital, Pauli exclusion
Department of Physics and Geology The Elements and the Periodic Table
Department of Physics and Geology The Elements and the Periodic Table Physical Science 1422 Equipment Needed Qty Periodic Table 1 Part 1: Background In 1869 a Russian chemistry professor named Dmitri Mendeleev
SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, 2007 7:30 PM 9:30 PM
Name: SOLUTIONS III, IV, and V Section (circle): 1 2 3 4 5 SAMPLE EXAM 2 FALL 2012 SOLUTIONS Chemistry 11, Fall 2007 Exam II November 15, 2007 7:30 PM 9:30 PM As always, full credit will not be given unless
3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?
PSI AP Chemistry Periodic Trends MC Review Name Periodic Law and the Quantum Model Use the PES spectrum of Phosphorus below to answer questions 1-3. 1. Which peak corresponds to the 1s orbital? (A) 1.06
Molecular Models & Lewis Dot Structures
Molecular Models & Lewis Dot Structures Objectives: 1. Draw Lewis structures for atoms, ions and simple molecules. 2. Use Lewis structures as a guide to construct three-dimensional models of small molecules.
Atoms and Elements. Outline Atoms Orbitals and Energy Levels Periodic Properties Homework
Atoms and the Periodic Table The very hot early universe was a plasma with cationic nuclei separated from negatively charged electrons. Plasmas exist today where the energy of the particles is very high,
Electron Configuration Worksheet (and Lots More!!)
Electron Configuration Worksheet (and Lots More!!) Brief Instructions An electron configuration is a method of indicating the arrangement of electrons about a nucleus. A typical electron configuration
The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS. Friday, June 20, 2014 1:15 to 4:15 p.m.
P.S./PHYSICS The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION PHYSICAL SETTING PHYSICS Friday, June 20, 2014 1:15 to 4:15 p.m., only The possession or use of any communications device
EXPERIMENT 4 The Periodic Table - Atoms and Elements
EXPERIMENT 4 The Periodic Table - Atoms and Elements INTRODUCTION Primary substances, called elements, build all the materials around you. There are more than 109 different elements known today. The elements
Chapter 2. Quantum Theory
Chapter 2 Quantum Theory 2.0 Introduction 2.6 Orbital Shapes, Signs, and Sizes 2.1 The Nature of Light 2.7 Electron Configurations 2.2 Quantization 2.8 Quantum Theory and the Periodic Table 2.3 Bohr Model
AZ State Standards. Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred.
Forms of Energy AZ State Standards Concept 3: Conservation of Energy and Increase in Disorder Understand ways that energy is conserved, stored, and transferred. PO 1. Describe the following ways in which
Arrangement of Electrons in Atoms
CHAPTER 4 Arrangement of Electrons in Atoms The emission of light is fundamentally related to the behavior of electrons. Neon Walkway The Development of a New Atomic Model T he Rutherford model of the
Electron Orbits. Binding Energy. centrifugal force: electrostatic force: stability criterion: kinetic energy of the electron on its orbit:
Electron Orbits In an atom model in which negatively charged electrons move around a small positively charged nucleus stable orbits are possible. Consider the simple example of an atom with a nucleus of
Energy. Mechanical Energy
Principles of Imaging Science I (RAD119) Electromagnetic Radiation Energy Definition of energy Ability to do work Physicist s definition of work Work = force x distance Force acting upon object over distance
MAKING SENSE OF ENERGY Electromagnetic Waves
Adapted from State of Delaware TOE Unit MAKING SENSE OF ENERGY Electromagnetic Waves GOALS: In this Part of the unit you will Learn about electromagnetic waves, how they are grouped, and how each group
Models of the Atom and periodic Trends Exam Study Guide
Name 1. What is the term for the weighted average mass of all the naturally occurring isotopes of an element? ans: atomic mass 2. Which is exactly equal to 1/12 the mass of a carbon -12 atom? ans: atomic
Homework #10 (749508)
Homework #10 (749508) Current Score: 0 out of 100 Description Homework on quantum physics and radioactivity Instructions Answer all the questions as best you can. 1. Hewitt10 32.E.001. [481697] 0/5 points
Lesson 3. Chemical Bonding. Molecular Orbital Theory
Lesson 3 Chemical Bonding Molecular Orbital Theory 1 Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system is lowered when the two atoms approach
Indiana's Academic Standards 2010 ICP Indiana's Academic Standards 2016 ICP. map) that describe the relationship acceleration, velocity and distance.
.1.1 Measure the motion of objects to understand.1.1 Develop graphical, the relationships among distance, velocity and mathematical, and pictorial acceleration. Develop deeper understanding through representations
After a wave passes through a medium, how does the position of that medium compare to its original position?
Light Waves Test Question Bank Standard/Advanced Name: Question 1 (1 point) The electromagnetic waves with the highest frequencies are called A. radio waves. B. gamma rays. C. X-rays. D. visible light.
Introduction to Nuclear Physics
Introduction to Nuclear Physics 1. Atomic Structure and the Periodic Table According to the Bohr-Rutherford model of the atom, also called the solar system model, the atom consists of a central nucleus
Inorganic Chemistry review sheet Exam #1
Inorganic hemistry review sheet Exam #1 h. 1 General hemistry review reaction types: A/B, redox., single displacement, elimination, addition, rearrangement and solvolysis types of substances: elements,
Atoms Absorb & Emit Light
Atoms Absorb & Emit Light Spectra The wavelength of the light that an element emits or absorbs is its fingerprint. Atoms emit and absorb light First Test is Thurs, Feb 1 st About 30 multiple choice questions
SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table
Lesson Topics Covered SCH 3UI Unit 2 Outline Up to Quiz #1 Atomic Theory and the Periodic Table 1 Note: History of Atomic Theory progression of understanding of composition of matter; ancient Greeks and
LCAO-MO Correlation Diagrams
LCAO-MO Correlation Diagrams (Linear Combination of Atomic Orbitals to yield Molecular Orbitals) For (Second Row) Homonuclear Diatomic Molecules (X 2 ) - the following LCAO-MO s are generated: LCAO MO
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO)
CHAPTER 8 PRACTICE TEST QUESTIONS (END OF CHAPTER 7 TOO) Information that most likely will be on the front cover of your exam: h i Z 2 ΔE = @ 2.18 x 10 @ 18 f Z 2 f J j @ k n f 2 n i 2 1. Which of the
Noble Gases. Outline Nobel Gas Elements Radon and Health Chemistry Homework
Radon and Other Noble Gases The elements in the last column of the periodic table are all very stable, mono-atomic gases. Until 1962, they were called inert gases because they did not react with other
Physical Principle of Formation and Essence of Radio Waves
Physical Principle of Formation and Essence of Radio Waves Anatoli Bedritsky Abstract. This article opens physical phenomena which occur at the formation of the radio waves, and opens the essence of the
CHAPTER - 1. Chapter ONE: WAVES CHAPTER - 2. Chapter TWO: RAY OPTICS AND OPTICAL INSTRUMENTS. CHAPTER - 3 Chapter THREE: WAVE OPTICS PERIODS PERIODS
BOARD OF INTERMEDIATE EDUCATION, A.P., HYDERABAD REVISION OF SYLLABUS Subject PHYSICS-II (w.e.f 2013-14) Chapter ONE: WAVES CHAPTER - 1 1.1 INTRODUCTION 1.2 Transverse and longitudinal waves 1.3 Displacement
Basic Nuclear Concepts
Section 7: In this section, we present a basic description of atomic nuclei, the stored energy contained within them, their occurrence and stability Basic Nuclear Concepts EARLY DISCOVERIES [see also Section
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis
Chapter 13 Spectroscopy NMR, IR, MS, UV-Vis Main points of the chapter 1. Hydrogen Nuclear Magnetic Resonance a. Splitting or coupling (what s next to what) b. Chemical shifts (what type is it) c. Integration
Boardworks AS Physics
Boardworks AS Physics Vectors 24 slides 11 Flash activities Prefixes, scalars and vectors Guide to the SI unit prefixes of orders of magnitude Matching powers of ten to their SI unit prefixes Guide to
