UNIT 5 VOCABULARY: POLYNOMIALS
|
|
|
- Jeffrey Sparks
- 9 years ago
- Views:
Transcription
1 2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to represent quantities, so that we can express relationships between them by using the arithmetical, operations such as +,,, and exponents. What do you do when you want to refer to a number that you do not know? Suppose you want to refer to the number of buildings in your town, but you haven't counted them yet. You could say 'blank' number of buildings, or perhaps '?' number of buildings. In mathematics, letters are often used to represent numbers that we do not know - so you could say 'x' number of buildings, or 'q' number of buildings. These are called variables. Look at these examples: The triple of a number: 3n The triple of a number minus five units: 3n 5 The following number to x: x + 1 The preceding number to y: y 1 An even number: 2a An odd number: 2z + 1 or 2z Algebraic expressions An algebraic expression is a combination of numbers, variables, brackets, connected with operations. Exercises. Find the algebraic expression for this sentences: Sentence Algebraic Expression I start with x, double it and then subtract 6. I start with x, add 4 and then square the result. I start with x, take away 5, double the result and then divide by 3. I start with x, multiply by 4 and then subtract t. I start with x, add y and then double the result. I start with a, double it and then add b.
2 2º ESO Bilingüe Page 2 I start with n, square it and then subtract n. I start with x, add 2 and then square the result. A brick weighs x kg. How much do 6 bricks weigh? How much do n bricks weigh? A man shares x euros between n children. How much does each child receive? 1.3. Monomials A monomial is an algebraic expression consisting of only one term. A monomial can be any of the following: A constant: A variable: x y z 2 3 are monomials. The product of a constant and one or more variables: 2a 3xy 5x³ -x²y² THE VARIABLES OF A MONOMIAL SHOULD NOT HAVE NEGATIVE OR FRACTIONAL EXPONENTS! Therefore, these algebraic expressions are not monomials: 3x 2 3xy 1/2 3 t 2 The coefficient of a monomial is the number that multiplies the variable(s). The coefficient of 3x is 3. The degree of x 2 y 2 z is -1 (because =5). The literal part of a monomial is formed by the variables (letters) and its exponents. The literal part of 3x is x. The literal part of x 2 y 2 z is x²y²z. The degree of a monomial is defined as the sum of all the exponents of the variables. The degree of 3x is 1 (the exponent of x is 1). The degree of x 2 y 2 z is 5 (because =5). The degree of 6 is 0 (there is no variable). Exercises. 1. Name the variables, coefficient, literal part and degree of the following monomials: 1. 5xy b) -2x c) xy² d) -x²yz e) 3 7 x 5 y 8 f) 8
3 2º ESO Bilingüe Page 3 2. Complete the table: Monomial Variables Coefficient Literal part Degree 3x 2 y 3 7x 3 yz 4 5 x3 3 2 x Polynomials A polynomial is an expression which is made up of monomials that are added or subtracted. Polynomials can have: No variable at all (for example, 21 is a polynomial that has just one term, which is a constant). One variable (for example x 4 2x 2 + x has three terms, but only one variable, x). Two or more variables (for example, xy 4-5x 2 z has two terms, and three variables,x, y and z). The degree of a polynomial with only one variable is the largest exponent of that variable. A term that doesn't have a variable in it is called constant term. The coefficient of the term with the highest degree is called the leading coefficient. Exercises. 1. Complete this table: Polynomial Degree Leading coefficient Constant term x 4 3x 5 + 2x 2 + 5
4 2º ESO Bilingüe Page 4 1 x 4 x 2 2 x x 3 x Evaluating a polynomial To evaluate a polynomial, you plug in (substitute) the given value of x, and calculate the value. For example, to evaluate P(x) = 2x 3 x 2 4x + 2 at x = 3: P( 3) = 2 ( 3) 3 ( 3) 2 4 ( 3) + 2 = 2 ( 27) (9) = = = 49 ALWAYS REMEMBER TO BE CAREFUL WITH BRACKETS AND THE MINUS SIGNS! Exercise. Evaluate x 4 + 3x 3 x a) for x = 3 b) for x = 3 c) for x = 0 d) for x= Addition and subtraction of monomials You can add or subtract monomials only if they have the same literal part (they are also called like terms). In this case, you sum or subtract the coefficients and leave the same literal part. You can find some examples of like terms in the picture: Look at these examples: 4xy² + 3xy² = 7xy² (we can add these monomials because they have the same literal part). -3xz + 7xz (we can't add these monomials because they don't have the same literal part). 2x² + 3 5x² + 1 = -3x² + 4 (and we can't add -3x² and 4 because they don't have the same literal part). Exercise. Collect like terms to simplify each expression: a) x² + 3x x + 3x² c) (2x + 3) (5x 7) (x 1) e) (x² + 2x) (2x² x) + (3x² + 5x) 2 b) 5y + 3x + 2y + 4x d) 3 x x 3 2 x2 1 5 x+2 f) (x² + y) + (7x² 3y) (x² + 7y)
5 2º ESO Bilingüe Page Product of monomials If you want to multiply two or more monomials, you just have to multiply the coefficients, and add the exponents of the equal letters: More examples: 2xy² (-5x²y) = -10 x³ y³ 3a² 2ab = 6a³ b Exercise. Multiply: 2 a) 5x 3x c) -2x x³ e) -7x²y xy² g) 3 x3 y 3x i) x² (-2x) 3x³ b) 2x 3x² d) 4xy 2x²y f) 5x³y² xy h) 3x 2x² 5x³ j) 3ab (-2a²) 2.3. Quotient of monomials If you want to divide two monomials, you just have to divide the coefficients, and subtract the exponents of the equal letters. THE QUOTIENT OF MONOMIALS GIVES AN EXPRESSION THAT IS NOT ALWAYS A MONOMIAL! More examples: 10x³ : 2x = 5x² 8x 2 y : 6 y 3 = 8x2 y 6 y = 4x 2 3 3y 2 Exercise. Operate: a) 15x³ : 3x² c) 6x : 2x³ e) 15a³b² : ab g) 5xy 2x²y : 3x b) 2x 4 : 3x d) 12a²b : 3a f) 3x 5 y 2 :3x 2 y 2 h) xy³ 3x²y : 2x²y² 3.1. Addition of polynomials To add two polynomials, you have to follow these steps: Place like terms together. Add the like terms For example, to add p(x) = 2x 2 + 6x + 5 and q(x) = 3x 2-2x - 1 Start with: 2x 2 + 6x x 2-2x - 1 = Place like terms together: (2x 2 + 3x 2 ) + (6x - 2x) + (5-1) = Add the like terms: = 5x 2 + 4x + 4
6 2º ESO Bilingüe Page 6 You could also add two polynomials in columns like this: 3.2. Subtraction of polynomials To subtract polynomials, follow these steps: First reverse the sign of each term you are subtracting (in other words, turn "+" into "-", and "-" into "+"). Add as usual. For example, to subtract p(x) = 2x 2 + 6x + 5 and q(x) = 3x 2-2x - 1 Start with: 2x 2 + 6x (3x 2-2x - 1) = Reverse the signs of each term: 2x 2 + 6x + 5-3x 2 + 2x + 1 = Add the like terms: = 2x 2 3x 2 + 6x + 2x = -x 2 + 8x + 6 And again, you can also do it in columns: Exercise. Given the polynomials: P(x) = 4x 2 1 Q(x) = x 3 3x 2 + 6x 2 R(x) = 6x 2 + x + 1 S(x) = x2 +4 T(x) = 2 x2 +5 U(x) = x Calculate: a) P(x) + Q (x) b) P(x) U(x) c) P(x) + R (x) d) 2P(x) R(x) e) S(x) + T(x) + U(x) f) S(x) T(x) + U(x) 3.3. Multiplication of polynomials Before multiplying polynomials, let us look at a simpler case first: Monomial times binomial Multiply the monomial by each of the two terms, like this: Polynomial times polynomial Follow these steps:
7 2º ESO Bilingüe Page 7 Multiply each term in the first polynomial by each term in the second polynomial. Always remember to add like terms. For example, to multiply (x + 2y) (3x 4y + 5) We multiply each term in the first polynomial by each term in the second polynomial: 3x 2 4xy + 5x + 6xy 8y y We add like terms: 3x 2 + 2xy + 5x 8y y And once again, you can also do it in columns: Exercise. Multiply: a) (x 4 2x 2 + 2) (x 2 2x + 3) b) (3x 2 5x) (2x 3 + 4x 2 x + 2) 4.1. Special products SQUARE OF A SUM! (a+b) 2 =a 2 +2ab+b 2 Examples: (x +5) 2 =x 2 +2 x =x 2 +10x+25 (2x+3) 2 =(2x) x =4x 2 +12x+9 SQUARE OF A DIFFERENCE! (a b) 2 =a 2 2ab+b 2 Examples: (x 2 2) 2 =(x 2 ) 2 2 x =x 4 4x 2 +4 (x 3) 2 =x 2 2 x 3+( 3) 2 =x x +3
8 2º ESO Bilingüe Page 8 SUM TIMES DIFFERENCE! (a+b)(a b)=a 2 b 2 Examples: ( x + 3 2) ( x 3 2) ( =x 2 3 2)2=x (ab 2 +5)(ab 2 5)=(ab 2 ) =a 2 b 4 25 Exercises. 1. Expand the following expressions: a) (x + 2) 2 c) (3x + 7)² e) (x 3)² g) (a + 2b)² b) (x + 5) 2 d) ( x 2 2 ) 2 f) (x² + 2)² h) (2x - 2y)² 2. Expand the following expressions: a) (3x 2) (3x + 2) c) (3 + x) (3 - x) b) (x + 5) (x 5) d) (x 2) (x+ 2) 3. Express as a binomial: a) x² + 12x + 36 = (x + )² f) 4x² 9 = b) x² 16 = (x + ) (x - ) g) 64x² - 160x = c) 4x² 20x + 25 = ( - 5 )² h) 9x² 25 = d) x² + 14x + 49 = i) 25x² + 40x + 16 = e) x² 1 = j) x 2 x Difference between equation,expression, identity and formulae In Algebra, you use letter symbols to represent unknowns in a variety of situations: EQUATIONS In an equation the letters stand for one or more particular numbers (the solutions of the equation). 2x + 1 = x 2 EXPRESSIONS IDENTITIES In an expression there is no equals sign. 3x² + 2x 1 In an identity there is an equals sign, but the equality holds for all values of the unknown. 2(x + 1) = 2x + 2
9 2º ESO Bilingüe Page 9 FORMULAE In a formula, letters stand for defined quantities or variables. d = s t. (d is distance, s is speed and t is time) Exercise. Separate the equations, the formulae, the identities and the expressions: a) x ( x + 1 ) = x² + x c) V = I R e) 7x + 11 = x 9 g) A = π r² b) 7y + 10 d) x² - 3x + 10 f) (x + 1)² = x² + 2x + 1 h) x² - 7x = 0
1.3 Polynomials and Factoring
1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.
CAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
Operations with Algebraic Expressions: Multiplication of Polynomials
Operations with Algebraic Expressions: Multiplication of Polynomials The product of a monomial x monomial To multiply a monomial times a monomial, multiply the coefficients and add the on powers with the
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
x 4-1 = (x²)² - (1)² = (x² + 1) (x² - 1) = (x² + 1) (x - 1) (x + 1)
Factoring Polynomials EXAMPLES STEP 1 : Greatest Common Factor GCF Factor out the greatest common factor. 6x³ + 12x²y = 6x² (x + 2y) 5x - 5 = 5 (x - 1) 7x² + 2y² = 1 (7x² + 2y²) 2x (x - 3) - (x - 3) =
Polynomial Expression
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
Pre-Calculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
Factoring Special Polynomials
6.6 Factoring Special Polynomials 6.6 OBJECTIVES 1. Factor the difference of two squares 2. Factor the sum or difference of two cubes In this section, we will look at several special polynomials. These
1.3 Algebraic Expressions
1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
When factoring, we look for greatest common factor of each term and reverse the distributive property and take out the GCF.
Factoring: reversing the distributive property. The distributive property allows us to do the following: When factoring, we look for greatest common factor of each term and reverse the distributive property
1.7. Partial Fractions. 1.7.1. Rational Functions and Partial Fractions. A rational function is a quotient of two polynomials: R(x) = P (x) Q(x).
.7. PRTIL FRCTIONS 3.7. Partial Fractions.7.. Rational Functions and Partial Fractions. rational function is a quotient of two polynomials: R(x) = P (x) Q(x). Here we discuss how to integrate rational
Simplifying Algebraic Fractions
5. Simplifying Algebraic Fractions 5. OBJECTIVES. Find the GCF for two monomials and simplify a fraction 2. Find the GCF for two polynomials and simplify a fraction Much of our work with algebraic fractions
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
FACTORING OUT COMMON FACTORS
278 (6 2) Chapter 6 Factoring 6.1 FACTORING OUT COMMON FACTORS In this section Prime Factorization of Integers Greatest Common Factor Finding the Greatest Common Factor for Monomials Factoring Out the
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES
HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
A Systematic Approach to Factoring
A Systematic Approach to Factoring Step 1 Count the number of terms. (Remember****Knowing the number of terms will allow you to eliminate unnecessary tools.) Step 2 Is there a greatest common factor? Tool
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
MATH 10034 Fundamental Mathematics IV
MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.
Factoring Polynomials
UNIT 11 Factoring Polynomials You can use polynomials to describe framing for art. 396 Unit 11 factoring polynomials A polynomial is an expression that has variables that represent numbers. A number can
NSM100 Introduction to Algebra Chapter 5 Notes Factoring
Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Polynomials. Key Terms. quadratic equation parabola conjugates trinomial. polynomial coefficient degree monomial binomial GCF
Polynomials 5 5.1 Addition and Subtraction of Polynomials and Polynomial Functions 5.2 Multiplication of Polynomials 5.3 Division of Polynomials Problem Recognition Exercises Operations on Polynomials
Greatest Common Factor (GCF) Factoring
Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
SPECIAL PRODUCTS AND FACTORS
CHAPTER 442 11 CHAPTER TABLE OF CONTENTS 11-1 Factors and Factoring 11-2 Common Monomial Factors 11-3 The Square of a Monomial 11-4 Multiplying the Sum and the Difference of Two Terms 11-5 Factoring the
Determinants can be used to solve a linear system of equations using Cramer s Rule.
2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution
SOL Warm-Up Graphing Calculator Active
A.2a (a) Using laws of exponents to simplify monomial expressions and ratios of monomial expressions 1. Which expression is equivalent to (5x 2 )(4x 5 )? A 9x 7 B 9x 10 C 20x 7 D 20x 10 2. Which expression
5.1 FACTORING OUT COMMON FACTORS
C H A P T E R 5 Factoring he sport of skydiving was born in the 1930s soon after the military began using parachutes as a means of deploying troops. T Today, skydiving is a popular sport around the world.
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.
Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating
Factoring. Factoring Monomials Monomials can often be factored in more than one way.
Factoring Factoring is the reverse of multiplying. When we multiplied monomials or polynomials together, we got a new monomial or a string of monomials that were added (or subtracted) together. For example,
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Studies show that most students lose about two months of math abilities over the summer when they do not engage in
( ) FACTORING. x In this polynomial the only variable in common to all is x.
FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
Radicals - Rationalize Denominators
8. Radicals - Rationalize Denominators Objective: Rationalize the denominators of radical expressions. It is considered bad practice to have a radical in the denominator of a fraction. When this happens
Mathematics Placement
Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 1 ALGEBRAIC LAWS This tutorial is useful to anyone studying engineering. It uses the principle of learning by example. On completion of this tutorial
POLYNOMIALS and FACTORING
POLYNOMIALS and FACTORING Exponents ( days); 1. Evaluate exponential expressions. Use the product rule for exponents, 1. How do you remember the rules for exponents?. How do you decide which rule to use
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions 1 Created January 17, 2006
MTH 092 College Algebra Essex County College Division of Mathematics Sample Review Questions Created January 7, 2006 Math 092, Elementary Algebra, covers the mathematical content listed below. In order
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
MATH 90 CHAPTER 6 Name:.
MATH 90 CHAPTER 6 Name:. 6.1 GCF and Factoring by Groups Need To Know Definitions How to factor by GCF How to factor by groups The Greatest Common Factor Factoring means to write a number as product. a
A Concrete Introduction. to the Abstract Concepts. of Integers and Algebra using Algebra Tiles
A Concrete Introduction to the Abstract Concepts of Integers and Algebra using Algebra Tiles Table of Contents Introduction... 1 page Integers 1: Introduction to Integers... 3 2: Working with Algebra Tiles...
To Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
By reversing the rules for multiplication of binomials from Section 4.6, we get rules for factoring polynomials in certain forms.
SECTION 5.4 Special Factoring Techniques 317 5.4 Special Factoring Techniques OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor
Maths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Negative Exponents and Scientific Notation
3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
BEGINNING ALGEBRA ACKNOWLEDMENTS
BEGINNING ALGEBRA The Nursing Department of Labouré College requested the Department of Academic Planning and Support Services to help with mathematics preparatory materials for its Bachelor of Science
QUADRATIC EQUATIONS AND FUNCTIONS
Douglas College Learning Centre QUADRATIC EQUATIONS AND FUNCTIONS Quadratic equations and functions are very important in Business Math. Questions related to quadratic equations and functions cover a wide
9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
Mathematics, Basic Math and Algebra
NONRESIDENT TRAINING COURSE Mathematics, Basic Math and Algebra NAVEDTRA 14139 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE About this course: This is a self-study
Multiplying and Dividing Radicals
9.4 Multiplying and Dividing Radicals 9.4 OBJECTIVES 1. Multiply and divide expressions involving numeric radicals 2. Multiply and divide expressions involving algebraic radicals In Section 9.2 we stated
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Section 1. Finding Common Terms
Worksheet 2.1 Factors of Algebraic Expressions Section 1 Finding Common Terms In worksheet 1.2 we talked about factors of whole numbers. Remember, if a b = ab then a is a factor of ab and b is a factor
IV. ALGEBRAIC CONCEPTS
IV. ALGEBRAIC CONCEPTS Algebra is the language of mathematics. Much of the observable world can be characterized as having patterned regularity where a change in one quantity results in changes in other
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
Algebra I Teacher Notes Expressions, Equations, and Formulas Review
Big Ideas Write and evaluate algebraic expressions Use expressions to write equations and inequalities Solve equations Represent functions as verbal rules, equations, tables and graphs Review these concepts
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Heron Triangles. by Kathy Temple. Arizona Teacher Institute. Math Project Thesis
Heron Triangles by Kathy Temple Arizona Teacher Institute Math Project Thesis In partial fulfillment of the M.S. Degree in Middle School Mathematics Teaching Leadership Department of Mathematics University
Copyrighted Material. Chapter 1 DEGREE OF A CURVE
Chapter 1 DEGREE OF A CURVE Road Map The idea of degree is a fundamental concept, which will take us several chapters to explore in depth. We begin by explaining what an algebraic curve is, and offer two
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
Math 10C. Course: Polynomial Products and Factors. Unit of Study: Step 1: Identify the Outcomes to Address. Guiding Questions:
Course: Unit of Study: Math 10C Polynomial Products and Factors Step 1: Identify the Outcomes to Address Guiding Questions: What do I want my students to learn? What can they currently understand and do?
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA
MATHEMATICS FOR ENGINEERING BASIC ALGEBRA TUTORIAL 3 EQUATIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
Algebra 1 Chapter 08 review
Name: Class: Date: ID: A Algebra 1 Chapter 08 review Multiple Choice Identify the choice that best completes the statement or answers the question. Simplify the difference. 1. (4w 2 4w 8) (2w 2 + 3w 6)
In algebra, factor by rewriting a polynomial as a product of lower-degree polynomials
Algebra 2 Notes SOL AII.1 Factoring Polynomials Mrs. Grieser Name: Date: Block: Factoring Review Factor: rewrite a number or expression as a product of primes; e.g. 6 = 2 3 In algebra, factor by rewriting
Chapter 5. Rational Expressions
5.. Simplify Rational Expressions KYOTE Standards: CR ; CA 7 Chapter 5. Rational Expressions Definition. A rational expression is the quotient P Q of two polynomials P and Q in one or more variables, where
The Properties of Signed Numbers Section 1.2 The Commutative Properties If a and b are any numbers,
1 Summary DEFINITION/PROCEDURE EXAMPLE REFERENCE From Arithmetic to Algebra Section 1.1 Addition x y means the sum of x and y or x plus y. Some other words The sum of x and 5 is x 5. indicating addition
#6 Opener Solutions. Move one more spot to your right. Introduce yourself if needed.
1. Sit anywhere in the concentric circles. Do not move the desks. 2. Take out chapter 6, HW/notes #1-#5, a pencil, a red pen, and your calculator. 3. Work on opener #6 with the person sitting across from
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level 2
COWLEY COUNTY COMMUNITY COLLEGE REVIEW GUIDE Compass Algebra Level This study guide is for students trying to test into College Algebra. There are three levels of math study guides. 1. If x and y 1, what
Free Pre-Algebra Lesson 55! page 1
Free Pre-Algebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
FACTORING POLYNOMIALS
296 (5-40) Chapter 5 Exponents and Polynomials where a 2 is the area of the square base, b 2 is the area of the square top, and H is the distance from the base to the top. Find the volume of a truncated
UNIT 3 VOCABULARY: INTEGERS
1º ESO Bilingüe Page 1 UNIT 3 VOCABULARY: INTEGERS 3.1. Some uses of negative numbers There are many situations in which you need to use negative numbers. POSITIONS A submarine which is sailing 700 m below
Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2
4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
