Energy Storage Technologies on the Way to the Global Market Eicke R. Weber Fraunhofer-Institute for Solar Energy Systems ISE and Albert-Ludwigs University, Freiburg, Germany 8th Internat. Renewable Energy Storage Conference IRES 2013 Berlin, November 18, 2013
Cornerstones for the transformation of our energy system Energy Efficiency: Buildings, Production, Transport Massive increase renewable energies Photovoltaics, Solar and geo thermal, wind, hydro, biomass... Fast development of the electric grid Transmission and distribution grid Development of large scale energy storage systems Electricity, Hydrogen, Methane, Biogas, Solar Heat Mobility integral part of energy system Electric mobility by means of batteries and hydrogen/fuel cells 2
World Energy Resources (TWy) 3 Quelle: M. Plass, CFV
Price Learning Curve (c-si PV Technologies) Learning Rate: With each doubling of cumulative production, price went down by 20%! Cost of PV electricity 2012: ca. 16 ct/kwh in Germany < 10 $ct/kwh in sun-rich countries 4 Daten: Navigant Consulting; Graph: PSE AG 2013
Outlook PV installations world-wide Rapidly declining cost of PV generated electricity open up new market opportunities Current 30GW/a market will increase to a 100+ GW/a market in 2020; for 2050 more than 3000 GW of globally installed PV capacity is expected Strong market growth necessitates construction of xgw p -scale, highly automatised PV production plants 5
6
Monthly Electricity Production of Solar and Wind in Germany Monatliche Produktion Solar und Wind 7,0 6,0 5,0 4,0 3,0 2,0 1,0 Jahr 2012 Januar Februar März April Mai Juni Juli August Sept. Oktober Nov. Dez. Legende: Wind Solar Max PV- and Wind-Production of Electricity in January 2012: 7,6 Minimum Production in November 2012: 4,7 Grafik: 7 B. Burger, Fraunhofer ISE; Daten: Leipziger Strombörse EEX
Electricity Generation on a Spring Sunday in Germany Stromerzeugung in GW 8 45 40 35 30 25 20 15 10 5 0 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 27.05.2015 27.05.2017 27.05.2019 27.05.2021 27.05.2012 40 50 60 70 28 GW PV PV Wind Laufwasser Steinkohle Braunkohle Kernenergie Daten für 2012: eex Transparency, Graphik: Prof. V. Quaschning, HTW
Simulation: Mai 2021 70 GW Solar, 48 GW Wind installed (projected) Simulation MW Simulation: Mai 2021 60.000 50.000 40.000 30.000 20.000 10.000-10.000-20.000 So 01 Mo 02 Di 03 Mi 04 Do 05 Fr 06 Sa 07 So 08 Mo 09 Di 10 Mi 11 Do 12 Fr 13 Sa 14 So 15 Mo 16 Di 17 Mi 18 Do 19 Fr 20 Sa 21 So 22 Mo 23 Di 24 Mi 25 Do 26 Fr 27 Sa 28 So 29 Mo 30 Di 31 Legende: Kernenergie Braunkohle Konventionell Wind Solar Solar: max. 48,6 GW; 9,6 Wind: max. 24,8 GW; 5,2 Konventional: min. -14,1 GW; max. 44,5 GW; 17,9 9 Grafik: B. Burger, Fraunhofer ISE; Daten: Leipziger Strombörse EEX
Transformation to a Solar Energy Economy: Storage Needs Heat storage Heat Storage Vessels, Buildings Sun Gasstorage Gas Pipelines, Caverns CHP, CCGT, etc. Nat. Gas H 2 Hydrogen Fueling Station Heating Cooling Water Electrolysis CHP, CCGT, Fuel Cells Electrical heating, Heat pumps Electricity Bidirectional Chargers Wind Electric Energy Storage Systems EESS Pumped Hydro, Batteries, Flow Batteries 10 H 2 - container Mobility Battery Slide courtesy Ch. Hebling
Classification of Energy Storage Systems Electric energy storage systems - EESS Mechanical Electrochemical Electrical Pumped hydro - PHS Secondary batteries Lead acid / NiCd / NiMH / Li / NaS Double-layer Capacitor - DLC Compressed air - CAES Flow batteries Redox flow / Hybrid flow Superconducting magnetic coil - SMES Flywheel - FES Chemical Hydrogen Electrolyser / Fuel cell / SNG Thermal Sensible heat storage Molten salt / A-CAES 11
There Are Many Options to Store Electrical Energy Different principles: Electrochemical Chemical Mechanical Electro-magnetic There is not the only one and universal storage type! Only chemical energy carriers allows storage up to the range. 12
Small Battery Systems: Own Own Consumption from from PV PV can can be be 60% 60% and and more! 13
Energy Storage: Redox-Flow-Batteries High efficiency (total system >75 %) Long lifetime (> 10.000 cycles) Flexible design (seperation of storage, power unit) Easily scalable Fast response time (µs ms) Tolerance against overcharging, deep discharge Little service needs Low self-discharge 14
REMod-D: The structure of our future energy system REMod-D erneuerbare Energien primäre Stromerzeugung fossil-nukleare Energien Wind Off Wasserkraft Atom-KW Steink.-KW Braunk.-KW PV Wind On Öl-KW 247 GW 150 GW 50 GW 5 GW 0 GW 7 GW 3 GW 0 GW 241 270 175 21 0 30 14 0 Renewable 16 151 Elektrolyse 61 GWel 120 82 H2-Speicher 38 Sabatier 29 7 GWGas 5 Batterien 15 77 GWh Brennstoffe Erdgas Biomasse Methan-Sp. 505 335 29 10 Pump-Sp-KW 8 60 GWh 1 Gasturbine 1 1 GW 11 GuD 7 37 GW 109 4 60 KWK-GuD 26 23 GWel 25 W-Speicher 242 GWh 3 WP zentral 11 23 9 GWth 17 Gebäude 40 Solarthermie 6 8 GWth Wärmenetze mit GuD-KWK Strombedarf gesamt Energy (ohne Wärme und Verkehr) 500 72 ungenutzer Strom (Abregelung) 4 2 32 KWK-BHKW 22 17 GWel Solarthermie 7 4 W-Speicher 7 GWth 48 GWh Verkehr (ohne Strom direkt) 6 4 WP zentral 14 4 22 W-Speicher 243 GWh 20 Model Deutschland 33 8 57 Gas-WP 65 68 Gebäude 27 GWth 74 Einzelgebäude mit Gas-Wärmepumpe 3 el. WP Sole 34 8 W-Speicher 13 GWth 62 GWh 7 Solarthermie 3 29 Gebäude 4 GWth 37 Einzelgebäude mit Sole-Wärmepumpe 17 el. WP Luft 216 48 W-Speicher 84 GWth 392 GWh 44 Solarthermie 20 188 Gebäude 23 GWth 232 Einzelgebäude mit Luft-Wärmepumpe Wasserstoff-basierter Verkehr 82 Traktion 41 H2-Bedarf 82 Batterie-basierter Verkehr Traktion 41 55 Strombedarf 55 Brennstoff-basierter Verkehr 220 Traktion 55 Brennstoffe 220 Traktion gesamt 137 %-Wert 2010 100 % Brennstoff-basierte Prozesse in Industrie und Gewerbe Gesamt 445 420 Solarthermie 25 Brennstoffe 420 0 Solarthermie 0 0 W-Speicher 0 GWth 2 GWh 0 3 Gaskessel 3 3 Gebäude 1 GWth 3 Einzelgebäude mit Gaskessel 9 GWth 20 Gebäude 40 Solarthermie 6 8 GWth Wärmenetze mit BHKW-KWK 0 0 0 Klein-BHKW 0 0 W-Speicher 0 GWel 0 GWh 0 Solarthermie 0 0 Gebäude 0 GWth 0 Einzelgebäude mit Mini-BHKW Wärmebedarf gesamt 430 Raumheizung Warmwasser ungenutzt 312 118 0 0 Geothermie 4 Gebäude 2 GWth 4 Wärmenetze mit Tiefen-Geothermie 15 Project Leader: H.-M. Henning Gesamtergebnisse Fossil-nukleare Energien Fossil-nukleare Energien Brennst. CO2 Brennst. CO2 Energieträger Mio t Energieträger Mio t Öl 0 0 Braunkohle 40 16 Erdgas 505 102 Atom 0 - Steinkohle 74 25 gesamt 619 143 Jahr 2050 Erneuerbare Energien Energetische Sanierung Reduktion Heizwärme 60% Strom 707 bezogen auf 2010 um Solarwärme 41 CO 2 -Emissionen (Energie-bed.) Biomasse 335 Reduktion bezogen auf 85% gesamt 1083 1990 um Anteil Wärmenetze 21%
ISE model REMod-D of an integrated energy system: Electricity-gas-heat- with storage! 16
ISE model REMod-D of an integrated energy system: Electricity-gas-heat - minimal cost scenario (118 bn /a) 17
Energy storage Electricity Heat Pumped hydro Batteries Large hot water (district heating network) Chemical (power-to-gas) Hydrogen Small buffers in buildings Methane 18
Hydrogen Energy: Main Principles Generation of hydrogen from electric power by electrolysis fossil fuels (steam reforming) waste biomass (reforming) Storage of hydrogen at elevated pressure level in tanks/pipelines liqiufied at low temperature geological, underground Hydrogen usage in many applications power generation fuel for mobility chemical industry (methanol, ammonia,..) 19 MVV iht Quantum McPhy Siemens Daimler
Hydrogen Energy: Power generation Fuel Cells High efficiency Mobile (fuel cell car) (Portable / stationary) 1 W 1 MW Gas Engines Internal combustion Robust and reliable Stationary 10 kw - 5 MW Gas Turbines Power plant technology Moderate efficiency Stationary 1 MW - 300 MW Ballard GE Jenbacher Gasmotoren Siemens 20
Hydrogen storage Underground Storage in Salt Caverns In the past: Storage of town gas in Germany Today: Natural gas reserve in Germany (240 total) Hydrogen salt cavernes in UK and US ( KBB UT) Up to 1.000.000 m³ 21 Picture credit: ( EWE AG) Echometric cavern survey
Power to Gas Concept The hydrogen pathway Power Generation Wind Solar Storage and Distribution Application Mobility Heat Hydro Electrical Grid Residential Power Nuclear Power Generation Fossil (2013-06) 22 Industrial
Power to Gas Concept The hydrogen pathway Power Generation Electricity H2O Storage and O2 Distribution Application Wind Electrolysis H2 Mobility Solar Heat Hydro Electrical Grid Hydrogen Storage Residential Power Nuclear Power Generation Fossil (2013-06) 23 Industrial
Power to Gas Concept The hydrogen pathway Power Generation Wind Electricity Storage and Distribution H2O O2 H2 Application Electrolysis CGH2 / LH2 Trailer H2 Mobility Solar Hydro Electrical Grid Hydrogen Storage Hydrogen Pipeline H2 Residential Heat Power Nuclear Natural Gas Grid CH4 Power Generation Fossil (2013-06) 24 Industrial
Power to Gas Concept The hydrogen pathway and extension to natural gas Power Generation Wind Electricity Storage and Distribution H2O O2 H2 Application Electrolysis CGH2 / LH2 Trailer H2 Mobility Solar Hydro Electrical Grid Hydrogen Storage Hydrogen Pipeline H2 Residential Heat Power Nuclear Natural Gas Grid CH4 Power Generation 25 Fossil Biomass CO2 (2013-06) Industrial
Power to Gas Concept The hydrogen pathway and extension to natural gas Power Generation Wind Electricity Storage and Distribution H2O O2 H2 Application Electrolysis CGH2 / LH2 Trailer H2 Mobility Solar Hydro Electrical Grid Hydrogen Storage H2O Hydrogen Pipeline H2 Residential Heat Power 26 Nuclear Fossil Biomass CO2 (2013-06) Methanisation CO2 Buffer CH4 Natural Gas Grid Natural Gas Storage CH4 Power Generation Industrial
The Road Towards the Energy Transformation: Energy Efficiency and Renewable Energies How to Measure Progress on the Road? 27
The Road Towards the Energy Transformation: Energy Efficiency and Renewable Energies We should describe progress on this road by an index: ETI Energy Productivity GDP/PEC (Primary Energy Consumption in Mio. 2010/PJ) Age of Energy Efficiency Energy Concept 2050 Age of Renewable Energies Share of Renewables in electric power consumption (%) 28 Graph: K. Kübler, BMWi, FVEE 2011
Energy Transformation Index ETI - Definition Efficiency = GDP / PED [US$2013/kWh] 2,0 1,8 1,6 1,4 1,2 RE = 10% 1,0 0,8 0,6 0,4 0,2 Eff = 0,99 US$/kWh Example Germany Values from 2011 ETI = Normalized length of the vector in the Eff / RE diagram Eff = Efficiency = GDP/PED [0.. 2 US$ 2013 /kwh] Eff N = ½ * Eff [0.. 1] GDP = Gross Domestic Product PED = Primary Energy Demand RE = Share on Renewable Energy [0.. 100%] ETI = 100 * (Eff N + RE)/2 [0.. 100] 29 0,0 0% 20% 40% 60% 80% 100% Share of Renewable Energy on PED [%]
Development of ETI for selected countries 1990-2011 Efficiency = GDP / PED [USD2013/kWh] 30 1,2 1,0 0,8 0,6 0,4 KOR 10 0,2 GB 30 JAP 30 AUS 27 USA 18 FRA 27 GER ESP 30 31 EU-27 25 2010 MEX 18 SA 11 CHN 11 ITA 34 CAN 24 Germany USA China EU-27 Sweden Canada Mexico South Korea Japan Italy Great Britain France Australia South Africa India Spain Diagonale Diagonale Diagonale 0,0 0 0% 5% 10% 15% 20% 25% 30% 35% Data: Diagonale World Bank / Share of Renewable Energy on PED [%] German Ministry for Economy IND 19 SWE 40 Optimaler Pfad
ETI ranking of selected countries and ETI growth between 1990 and 2011 31 Sweden +74% Brazil* +30% Italy +79% Spain +94% Japan +76% Great Britain +173% Germany +173% Australia +145% France +80% EU-27* +108% Canada +71% India -21% Mexico +64% USA +100% South Africa* +38% China -15% South Korea +43% 7 8 9 11 11 11 11 12 11 11 10 13 14 15 16 17 19 19 18 18 23 27 27 25 24 24 30 31 30 30 30 34 ETI 2011 (*2010) ETI 1990 40 39
The Transformation to a Green Energy Future The transformation of the world energy system is one of our most urgent tasks; the question is, will we come there fast enough to avoid catastrophic changes of our climate system? The goal is 100% renewable energy generation at greatly increased efficiency in energy consumption; Storage technologies will be a key component of such a future green energy system The technologies needed for the transformation of our energy system create numerous research and development challenges and opportunities; countries that realize this early will have an economic advantage. The new ISE ETI index will help to monitor the progress of each country even regions of countries on the road towards the energy transformation The annual presentation by ISES of the new values of this index, and of the national rankings, will become an important event to showcase where individual countries stand and how fast they are progressing! 32
Energy Storage Technologies on the Way to the Global Market Energy storage will be a key component for the transformation of our energy system towards 100% renewable energy There is no single universal storage technology that can fulfill all requirements (time scale, cost, ). Therefore R&D and the installation of demo plants for all attractive storage technologies are urgently needed Recommendations to support the rapid development of storage technologies: 33
Energy Storage Technologies on the Way to the Global Market Support R&D of storage technologies and the installation of demo plants Support extension of hydro integration and pumped hydro storage Start with installation of demonstration plants of middle and big sized battery storage solutions in the distribution grid (short and medium-term technologies) Support the installation of small highly efficient residential storage solutions (first mover) Push utilities to provide flexible tariffs, ease the access to the balancing power market and implement energy management in distribution grids Support addition of hydrogen into the natural gas grid Install storage power plants on hydrogen basis (PV / wind power generation + conversion to gas + electricity generation from gas) for seasonal storage Development of implementation roadmaps with all stake holders (research, utilities, grid operators, industry, ) 34 This will have to be done on a global basis, Jeremy Rifkin calls this the Third Industrial Revolution
Thank you for your attention! Fraunhofer Institute for Solar Energy Systems ISE Eicke R. Weber (eicke.weber@ise.fraunhofer.de) with thanks to C. Hebling, P. Schossig, T. Smolinka, M. Vetter, G. Stryi- Hipp. 35