MASS PROCESSING OF REMOTE SENSING DATA FOR ENVIRONMENTAL EVALUATION IN EUROPE
|
|
|
- Isabella Willis
- 10 years ago
- Views:
Transcription
1 MASS PROCESSING OF REMOTE SENSING DATA FOR ENVIRONMENTAL EVALUATION IN EUROPE Lic. Adrián González Applications Research Earth Science Conference Earth Science San Conference Francisco San Francisco -
2 PROJECT BACKGROUND GIO land (Copernicus Initial Operations land program) Contracted by EU Technical coordination European Environmental Agency (EEA) Methodology and generation of 5 thematic High Resolution Layers on Land Cover characteristics: impervious areas, forests, wetlands, water bodies and grassland of 39 European countries Our consortium (Indra, Eurosenseand BlackBride) won the bid for Permanent Grassland generation
3 OPPORTUNITY AND CHALLENGE Start of project: March 2012 Number of countries to be processed: 39 Area to be covered: about 6 millions km2 Requested overall minimum accuracy: 80% Project time: 30 months Time for process development and server set up: 8 month Real working time less than 18 months Only chance: automation
4 GRASSLAND MONITORING IN EUROPE Permanent grassland HRL product across Europe Grasslands are highly important for Europe, and highly variable!!! Earth Science Conference 2014 Earth San Francisco Science Conference San Francisco -
5 PROCESSING SCHEMA Permanent grassland HRL product across Europe Multi-Temporal Images in GeoDB Texture Parameter Segmentation Data extraction Image Objects Seasonal Statistics Result TOA correction Definition of WU Image Selection & Calculation of bio-physical parameters BPP tn t2 t1 Min Max. Mean Range Std. Dev Mad Training Decision Tree Classification C5
6 TECHNICAL DESCRIPTION OF THE MASS PROCESSING (1) INPUT DATA Remote sensing image repository over 39 countries IRS images Spatial resolution 20 meters 140x140 km Awifs images Spatial resolution 60 meters 370x370 km RapidEyeimages Spatial resolution 20 m 25x25 km RapidEyeimages Spatial resolution 5 m 25x25 km Spot images Spatial resolution 20 m 60x60 km All images parameters and geometries stored in a Spatial Database to optimize performance
7 CONTINENT COVERAGES EU 39 IN 24 MONTHS
8 PROCESSING (1) Multi-Temporal images IRS Awifs RapidEye Spot Spatial Database TOA correction Definition of the Work Unit (WU)
9 PROCESSING (2) DEFINITION OF THE WORK UNIT Europe divided in Work Units Core of the processing schema Work Unit = IRS image from 2012 National projection system used Boundary used to clip all other images
10 OVERVIEW ON WORK UNITS -SPAIN Example: Spain Approx. 120 Work Units
11 PROCESSING (3) Image Selection & Calculation of vegetation parameters NDVI PSRI WI Brightness Ground Coverage NDII NDVSI Texture parameters Seasonal Statistics tn t2 t1 Min Max. Mean Range Std. Dev Mad
12 LARGE AREA MAPPING OF VEGETATION PARAMETERS NDVI Ground Cover
13 PROCESSING (4) Segmentation Image Objects Training Decision Tree Classification C5 Result
14 TECHNICAL DESCRIPTION OF THE MASS PROCESSING (2) PROCESSING ENGINE Hardware Dedicated server (16 cores 32 Gb RAM) 20 Tb Online storage 40 Tb Stand by storage Production requirements: 24x7 Dedicated delivery server Delivery method FTP Daily incremental backups
15 TECHNICAL DESCRIPTION OF THE MASS PROCESSING (3) PROCESSING ENGINE Software Programming language: Python Base on Open Source Libraries (Gdaland OGR) About 5000 lines of code in seven different modules All software programmed in house
16 CONCLUSIONS All 39 countries in Europe processed All overseas territories processed Total project time shortened: from 18 to 14 months Second run to cover image gaps performed On site country verification in progress
17 GRASSLAND MONITORING IN EUROPE Overall accuracy for Hungary = 92 %
18 Thanks for your attention Lic. Adrian Gonzalez Applications Research
+GIO land. Status GMES Land Services. 18 Juni 2012, DeCover2 Abschlussveranstaltung, DLR. [email protected]
+GIO land Status GMES Land Services 18 Juni 2012, DeCover2 Abschlussveranstaltung, DLR [email protected] GIO land components Global JRC bio-physical parameters (Essential Terrestrial Variables
Automatic land-cover map production of agricultural areas using supervised classification of SPOT4(Take5) and Landsat-8 image time series.
Automatic land-cover map production of agricultural areas using supervised classification of SPOT4(Take5) and Landsat-8 image time series. Jordi Inglada 2014/11/18 SPOT4/Take5 User Workshop 2014/11/18
Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed
Land Use/ Land Cover Mapping Initiative for Kansas and the Kansas River Watershed Kansas Biological Survey Kansas Applied Remote Sensing Program April 2008 Previous Kansas LULC Projects Kansas LULC Map
Bhuvan. Indian Earth Observation Visualization. Indian Space Research Organisation. http://bhuvan.nrsc.gov.in. Multi Resolution. Societal Applications
Multi Resolution Bhuvan Societal Applications Indian Earth Observation Visualization http://bhuvan.nrsc.gov.in 3D Geographic Models Seamless Fly Through Indian Space Research Organisation Thematic Vectors
How To Use Data From Copernicus And Big Data To Help The Environment
Copernicus and Big Data: Challenges and Opportunities Alessandro Annoni European Commission Joint Research Centre www.jrc.ec.europa.eu Serving society Stimulating innovation Supporting legislation Big
CONCEPTUAL DESIGN OF DATA ARCHIVE AND DISTRIBUTION SYSTEM FOR GEO-KOMPSAT-2A
CONCEPTUAL DESIGN OF DATA ARCHIVE AND DISTRIBUTION SYSTEM FOR GEO-KOMPSAT-2A In Jun Kim, Won Chan Jung, Byoung-Sun Lee, Do-Seob Ahn, Taeyoung Kim, Jaedong Jang, Hyunjong Oh ETRI, 218 Gajeong-ro, Yuseong-gu,
CityGML goes to Broadway
CityGML goes to Broadway Thomas H. Kolbe, Barbara Burger, Berit Cantzler Chair of Geoinformatics [email protected] September 11, 2015 Photogrammetric Week 2015, Stuttgart The New York City Open Data
VCS REDD Methodology Module. Methods for monitoring forest cover changes in REDD project activities
1 VCS REDD Methodology Module Methods for monitoring forest cover changes in REDD project activities Version 1.0 May 2009 I. SCOPE, APPLICABILITY, DATA REQUIREMENT AND OUTPUT PARAMETERS Scope This module
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette.
Operational Space- Based Crop Mapping Protocols at AAFC A. Davidson, H. McNairn and T. Fisette. Science & Technology Branch. Agriculture and Agri-Food Canada. 1. Introduction Space-Based Crop Mapping at
BLACKBRIDGE SATELLITE IMAGERY THROUGH CLOUD COMPUTING
BLACKBRIDGE SATELLITE IMAGERY THROUGH CLOUD COMPUTING Jason Setzer Cloud Product Manager Slide 1 THE RAPID EYE CONSTELLATION 5 Identical Satellites in same obit Up to 5 million km² collected daily 1 billion
SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY
SEMI-AUTOMATED CLOUD/SHADOW REMOVAL AND LAND COVER CHANGE DETECTION USING SATELLITE IMAGERY A. K. Sah a, *, B. P. Sah a, K. Honji a, N. Kubo a, S. Senthil a a PASCO Corporation, 1-1-2 Higashiyama, Meguro-ku,
Emergency Management Service. early warning FLOOD AND FIRE ALERTS. Space
Emergency Management Service early warning FLOOD AND FIRE ALERTS Space 1 Copernicus at a Glance Copernicus is the European Union s Earth Observation programme: a user-driven space programme under civil
Earth Data Science in The Era of Big Data and Compute
Earth Data Science in The Era of Big Data and Compute E. Lynn Usery U.S. Geological Survey [email protected] http://cegis.usgs.gov U.S. Department of the Interior U.S. Geological Survey Board on Earth Sciences
ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer
ArcGIS Agricultural Land Use Maps from the Mississippi Cropland Data Layer Fred L. Shore, Ph.D. Mississippi Department of Agriculture and Commerce Jackson, MS, USA [email protected] Rick Mueller
Different backup technologies have different sweet spots.
Putting it altogether Different backup technologies have different sweet spots. How can we design a backup system that best utilises the available technologies? Types of data Entire System Including Windows
The Future of Geospatial Big Data Giovanni Marchisio, Ph.D., Director Product Development
The Future of Geospatial Big Data Giovanni Marchisio, Ph.D., Director Product Development Nuclear Power Plant, Doel, Belgium December 10, 2011 WorldView-2 Why Geospatial Big Data? We Are the Innovators
JOINT RESEARCH CENTER. European Forest Data Center (EFDAC)
Institute for Environment and Sustainability 1 JOINT RESEARCH CENTER European Forest Data Center (EFDAC) Gerimantas Gaigalas [email protected] BACKGROUND Institute for Environment and Sustainability
5 Reasons Your Business Needs Network Monitoring
5 Reasons Your Business Needs Network Monitoring Intivix.com (415) 543 1033 5 REASONS YOUR BUSINESS NEEDS NETWORK MONITORING Your business depends on the health of your network for office productivity.
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING. Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO***
APPLICATION OF TERRA/ASTER DATA ON AGRICULTURE LAND MAPPING Genya SAITO*, Naoki ISHITSUKA*, Yoneharu MATANO**, and Masatane KATO*** *National Institute for Agro-Environmental Sciences 3-1-3 Kannondai Tsukuba
Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series
Methods for Monitoring Forest and Land Cover Changes and Unchanged Areas from Long Time Series Project using historical satellite data from SACCESS (Swedish National Satellite Data Archive) for developing
National Inventory of Landscapes in Sweden
Key messages Approaching the landscape perspective in monitoring experiences in the Swedish NILS program Johan Svensson, Future Forest Monitoring, 091112 Landscape level approaches are necessary to deal
3D Point Cloud Analytics for Updating 3D City Models
3D Point Cloud Analytics for Updating 3D City Models Rico Richter 25 th May 2015 INSPIRE - Geospatial World Forum 2015 Background Hasso Plattner Institute (HPI): Computer Graphics Systems group of Prof.
Understanding Raster Data
Introduction The following document is intended to provide a basic understanding of raster data. Raster data layers (commonly referred to as grids) are the essential data layers used in all tools developed
GIS Data Quality and Evaluation. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University
GIS Data Quality and Evaluation Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University The quality of GIS data gains in importance when considering some of the main
Australia s National Carbon Accounting System. Dr Gary Richards Director and Principal Scientist
Australia s National Carbon Accounting System Dr Gary Richards Director and Principal Scientist Government Commitment The Australian Government has committed to a 10 year, 3 phase, ~$35M program for a
Land Cover Mapping of the Comoros Islands: Methods and Results. February 2014. ECDD, BCSF & Durrell Lead author: Katie Green
Land Cover Mapping of the Comoros Islands: Methods and Results February 2014 ECDD, BCSF & Durrell Lead author: Katie Green About the ECDD project The ECDD project was run by Bristol Conservation & Science
Call: 08715 900800. Disaster Recovery/Business Continuity (DR/BC) Services From VirtuousIT
Disaster Recovery/Business Continuity (DR/BC) Services From VirtuousIT The VirtuousIT DR/BC solution is designed around RecoveryShield from Thinking SAFE. The service includes a local backup appliance
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED
APPLICATION OF MULTITEMPORAL LANDSAT DATA TO MAP AND MONITOR LAND COVER AND LAND USE CHANGE IN THE CHESAPEAKE BAY WATERSHED S. J. GOETZ Woods Hole Research Center Woods Hole, Massachusetts 054-096 USA
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service
Moderate- and high-resolution Earth Observation data based forest and agriculture monitoring in Russia using VEGA Web-Service Sergey BARTALEV and Evgeny LOUPIAN Space Research Institute, Russian Academy
GIS Initiative: Developing an atmospheric data model for GIS. Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP)
GIS Initiative: Developing an atmospheric data model for GIS Olga Wilhelmi (ESIG), Jennifer Boehnert (RAP/ESIG) and Terri Betancourt (RAP) Unidata seminar August 30, 2004 Presentation Outline Overview
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data
Nature Values Screening Using Object-Based Image Analysis of Very High Resolution Remote Sensing Data Aleksi Räsänen*, Anssi Lensu, Markku Kuitunen Environmental Science and Technology Dept. of Biological
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,
JECAM Site Ukraine. 21 23 July 2014. Team Leader: Kussul Nataliia. JECAM/GEOGLAM Science Meeting Ottawa, Canada
Site Ukraine /GEOGLAM Science, Canada 21 23 July Team Leader: Kussul Nataliia Members: Shelestov Andrii, Skakun Sergii Site Description Kyiv oblast (SRI, area 28,000 km 2 ) & intensive observation sub-site
Mapping coastal landscapes in Sri Lanka - Report -
Mapping coastal landscapes in Sri Lanka - Report - contact : Jil Bournazel [email protected] November 2013 (reviewed April 2014) Table of Content List of Figures...ii List of Tables...ii Acronyms...ii
OBJECT BASED IMAGE CLASSIFICATION AND WEB-MAPPING TECHNIQUES FOR FLOOD DAMAGE ASSESSMENT
OBJECT BASED IMAGE CLASSIFICATION AND WEB-MAPPING TECHNIQUES FOR FLOOD DAMAGE ASSESSMENT Ejaz Hussain, KyoHyouk Kim, Jie Shan {ehussain, kim458, jshan}@ecn.purdue.edu Geomatics Engineering, School of Civil
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
MAPPING MINNEAPOLIS URBAN TREE CANOPY. Why is Tree Canopy Important? Project Background. Mapping Minneapolis Urban Tree Canopy.
MAPPING MINNEAPOLIS URBAN TREE CANOPY Why is Tree Canopy Important? Trees are an important component of urban environments. In addition to their aesthetic value, trees have significant economic and environmental
Forest Service Southern Region Jess Clark & Kevin Megown USFS Remote Sensing Applications Center (RSAC)
Hurricane Katrina Damage Assessment on Lands Managed by the Desoto National Forest using Multi-Temporal Landsat TM Imagery and High Resolution Aerial Photography Renee Jacokes-Mancini Forest Service Southern
SMEX04 Land Use Classification Data
Notice to Data Users: The documentation for this data set was provided solely by the Principal Investigator(s) and was not further developed, thoroughly reviewed, or edited by NSIDC. Thus, support for
HEADS MARINE ENVIRONMENT SURVEILLANCE SYSTEM
HEADS MARINE ENVIRONMENT SURVEILLANCE SYSTEM Hydrocarbon Early Automatic Detection System indracompany.com HEADS MARINE ENVIRONMENT SURVEILLANCE SYSTEM HEADS (Hydrocarbon Early Automatic Detection System)
VNLINFOTECH JOIN US & MAKE YOUR FUTURE BRIGHT. mcsa (70-413) Microsoft certified system administrator. (designing & implementing server infrasturcure)
VNLINFOTECH JOIN US & MAKE YOUR FUTURE BRIGHT mcsa (70-413) Microsoft certified system administrator (designing & implementing server infrasturcure) www.vnlinfotech.com MODULE 1 : Considerations for Upgrades
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES
ANALYSIS OF FOREST CHANGE IN FIRE DAMAGE AREA USING SATELLITE IMAGES Joon Mook Kang, Professor Joon Kyu Park, Ph.D Min Gyu Kim, Ph.D._Candidate Dept of Civil Engineering, Chungnam National University 220
Vendor Questions Infrastructure Products and Services RFP # 13-02-038
Vendor Questions Infrastructure Products and Services RFP # 13-02-038 1 We know DCSD recently went through an assessment to help identify how the cloud would fit into your existing environment. Would it
IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES. Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T.
IMPERVIOUS SURFACE MAPPING UTILIZING HIGH RESOLUTION IMAGERIES Authors: B. Acharya, K. Pomper, B. Gyawali, K. Bhattarai, T. Tsegaye ABSTRACT Accurate mapping of artificial or natural impervious surfaces
NEXTGEN v5.8 HARDWARE VERIFICATION GUIDE CLIENT HOSTED OR THIRD PARTY SERVERS
This portion of the survey is for clients who are NOT on TSI Healthcare s ASP and are hosting NG software on their own server. This information must be collected by an IT staff member at your practice.
Using Remote Sensing to Monitor Soil Carbon Sequestration
Using Remote Sensing to Monitor Soil Carbon Sequestration E. Raymond Hunt, Jr. USDA-ARS Hydrology and Remote Sensing Beltsville Agricultural Research Center Beltsville, Maryland Introduction and Overview
The Courses. Covering complete breadth of GIS technology from ESRI including ArcGIS, ArcGIS Server and ArcGIS Engine.
ESRI India: Corporate profile ESRI India A profile India s Premier GIS Company Strategic alliance between ESRI Inc. and NIIT Technologies Adjudged as India s Best GIS Solutions Company - Map India 2001
Change Manager 5.0 Installation Guide
Change Manager 5.0 Installation Guide Copyright 1994-2008 Embarcadero Technologies, Inc. Embarcadero Technologies, Inc. 100 California Street, 12th Floor San Francisco, CA 94111 U.S.A. All rights reserved.
Global environmental information Examples of EIS Data sets and applications
METIER Graduate Training Course n 2 Montpellier - february 2007 Information Management in Environmental Sciences Global environmental information Examples of EIS Data sets and applications Global datasets
MDSplus Automated Build and Distribution System
PSFC/JA-13-23 MDSplus Automated Build and Distribution System Fredian T.W., Stillerman J.A.*, Manduchi G.** * Plasma Science and Fusion Center, MIT ** Consorzio RFX, Euratom-ENEA Association, Padova,Italy
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
3D Drawing. Single Point Perspective with Diminishing Spaces
3D Drawing Single Point Perspective with Diminishing Spaces The following document helps describe the basic process for generating a 3D representation of a simple 2D plan. For this exercise we will be
China s Global Land Cover Mapping at 30 M Resolution
Geospatial World Forum 2015 China s Global Land Cover Mapping at 30 M Resolution Jun Chen1,2 1 National Geomatics Center, 2ISPRS Lisbon, Portugal, May 28,2015 GlobeLand30 Video Contents Introduction Introduction
NC STATE UNIVERSITY Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids
Exploratory Analysis of Massive Data for Distribution Fault Diagnosis in Smart Grids Yixin Cai, Mo-Yuen Chow Electrical and Computer Engineering, North Carolina State University July 2009 Outline Introduction
GIS Cloud Computing Solutions
GIS Cloud Computing Solutions Who We Are IT and GIS professionals with lineage managed services for enterprise-class customers Cloud in 80+ data centers worldwide with access to thousands of servers Operators
SatelliteRemoteSensing for Precision Agriculture
SatelliteRemoteSensing for Precision Agriculture Managing Director WasatSp. z o.o. Copernicus the road to economic development Warsaw, 26-27 February 2015 Activitiesof WasatSp. z o.o. The company provides
How To Write An Nccwsc/Csc Data Management Plan
Guidance and Requirements for NCCWSC/CSC Plans (Required for NCCWSC and CSC Proposals and Funded Projects) Prepared by the CSC/NCCWSC Working Group Emily Fort, Data and IT Manager for the National Climate
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
Evault 2TB Tower Appliance. www.evault.com www.ev365.com
Evault 2TB Tower Appliance 1 Easy to Deploy, Easy to Manage Central Control Monitor and manage backups Installed on a laptop or Workstation or through Web Brower Centralized Management Console Administrator
Object-Oriented Approach of Information Extraction from High Resolution Satellite Imagery
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 17, Issue 3, Ver. IV (May Jun. 2015), PP 47-52 www.iosrjournals.org Object-Oriented Approach of Information Extraction
Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis
Digital Classification and Mapping of Urban Tree Cover: City of Minneapolis FINAL REPORT April 12, 2011 Marvin Bauer, Donald Kilberg, Molly Martin and Zecharya Tagar Remote Sensing and Geospatial Analysis
Urban Land Use Data for the Telecommunications Industry
Urban Land Use Data for the Telecommunications Industry Regine Richter, Ulla Weingart & Tobias Wever GAF AG Arnulfstr. 197 D-80634 Munich & Ulrike Kähny E-Plus Mobilfunk GmbH & Co. KG E-Plus Platz D-40468
Pixel-based and object-oriented change detection analysis using high-resolution imagery
Pixel-based and object-oriented change detection analysis using high-resolution imagery Institute for Mine-Surveying and Geodesy TU Bergakademie Freiberg D-09599 Freiberg, Germany [email protected]
Geospatial intelligence and data fusion techniques for sustainable development problems
Geospatial intelligence and data fusion techniques for sustainable development problems Nataliia Kussul 1,2, Andrii Shelestov 1,2,4, Ruslan Basarab 1,4, Sergii Skakun 1, Olga Kussul 2 and Mykola Lavreniuk
The ORIENTGATE data platform
Seminar on Proposed and Revised set of indicators June 4-5, 2014 - Belgrade (Serbia) The ORIENTGATE data platform WP2, Action 2.4 Alessandra Nuzzo, Sandro Fiore, Giovanni Aloisio Scientific Computing and
Managing Lidar (and other point cloud) Data. Lindsay Weitz Cody Benkelman
(and other point cloud) Data Lindsay Weitz Cody Benkelman Presentation Context What is lidar, and how does it work? Not this presentation! What can you do with lidar in ArcGIS? What does Esri recommend
Introduction to Imagery and Raster Data in ArcGIS
Esri International User Conference San Diego, California Technical Workshops July 25, 2012 Introduction to Imagery and Raster Data in ArcGIS Simon Woo slides Cody Benkelman - demos Overview of Presentation
Document Control Sheet
Document Control Sheet 1. Security Classification For Official Use only 2. Distribution NRSC / ISRO, Online Distribution Through Bhuvan Portal 3. Report / Document version (a) Issue no. 01 4. Report /
Enterprise Backup Solution Vendor Questions
Enterprise Backup Solution Vendor Questions What is the size of a single full back up? If Backups comprise 28% of the 19TB, can we assume that a single full (not compressed) is approximately 6TB? The approximate
Advantages and limitations of using satellite images for flood mapping
Advantages and limitations of using satellite images for flood mapping Domenico Grandoni e-geos Headquarter Contrada Terlecchie 75100 Matera - Italy Commercial Office Via Cannizzaro 71 00156 Roma - Italy
Comparison of ALOS-PALSAR and TerraSAR-X Data in terms of Detecting Settlements First Results
ALOS 2008 Symposium, 3-7 November Rhodes, Greece Comparison of ALOS-PALSAR and TerraSAR-X Data in terms of Detecting Settlements First Results Thomas Esch*, Achim Roth*, Michael Thiel, Michael Schmidt*,
European Soil Data Centre (ESDAC) Marc Van Liedekerke Land Management and Natural Harzards Unit
European Soil Data Centre (ESDAC) Marc Van Liedekerke Land Management and Natural Harzards Unit 1 Outline 1. What is ESDAC? 2. Requirements 3. Information providers; Inventory 4. ESDAC Repository 5. Implementation
Massive Labeled Solar Image Data Benchmarks for Automated Feature Recognition
Massive Labeled Solar Image Data Benchmarks for Automated Feature Recognition Michael A. Schuh1, Rafal A. Angryk2 1 Montana State University, Bozeman, MT 2 Georgia State University, Atlanta, GA Introduction
The RapidEye optical satellite family for high resolution imagery
'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED
MONITORING URBAN AREAS FOR ENVIRONMENT AND SECURITY THROUGH REMOTE SENSING
MONITORING URBAN AREAS FOR ENVIRONMENT AND SECURITY THROUGH REMOTE SENSING Paolo GAMBA, Fabio DELL ACQUA Dipartimento di Elettronica, Università di Pavia, Via Ferrata, 1, I-27100 Pavia, Italy paolo.gamba,fabio.dellacqua
Big data and Earth observation New challenges in remote sensing images interpretation
Big data and Earth observation New challenges in remote sensing images interpretation Pierre Gançarski ICube CNRS - Université de Strasbourg 2014 Pierre Gançarski Big data and Earth observation 1/58 1
Active Fire Monitoring: Product Guide
Active Fire Monitoring: Product Guide Doc.No. Issue : : EUM/TSS/MAN/15/801989 v1c EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 April 2015 http://www.eumetsat.int
An Assessment of the Effectiveness of Segmentation Methods on Classification Performance
An Assessment of the Effectiveness of Segmentation Methods on Classification Performance Merve Yildiz 1, Taskin Kavzoglu 2, Ismail Colkesen 3, Emrehan K. Sahin Gebze Institute of Technology, Department
Big data, big deal? Presented by: David Stanley, CTO PCI Geomatics
Big data, big deal? Presented by: David Stanley, CTO PCI Geomatics A quick word about me Ah, the early 1980s Aha! Moments in my Career First personal computer (Pet 2001, 1978) First windowing OS (SUN,
Publishing Hosted 3D Feature Layers. An Esri White Paper September 2015
An Esri White Paper September 2015 Copyright 2015 Esri All rights reserved. Printed in the United States of America. The information contained in this document is the exclusive property of Esri. This work
