Answer Key for the Review Packet for Exam #3

Size: px
Start display at page:

Transcription

1 Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y Variables: Let =length of the rectangle. Let y =width of the rectangle. Let A =area of rectangle. Let P =perimeter of rectangle. Equations: We know A = y is fied, so that y = A. must be minimized. The common-sense- Then the perimeter P = + y = + A boundsdomain of P is { : > }. Minimize: Net P = A. Setting P = we solve for = + A. We take the positive square root here since we are talking about positive lengths. Sign-testing the critical number does indeed yield a minimum for the perimeter function. P ց A ր MIN Answer: P Since = A then y = A A = A. As a result, = y and the smallest perimeter occurs when the rectangle is a square.. A rectangle lies in the first quadrant, with one verte at the origin, two sides along the coordinate aes, and the fourth verte on the line + y 6 =. Find the maimum area of the rectangle. Diagram: + y 6 =, y y 6

2 Variables: Let = -coordinate of point on the line. Let y = y-coordinate of point on the line. Let A =area of inscribed rectangle. Equations: The verte point, y lies on the line + y 6 =. The fied line + y 6 = can be rewritten as y =. The area of the rectangle is given as A = y = = The common-sense-boundsdomain of A is { : 6}. Maimize: Net, A =. Setting A = we solve for = as the critical number. and must be maimized. Sign-testing the critical number does indeed yield a maimum for the area function. A A ր ց MAX Answer: Finally, = = y =. As a result the maimum area is Area=y = = 9 square units.. A farmer wants to use a fence to surround a rectangular field, using an eisting stone wall as one side of the plot. She also wants to divide the field into 5 equal pieces using fence parallel to the sides that are perpendicular to the stone wall see diagram. The farmer must use eactly feet of fence. What is the maimum area possible for this field? Diagram: y y y y y y wall Variables: Let =length of side parallel to wall. Let y =width of sides perpendicular to wall. Let L =length of fence. Let A =area of enclosed field. Equations: We know that the length of fence used L = + 6y = is fied so that = 6y. Then the area A = y = 6yy = y 6y must be maimized. The common-sense-boundsdomain of A is {y : y }. Maimize:

3 Net A = y. Setting A = we solve for y =. Sign-testing the critical number does indeed yield a maimum for the area function. A A ր ց MAX Answer: Since y = then = 6 = 6. As a result, the maimum area possible is 6, square feet.. You work for a soup manufacturing company. Your assignment is to design the newest can in the shape of a cylinder. You are given a fied amount of material, 6 cm, to make your can. What are the dimensions of your can which will hold the maimum volume of soup? Diagram: r πr r r h top bottom side of can h Variables: Let r =radius of can. Let h =height of can. Let M =amount of material surface area. Let V =volume of can. Equations: We know that the amount of material used M = πr + πrh = 6 is fied so that 6 πr h =. πr 6 πr Then the volume V = πr h = πr 6 πr = r = r πr must be πr maimized. The common-sense-boundsdomain of V is {r : < r π }. Maimize: Net V = πr. Setting V = yields r = π as the critical number. Sign-testing the critical number does indeed yield a maimum for the volume function. V π V ր ց MAX Answer:

4 Since r = 6 π π then h = π π π = 6 π = π. The dimensions of the can with the largest volume are r = π and h = π in cm. A bit of etra work does indeed check that the amount of material used is 6 square cm. M = πr + πrh = π π + π π π = + = A rectangular bo with square base cost \$ per square foot for the bottom and \$ per square foot for the top and sides. Find the bo of largest volume which can be built for \$6. Diagram: y Variables: Let =length of side on base of bo. Let y =height of bo. Let Cost=Cost for amount of material surface area. Let V =volume of bo. Equations: Then the Cost of materials, which is fied is given as Cost = cost of base + cost of top + cost of sides = \$ + \$ + y\$ = + y = 6 6 = y = 6 Then the volume of the bo V = y = = 9 must be maimized. The common-sense-boundsdomain of V is { : < }. Maimize: Net V = 9 9. Setting V = we solve for = as the critical number. Sign-testing the critical number does indeed yield a maimum for the volume function. V V ր ց MAX Answer: Since = then y =, each in feet. 6 8 =. As a result, the bo of largest volume will measure

5 6. Among all the rectangles with given perimeter P, find the one with the maimum area. Diagram: y Variables: Let =length of the rectangle. Let y =width of the rectangle. Let A =area of rectangle. Let P =perimeter of rectangle. Equations: Let P equal the given perimeter. We know + y = P is fied, so that y = P. P Then the area A = y = = P must be maimized. The common-sense-boundsdomain of A is { : P }. Maimize: Net A = P. Setting A = we solve for = P. Sign-testing the critical number does indeed yield a maimum for the area function. P P P ր ց MAX Answer: Since = P then y = P P the rectangle is a square. = P. As a result, = y and the largest area occurs when 7. Consider a cone such that the height is 6 inches high and its base has diameter 6 in. Inside this cone we inscribe a cylinder whose base lies on the base of the cone and whose top intersects the cone in a circle. What is the maimum volume of the cylinder? Diagram: r 6 h r h h Variables: 5

6 Let r =radius of cylinder. Let h =height of the cylinder. Let V =volume of inscribed cylinder. Equations: Using similar triangles, for the cross slice of the cone and cylinder, we see r = 6 h which 6 implies that 6r = 8 h = h = 6 r. Then the volume of the cylinder, given by, V = πr h = πr 6 r = 6πr πr must be maimized. The common-sense-boundsdomain of V is {r : r }. Maimize: Net V = πr 6πr. Setting V = we see 6πr r = and solve for r = or r = as critical numbers. Of course r = will not lead to a maimum since no cylinder eists there. Sign-testing the critical number r = does indeed yield a maimum for the volume function. V V ր ց MAX Answer: Since r =, then h =, and the maimum volume V = π = 8π. As a result the maimum volume of the cylinder is 8π cubic inches. 8. Consider the right triangle with sides 6, 8 and. Inside this triangle, we inscribe a rectangle such that one corner of the rectangle is the right angle of the triangle and the opposite corner of the rectangle lies on the hypotenuse. What is the maimum area of the rectangle? Diagram: 6 6 y y 8 Variables: Let = -coordinate of point on the triangle line. Let y = y-coordinate of point on the triangle line. Let A =area of inscribed rectangle. Equations: Using similar triangles we find the relationship 6 y = 6 which implies that 8 8y = 8 6 = 8y = 8 6 = y = Another way to think about this is that this picture corresponds to the line with y-intercept 6 with slope 6 8 If you draw the triangle with width 6 and height 8 instead, the math all still works out the same in the end. The area A = y = = must be maimized. 6

7 The common-sense-boundsdomain of A is { : 8}. Maimize: Net A = 6. Setting A = we solve for = as the critical number. Sign-testing the critical number does indeed yield a maimum for the area function. A A ր ց MAX Answer: Finally, = = y = = As a result the maimum area is Area=y = = square units. 9. A toolshed with a square base and a flat roof is to have volume of 8 cubic feet. If the floor costs \$6 per square foot, the roof \$ per square foot, and the sides \$5 per square foot, determine the dimensions of the most economical shed. Diagram: y Variables: Let =length of base of toolshed. Let y =height of the toolshed. Let V =volume of toolshed. Let Cost=cost of amount of material to make toolshed. Equations: We know the volume of the toolshed is given by V = y = 8 is fied, so that y = 8. Then the Cost of materials, which must be minimized, is given as Cost = cost of floor + cost of top + cost of sides = \$6 + \$ + y\$5 = 8 + y 8 = = 8 + The common-sense-boundsdomain of Cost is { : > }. Minimize: Net Cost = 6 6. Setting Cost = we solve =, = =. Sign-testing the critical number does indeed yield a maimum for the area function. 7

8 Cost Costց ր MIN Answer: Since = then y = 8 = 8. As a result, the most economical shed has dimensions 8, each in feet.. A rectangular sheet of metal 8 inches wide and inches long is folded along the center to form a triangular trough. Two etra pieces of metal are attached to the ends of the trough. The trough is filled with water. Diagram: a. How deep should the trough be to maimize the capacity of the trough? b. What is the maimum capacity? h Variables: Let =width of endcap of triangular trough. Let y =heightdepth of trough. Let V =volume of trough. Let A =area of endcap of triangular trough. Equations: We will maimize the volume of the trough, by maimizing the area of the metal pieces on the ends of the trough. By the Pythagorean Thrm., h = 6 = 6 Then the area, which must be maimized, is given as A = base height = h = 6 8

9 The common-sense-boundsdomain of A is { : 8}. Maimize: Net, A = 6 = Setting A = implies = so that = 6 which implies = 6 = 6. 6 As a result, = and finally = =. Sign-testing the critical number does indeed yield a maimum for the area function. A A ր ց MAX Answer: 6 = Since = maimizes the area, then the corresponding height is h = 8 =. The trough should be inches deep. The maimum capacity is 8 cubic inches because Ma Volume=Ma Area of end panel= = 58 = 8.. A manufacturer wishes to produce rectangular containers with square bottoms and tops, each container having a capacity of 5 cubic inches. The material costs \$ per square inch for the sides. If the material used for the top and bottom costs twice as much per square inch as the material for the sides, what dimensions will minimize the cost? Diagram: y Variables: 9

10 Let =length of base of container. Let y =height of container. Let V =volume of container. Let Cost=cost of producing containers. Equations: We know the volume of the toolshed is given by V = y = 5 is fied, so that y = 5. Then the Cost of materials, which must be minimized, is given as Cost = cost of floor + cost of top + cost of sides = \$ + \$ + y\$ = 8 + 8y 5 = = 8 + The common-sense-boundsdomain of Cost is { : > }. Minimize: Net Cost = 6. Setting Cost = we solve = = 5 = = 5. 6 Sign-testing the critical number does indeed yield a minimum for the Cost function. Cost Costց 5 ր MIN Answer: Since = 5 then y = 5 =. As a result, the dimension that will minimize the cost are 5 55 in inches.. An outdoor track is to be created in the shape shown and is to have perimeter of yards. Find the dimensions for the track that maimize the area of the rectangular portion of the field enclosed by the track. Diagram: r r Variables: Let r =radius of semicircle ends of track. Let =length of side of rectangular portion of track. Let A =area of rectangular portion of track. Let P =perimeter of track.

11 Equations: We know the perimeter of the track is given by P = + πr = is fied, so that πr = = πr. Then the Area of the rectangular portion of the field, which must be minimized, is given as A = r = r πr = r πr The common-sense-boundsdomain of A is {r : r π }. Maimize: Net, A = πr. Setting A =, we solve for r = π. Sign-testing the critical number does indeed yield a maimum for the area function. A π A ր ց MAX Answer: Since r = π, then = π π =. The dimensions that maimize the area of the rectangular portion are = and r = π in yards.. Show that the entire region enclosed by the outdoor track in the previous eample has maimum area if the track is circular. Equations: From the previous problem, we still have = πr. Now the entire area enclosed by the track, which must be maimized, is given by A = πr + r = πr + r πr = πr + r πr = πr + r The common-sense-boundsdomain of A is {r : r π }. Maimize: Net, A = πr. Setting A =, we solve for r = π. Sign-testing the critical number does indeed yield a maimum for the area function. A A π ր ց MAX Answer:

12 Since r = π, then = π π =, in yards, resulting in a circular track. Initial Valued Differential Equations. Find a function f that satisfies f = + 5, f = 5 and passes through the point,. Antidifferentiating yields f = C. The initial condition f = 5 yields C = 5 = C = = f = + 5. Antidifferentiating one last time yields f = + 5 +C. The other initial condition with f passing through the point, implies f =. As a result, C = = C = 6 5 = 7. Finally, f = Find a function f that satisfies f = + sin, f = 6 and f =. Antidifferentiating yields f = cos + C. The initial condition f = 6 implies cos + C = 6 = C = 7. Then, f = cos + 7 Antidifferentiating one last time yields f = 6 sin+7+c. The other initial condition with f = implies sin++c = = C =. As a result, f = 6 6. Find a function f that satisfies f =, f = 9 and f = 5. sin Antidifferentiating yields f = 6 + C. Antidifferentiating one last time yields f = + C + C. The first initial condition f = 9 implies C = 9 so f = + C + 9. The second initial condition f = 5 implies 6 + C + 9 = 5 = C = 8 = C = 9. As a result f = Find a function f that satisfies f = + +, f = 8 and f = 5. Antidifferentiating yields f = C. Antidifferentiating one last time yields f = C + C. The first initial condition f = 8 implies C = 8 so f = C +8. The second initial condition f = 5 implies +++C +8 = 5 = C = 7. As a result f = Area and Riemann Sums 8. Evaluate d using Riemann Sums. Here a =, b =, = n = n and i = + i = + i n n.

13 d = lim n n i= f i = lim n = lim n n f i= n i= = lim n n + i n n + i n n n + n i= = lim n n n + n n i= i n n i i= = lim n n n + nn + n = lim + n n + n n n = lim + + n n 9. Evaluate 5 d using Riemann Sums. Here a =, b =, = n = n and i = + i = + = = i n n.

14 5 d = lim n n i= f i = lim n = lim n n f i= i= = lim n n = lim n i n n n i i 5 n n n 8 n n i= n i= i n n i n n i= i n n i i= 8 nn + n + = lim nn + n n 6 n 8 n n + = lim n 6 n n n + n n n n + n = lim n n n n. Use Riemann Sums to estimate endpoints. = 8 = 8 = + d f + f + f + f = f + f + f + f = = = = = 7 + d using equal-length subintervals and right Sand is added to a pile at a rate of + t cubic feet per hour for t 8. Compute the Riemann Sum to estimate 8 + t dt using subintervals and the left endpoint of each subinterval. Finally, what two things does this Riemann Sum approimate?

15 8 + t dt ft t + ft t + ft t + ft t = f + f + f + f6 = = 96 = 9 This Riemann sum approimates at least two things: the area under the curve y = +t from t = to t = 8, that is the definite integral. By the Net Change Thrm, it also approimates the net change of sand from time t = to time t = 8. Recall, Amount Sandt = 8 Amount Sandt =.. Compute 8 rate of change dt = d using three different methods: a using Area interpretations of the definite integral, b Fundamental Theorem of Calculus, and c Riemann Sums. } }{{} a Area= base height = = 9 b d = = 8 = + = 9 c Here a =, b =, = n = n and i = + i = + i n n. 5

16 d = lim n n i= f i = lim n = lim n n f i= n i= = lim n n = lim n 9 n + i n n + i n n n i= i n n i i= 9 nn + = lim n n 9 n n + = lim n n n 9 = lim n + n = 9 Differentiation Answer each of the following questions regarding derivatives:. Suppose that e y + y =. Compute dy d Differentiating implicitly d d ey + y = d d yields ey dy d + y epanding and solving for dy d d d d d d d d d 7 sin t dt = sint dt = d d 7 = y yey e y + t dt = sin cos cos t dt = d d 8. Find g if g = 7 sint dt = sin = sin cos t dt = cos = cos 7t + sint dt. 6 + dy d + y. Finally,

17 9.. g = d d sin 7 7t + sin t dt = d d g = 78 9 cos d tan t t dt = tan + d t t sec = tan + tan 7 7t + sin t dt = 7 + sin = 89 sec t t dt tan sec tan = tan + d t t + sint dt = t + sint dt + sin = d cos t + sin = cos cos + sin = cos + + sin. Find d d a. b. d d t dt using two different methods. t dt = = 6 We used the FTC Part I. d t dt = d d d We used FTC Part II.. Find d d a. b. d d d d t t = d d t + sint dt using two different methods. = 6 t + sint dt = d t + sin t dt = + sin We used the FTC Part I. d t + sint dt = d t d cos t = d cos d cos = sin We used FTC Part II.. Find f if ftdt = Differentiating both sides yields:. Find f if ftdt =. Differentiating both sides yields: d d d d d d ftdt = d. That is, f =. d ftdt = d d or ftdt = d d. That is, f = f =. 7

18 5. Differentiate y = sin e + y = sin e e + cos 6. Differentiate y = e cos e y = e cos e + e e cos sin 7. Differentiate y = e e cose y = e e sine e + cose e e e 8. Differentiate y = e y = e e = e + e 9. Differentiate y = + e e 7 y = e7 e + e e 7 7 e 7 = e + e 5 + 7e 7 + 7e 5 e 7 = e + 9e 5 + 7e 7 e 7. Differentiate y = sine cose y = sine sine e +cose cose e = sine sine e + cose cose e. Differentiate y = e e 7 y = 7e e 6 e e = 7e e 6 e + e... Integration Evaluate each of the following integrals: dz = dz = 7 5z 7 5z 5 u = 7 5z Here du = 5dz π du = dz 5 sec θ dθ = tanθ d π = tan π tan = sin π cos π u du = 5 u + C = 5 7 5z + C = = We can solve this one two different ways. We will detail both: First 8

19 d = = = d + + d + + d = = 8 + = = Second, we could use symmetry d [ = d + [ = + ] d ] [ = ] + 9 [ = ] [ = + 8 ] [ ] = = 5. d 9

20 = d + = + d = = 7 6 = 7 = d + + = d = + + d = C = C u + u + 7 = u du u + u 5 + 7u du = u 7 u u + C = u 7 u + C π u d = sin d d + π π = sin d + sin d π π π = cos + cos d = = cos π cos + cosπ cos π = + + = π 6 cos + 6 sin d = 6 Here π u= u= + u du = 6 u u= = = u= = + 6 = = 8 u = + 6 sin { du = 6 cos d = = u = and 6 du = cos d = π 6 = u = + 6 sin π 6 = + 6 =

21 5. π π sin d = u= π u= π sinu du = u= π cos u u= π = cos π + cos π = = Here π sin 6 Here π 8 u = { du = d = π and = u = π du = d = π = u = π cos 6 u= d = 6 u= u du = u = u= u= u = sin 6 du = 6 cos { = = u = 6 d 6du = cos and = π = u = 6 d tan sec d = Here π π 6 Here π 9 6 Here 5 5 u = tan du = sec d du = sec d cos π t dt = t sin t π 6 u = sin t du = cos t dt t du = cos t t dt u= u= and sincos + sin d = u= u= u du = u u= = u= 8 = 8 { = = u = = π 8 = u = tan π = cos t dt = t sin t u= and = π 6 = u = sin = π = u = sin u du = u u du = u u= u= = π π u= u= 6 = sin π 6 = = sin π = = = + = u = + sin { du = 6 sin cos d = = u = and du = sin cos d = π = u = + sin π = + = 5 sin d = why? w cos w + 9 dw = w cos w dw + sinu + 9w + C = sin w + 9w + C u = w Here du = w dw du = w dw 9 dw = cos u du + 9 dw =

22 y 9y siny + 6y 58. dy = y 9 siny + 6y dy = y y + 9 cos y 6y + C cos 59. d = cos u du = sinu + C = sin + C u = Here du = d du = d 6. t sin dt = sinu du = cos u + C = cos t t + C u = t Here du = dt t du = dt t u u du = { w = Here u dw = du u d = w dw = w + C = + C u d + = + + = 5 π = cos sin d π 5π cos sin d + π π = sin + cos + cos sin d = π sin cos d + 5π 5π π + sin + cos + cos sin d = sin π + cos π sin + cos + cos 5π sin 5π cos π sin π + sinπ + cos π sin 5π + cos 5π = = = t 5 + t 6 + t dt = ON EXAM # Here π 5π = + u du = ln u + C = ln t6 + t + C NOTE: THIS WILL NOT BE u = t 6 + t du = 6t 5 + dt du = t5 + dt + d = u u du = u 5 u du = 6 u6 5 u5 +C = C

23 66. { u = + = = u Here du = d 7 cos5 5 sin7 d = sin cos7 + C Here u = 5 du = 5d and 5 du = d 7 cos u du 5 7 w = 7 dw = 7d dw = d 67. d = u du = 6 6 u = Here du = 6d 6du = d 68. d = u C = C u = = = u Here du = d du = d u C = d = u9 7 + Here 8 u u = = = u + du = d du = d 7 + d = sinw dw = 7 5 sinu cos w + C = u + C = 9 u + C = 9 + C u du = 9 u 5 7 du = C d = C e d = e u du = eu + C = e + C u = Here du = d du = d u u du = u 9 5 u5 + u u 7 du = u9 7 + u 7 +C = 7. e d = 6 u= 7 u= e u du = 6 eu u= 7 u= = 6 e 7 e = 6e 6e 7

24 Here 6 u = du = 6d and du = d { = = u = = = u = 7 e 7 d = e u du = 7 7 eu + C = 7 e + C { u = Here du = d e e d = u du = u + C = e + C { u = e Here du = e d e 7 d = e 7 7 Here u = e 7 du = 7e 7 d 7 du = e7 d du = 6 6 u 7 u + C = u + C = e C e e e d = e u du = eu + C = ee + C u = e Here du = e d du = e d Area between Curves 77. Compute the area bounded by y = and y =. You can solve this problem two different ways. I will detail both. First we will use symmetry to integrate one side and then double the value to capture the entire area. Note that y = and y = intersect when = = = or when = or = ±.

25 [ ] Area = top bottom d [ ] = d [ ] = = [8 ] = 8 If you don t use symmetry we see that Area = = top bottom d + d + = + d = = + = 8 top bottom d 78. Compute the area bounded by y = and y = 8. You can solve this problem two different ways. I will detail both. First we will use symmetry to integrate one side and then double the value to capture the entire area. Note that y = and y = 8 intersect for > when = 8 = + 8 = = + = 5

26 or when = or =. We will ignore = here since we are considering the side with >. [ ] Area = top bottom d [ ] = 8 d [ ] = + 8 d [ ] = + 8 = [ 8 ] + 6 [ = 8 ] [ 6 = 8 ] = [ ] 8 = 56 If you don t use symmetry we see that 6

27 Area = top bottom d + = = 8 d d + top bottom d 8 d + 8 d = = = = 6 + = = Compute the area bounded by y =, y = +, =, and =. Note that these two curves intersect when = + = + = = + = = = or =. 7

28 Area = = = top bottom d + top bottom d + d + + d + + d = + = + d = = = = 6 Position, Velocity, Acceleration 8. A ball is thrown upward with a speed of 8 ft/sec from the edge of a cliff ft above the ground. Find its height above the ground t seconds later. When does it reach its maimum height? When does it hit the ground? Note v = 8 ft sec, s = ft. at = vt = t + v = vt = t + 8 st = 6t + 8t + s = st = 6t + 8t + Ma height occurs when vt =. That is, t + 8 = or when t = seconds. The ball hits the ground when st = 6t + 8t + = or when 6t 8t 9 = so that 6t 9t + =. Then t = 9 or t =. We will ignore the negative time here. The ball hits the ground after 9 seconds. 8. The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 9 ft before it came to a stop. Suppose that it is known that the car in question has a constant deceleration of ft/sec under the conditions of the skid. Suppose also that 8

29 the car was travelling at 6 ft/sec when the brakes were first applied. How long did it take for the car to come to a complete stop? Note v = 6 ft sec, s = ft. s = s stop = 9 v = 6 t stop =? at = vt = t + v = vt = t + 6 st = t + 6t + s = st = t + 8t + You can solve this two ways. First, the car stops when vt =. Set vt = t + 6 = and solve for the stopping time. That is, t = seconds. Second, the car stops when st = 9. Set st = t + 6t = 9 and solve for the stopping time. We see that t 6t + 9 = implies t t = or the car stops when t = seconds. 8. Suppose that a bolt was fired vertically upward from a powerful crossbow at ground level, and that it struck the ground 8 seconds later. If air resistance may be neglected, find the initial velocity of the bolt and the maimum height it reached. Note v =? ft sec, s = ft, t impact = 8sec. at = vt = t + v st = 6t + v t + s = st = 6t + v t + = st = 6t + v t First we use the impact information, s8 =. s8 = 68 + v 8 = = 8v = 68 = v = 68 8 = 68 = 768 ft sec, As a result vt = t and the ma height occurs when vt = = t = 768 = seconds. Finally the ma height is s = = = = 96 feet. 8. Jack throws a baseball straight downward from the top of a tall building. The initial speed of the ball is 5 feet per second. It hits the ground with a speed of 5 feet per second. How tall is the building? Note v = 5 ft sec, s =?ft, v impact = 5 ft sec? 9

30 at = vt = t + v = vt = t 5 st = 6t 5t + s The ball hits the ground when vt = t 5 = 5 or when t = 5 5 = 8 which is when t impact = seconds. Finally, we solve s = for s. The ball hits the ground when s = or when 56 + s = which is when s = 56 feet. As a result, the building is 56 feet tall. 8. A ball is dropped from the top of the building 576 feet high. With what velocity should a second ball be thrown straight downward seconds later so that the two balls hit the ground simultaneously? Note v = ft sec, s = 576ft. 576 Ball has the following motion equations: at = vt = t + v = vt = t st = 6t + s = st = 6t The first ball hits the ground when st = 6t +576 = or when 6t = 576 which is when t = or when t impact = 6 seconds. For the second ball to be thrown seconds later and hit the ground at the same time as the first ball, the second ball must travel just seconds before hitting the ground. Ball has the following motion equations: at = vt = t + v st = 6t + v t + s = st = 6t + v t We solve s = to find the second ball s initial velocity. Set 6 + v = = v = = = v =. Finally, the second ball must have an initial velocity of feet per second, or we can say the second ball must be thrown straight down with a speed of feet per second. 85. A particle starts from rest at the point = and moves along the -ais with acceleration function at = t. Find its resulting position function. Note s =, v =. at = t vt = 6t + v = vt = 6t st = t + s = st = t + As a result, the resulting position function is given as st = t The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 6 ft before it came to a stop. Suppose that it is known that the car in question

31 has a constant deceleration of ft/sec under the conditions of the skid. How fast was the car travelling when its brakes were first applied? Note v =? ft sec, s = ft, s stop = 6ft. s = s stop = 6 v =? v stop = at = vt = t + v st = t + v t + s = st = t + v t + You can solve this in two parts. First, the car stops when vt =. Set vt = t + v = and solve for the stopping time in terms of the initial velocity v. That is, t stop = v seconds. v Second, the car stops when st stop = 6 or s = 6. Set and solve for the unknown initial velocity. We see that v v + v = 6 v + v v = 6 v + v v + v v = 6 = 6 = 6 v = 6 v = 6 = 6 v = 8 Finally, the initial velocity v = 8 feet per second. Displacement Total Distance Net Change 87. Suppose that the velocity of a moving particle is vt = t t + feet per second. Find both the displacement and total distance it travels between time t = and t = seconds. Displacement= t t + dt = t t + t = + = 55 + = = 9 = 7 The displacement in question is 7. Note that if you sketch the parabola y = t t +, it passes below the -ais between = and = 8.

32 Total Distance= t t + dt 8 = t t + dt + t t + dt + t t + dt 8 = t t + t t t t + t t + t 8 = = = 7 98 = = 6 The total distance in question is Supppose that water is pumped into an initially empty tank. The rate of water flow into the tank at time t in seconds is 5 t liters per second. How much water flows into the tank during the first seconds? Using the Net Change Theorem, the amount of water in the tank between time t = and time t = is W W = rate of water flow dt. Using the FTC, we simply integrate 5 t dt = 5t t = 5 9 = 5 5 = 5. The amount of water that flows into the tank during the first seconds is 5 liters. Curve Sketching 89. Use curve sketching techniques to present a detailed sketch for f = e. Domain: f has domain,. Symmetry: f is an even function since f = f = symmetry about y-ais. Vertical asymptotes:none. Horizontal asymptotes: There are horizontal asymptotes for this f at y = since lim f = and lim f =. First Derivative Information: Here f = e. The critical points occur where f is undefined never here or zero =. Recall that the eponential is never zero. As a result, = is the critical number. Using sign testing/analysis for f, f f ր ց local ma

33 Therefore, f is increasing on, and decreasing on,. There is a local ma at the point,. Second Derivative Information Net, f = e + e = e. Possible inflection points occur when f is undefined never here or zero = ±. Using sign testing/analysis for f, f f infl. infl. point point Therefore, f is concave up on, and,, whereas f is concave down on,. There are inflection points at ±, e. Piece the first and second derivative information together f ր ր ց ց f infl. pt. local ma infl. pt. Sketch:

34 9. Use curve sketching techniques to present a detailed sketch for f = + e. Domain: f has domain,. Vertical asymptotes:none. Horizontal asymptotes: There is horizontal asymptote for this f at y = since lim f = will see why in Math and lim f =. First Derivative Information: Here f = + e + e + = e = e. The critical points occur where f is undefined never here or zero = and =. Recall that the eponential is never zero. As a result, = is the critical number. Using sign testing/analysis for f, f f ր ց ր local local ma min Therefore, f is increasing on, and,, and decreasing on,. There is a local ma at the point, e and local min at the point, e. Second Derivative Information Net, f = e e = e + 7. Possible inflection points occur when f is undefined never here or zero = 7± 5. Using sign testing/analysis for f, f f infl. infl. point point Therefore, f is concave down on, 7 5 and 7+ 5,, whereas f is concave down on 7 5, There are inflection points at, e 7 = 7 5, and, e 7+ = 7+ 5, 6 5. Piece the first and second derivative information together f ր ց ց ր ր f local ma infl. local pt. min infl. pt.

35 Sketch: 5

Calculus 1st Semester Final Review

Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim

Mathematical Modeling and Optimization Problems Answers

MATH& 141 Mathematical Modeling and Optimization Problems Answers 1. You are designing a rectangular poster which is to have 150 square inches of tet with -inch margins at the top and bottom of the poster

AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

Solutions to Exercises, Section 5.1

Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

2008 AP Calculus AB Multiple Choice Exam

008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus

AP Calculus AB 2004 Scoring Guidelines

AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from

Polynomial Degree and Finite Differences

CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

Core Maths C2. Revision Notes

Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

SURFACE AREA AND VOLUME

SURFACE AREA AND VOLUME In this unit, we will learn to find the surface area and volume of the following threedimensional solids:. Prisms. Pyramids 3. Cylinders 4. Cones It is assumed that the reader has

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2

MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we

Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

Geometry Notes PERIMETER AND AREA

Perimeter and Area Page 1 of 57 PERIMETER AND AREA Objectives: After completing this section, you should be able to do the following: Calculate the area of given geometric figures. Calculate the perimeter

Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,

Math 115 Extra Problems for 5.5

Math 115 Extra Problems for 5.5 1. The sum of two positive numbers is 48. What is the smallest possible value of the sum of their squares? Solution. Let x and y denote the two numbers, so that x + y 48.

MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:

MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an

Sandia High School Geometry Second Semester FINAL EXAM. Mark the letter to the single, correct (or most accurate) answer to each problem.

Sandia High School Geometry Second Semester FINL EXM Name: Mark the letter to the single, correct (or most accurate) answer to each problem.. What is the value of in the triangle on the right?.. 6. D.

Calculus with Parametric Curves

Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

2.8 FUNCTIONS AND MATHEMATICAL MODELS

2.8 Functions and Mathematical Models 131 2.8 FUNCTIONS AND MATHEMATICAL MODELS At one time Conway would be making constant appeals to give him a year, and he would immediately respond with the date of

AP Calculus AB 2010 Free-Response Questions Form B

AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.

Mathematics Placement Examination (MPE)

Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

correct-choice plot f(x) and draw an approximate tangent line at x = a and use geometry to estimate its slope comment The choices were:

Topic 1 2.1 mode MultipleSelection text How can we approximate the slope of the tangent line to f(x) at a point x = a? This is a Multiple selection question, so you need to check all of the answers that

1. Which of the 12 parent functions we know from chapter 1 are power functions? List their equations and names.

Pre Calculus Worksheet. 1. Which of the 1 parent functions we know from chapter 1 are power functions? List their equations and names.. Analyze each power function using the terminology from lesson 1-.

Geometry and Measurement

The student will be able to: Geometry and Measurement 1. Demonstrate an understanding of the principles of geometry and measurement and operations using measurements Use the US system of measurement for

Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

MCB4UW Optimization Problems Handout 4.6

MCB4UW Optimization Problems Handout 4.6 1. A rectangular field along a straight river is to be divided into smaller fields by one fence parallel to the river and 4 fences perpendicular to the river. Find

MA107 Precalculus Algebra Exam 2 Review Solutions

MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write

Graphing Trigonometric Skills

Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE

PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

Area of Parallelograms (pages 546 549)

A Area of Parallelograms (pages 546 549) A parallelogram is a quadrilateral with two pairs of parallel sides. The base is any one of the sides and the height is the shortest distance (the length of a perpendicular

MATH 100 PRACTICE FINAL EXAM

MATH 100 PRACTICE FINAL EXAM Lecture Version Name: ID Number: Instructor: Section: Do not open this booklet until told to do so! On the separate answer sheet, fill in your name and identification number

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

Summer Math Exercises. For students who are entering. Pre-Calculus

Summer Math Eercises For students who are entering Pre-Calculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn

476 CHAPTER 7 Graphs, Equations, and Inequalities 7. Quadratic Equations Now Work the Are You Prepared? problems on page 48. OBJECTIVES 1 Solve Quadratic Equations by Factoring (p. 476) Solve Quadratic

To find a maximum or minimum: Find an expression for the quantity you are trying to maximise/minimise (y say) in terms of one other variable (x). dy Find an expression for and put it equal to 0. Solve

Algebra Geometry Glossary. 90 angle

lgebra Geometry Glossary 1) acute angle an angle less than 90 acute angle 90 angle 2) acute triangle a triangle where all angles are less than 90 3) adjacent angles angles that share a common leg Example:

a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

AP Calculus BC 2008 Scoring Guidelines

AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college

Geometry Notes VOLUME AND SURFACE AREA

Volume and Surface Area Page 1 of 19 VOLUME AND SURFACE AREA Objectives: After completing this section, you should be able to do the following: Calculate the volume of given geometric figures. Calculate

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

Geometry Unit 6 Areas and Perimeters

Geometry Unit 6 Areas and Perimeters Name Lesson 8.1: Areas of Rectangle (and Square) and Parallelograms How do we measure areas? Area is measured in square units. The type of the square unit you choose

GAP CLOSING. Volume and Surface Area. Intermediate / Senior Student Book

GAP CLOSING Volume and Surface Area Intermediate / Senior Student Book Volume and Surface Area Diagnostic...3 Volumes of Prisms...6 Volumes of Cylinders...13 Surface Areas of Prisms and Cylinders...18

12 Surface Area and Volume

12 Surface Area and Volume 12.1 Three-Dimensional Figures 12.2 Surface Areas of Prisms and Cylinders 12.3 Surface Areas of Pyramids and Cones 12.4 Volumes of Prisms and Cylinders 12.5 Volumes of Pyramids

Area of Parallelograms, Triangles, and Trapezoids (pages 314 318)

Area of Parallelograms, Triangles, and Trapezoids (pages 34 38) Any side of a parallelogram or triangle can be used as a base. The altitude of a parallelogram is a line segment perpendicular to the base

Math 113 HW #7 Solutions

Math 3 HW #7 Solutions 35 0 Given find /dx by implicit differentiation y 5 + x 2 y 3 = + ye x2 Answer: Differentiating both sides with respect to x yields 5y 4 dx + 2xy3 + x 2 3y 2 ) dx = dx ex2 + y2x)e

The GED math test gives you a page of math formulas that

Math Smart 643 The GED Math Formulas The GED math test gives you a page of math formulas that you can use on the test, but just seeing the formulas doesn t do you any good. The important thing is understanding

MATH 121 FINAL EXAM FALL 2010-2011. December 6, 2010

MATH 11 FINAL EXAM FALL 010-011 December 6, 010 NAME: SECTION: Instructions: Show all work and mark your answers clearly to receive full credit. This is a closed notes, closed book exam. No electronic

D.3. Angles and Degree Measure. Review of Trigonometric Functions

APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

MTH 125 3.7 Related Rates

Objectives MTH 15 3.7 Related Rates Finding Related Rates We have seen how the Chain Rule can be used to find dy/dx implicitly. Another important use of the Chain Rule is to find the rates of change of

Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

2006 Geometry Form A Page 1

2006 Geometry Form Page 1 1. he hypotenuse of a right triangle is 12" long, and one of the acute angles measures 30 degrees. he length of the shorter leg must be: () 4 3 inches () 6 3 inches () 5 inches

AP Calculus AB 2003 Scoring Guidelines Form B

AP Calculus AB Scoring Guidelines Form B The materials included in these files are intended for use by AP teachers for course and exam preparation; permission for any other use must be sought from the

16 Circles and Cylinders

16 Circles and Cylinders 16.1 Introduction to Circles In this section we consider the circle, looking at drawing circles and at the lines that split circles into different parts. A chord joins any two

Physics 53. Kinematics 2. Our nature consists in movement; absolute rest is death. Pascal

Phsics 53 Kinematics 2 Our nature consists in movement; absolute rest is death. Pascal Velocit and Acceleration in 3-D We have defined the velocit and acceleration of a particle as the first and second

2.3 Maximum and Minimum Applications

Section.3 155.3 Maximum and Minimum Applications Maximizing (or minimizing) is an important technique used in various fields of study. In business, it is important to know how to find the maximum profit

Calculating Area, Perimeter and Volume

Calculating Area, Perimeter and Volume You will be given a formula table to complete your math assessment; however, we strongly recommend that you memorize the following formulae which will be used regularly

Solving Simultaneous Equations and Matrices

Solving Simultaneous Equations and Matrices The following represents a systematic investigation for the steps used to solve two simultaneous linear equations in two unknowns. The motivation for considering

Perimeter, Area, and Volume

Perimeter, Area, and Volume Perimeter of Common Geometric Figures The perimeter of a geometric figure is defined as the distance around the outside of the figure. Perimeter is calculated by adding all

Sect 6.7 - Solving Equations Using the Zero Product Rule

Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred

1.1 Practice Worksheet

Math 1 MPS Instructor: Cheryl Jaeger Balm 1 1.1 Practice Worksheet 1. Write each English phrase as a mathematical expression. (a) Three less than twice a number (b) Four more than half of a number (c)

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

Functions and their Graphs

Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

AP Calculus AB 2005 Scoring Guidelines Form B

AP Calculus AB 5 coring Guidelines Form B The College Board: Connecting tudents to College uccess The College Board is a not-for-profit membership association whose mission is to connect students to college

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST. Mathematics Reference Sheets. Copyright Statement for this Assessment and Evaluation Services Publication

FCAT FLORIDA COMPREHENSIVE ASSESSMENT TEST Mathematics Reference Sheets Copyright Statement for this Assessment and Evaluation Services Publication Authorization for reproduction of this document is hereby

Exam 1 Review Questions PHY 2425 - Exam 1

Exam 1 Review Questions PHY 2425 - Exam 1 Exam 1H Rev Ques.doc - 1 - Section: 1 7 Topic: General Properties of Vectors Type: Conceptual 1 Given vector A, the vector 3 A A) has a magnitude 3 times that

THE PARABOLA 13.2. section

698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

Nonlinear Systems and the Conic Sections

C H A P T E R 11 Nonlinear Systems and the Conic Sections x y 0 40 Width of boom carpet Most intense sonic boom is between these lines t a cruising speed of 1,40 miles per hour, the Concorde can fly from

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Ground Rules PC11 Fundamentals of Physics I Lectures 3 and 4 Motion in One Dimension Dr Tay Seng Chuan 1 Switch off your handphone and pager Switch off your laptop computer and keep it No talking while

Name Class. Date Section. Test Form A Chapter 11. Chapter 11 Test Bank 155

Chapter Test Bank 55 Test Form A Chapter Name Class Date Section. Find a unit vector in the direction of v if v is the vector from P,, 3 to Q,, 0. (a) 3i 3j 3k (b) i j k 3 i 3 j 3 k 3 i 3 j 3 k. Calculate

Perimeter. 14ft. 5ft. 11ft.

Perimeter The perimeter of a geometric figure is the distance around the figure. The perimeter could be thought of as walking around the figure while keeping track of the distance traveled. To determine

CHAPTER 8, GEOMETRY. 4. A circular cylinder has a circumference of 33 in. Use 22 as the approximate value of π and find the radius of this cylinder.

TEST A CHAPTER 8, GEOMETRY 1. A rectangular plot of ground is to be enclosed with 180 yd of fencing. If the plot is twice as long as it is wide, what are its dimensions? 2. A 4 cm by 6 cm rectangle has

Math 1B, lecture 5: area and volume

Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

Candidates should be able to : Derive the equations of motion for constant acceleration in a straight line from a velocity-time graph. Select and use the equations of motion for constant acceleration in

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Chapter 3: Falling Objects and Projectile Motion 1. Neglecting friction, if a Cadillac and Volkswagen start rolling down a hill together, the heavier Cadillac will get to the bottom A. before the Volkswagen.

The small increase in x is. and the corresponding increase in y is. Therefore

Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

= f x 1 + h. 3. Geometrically, the average rate of change is the slope of the secant line connecting the pts (x 1 )).

Math 1205 Calculus/Sec. 3.3 The Derivative as a Rates of Change I. Review A. Average Rate of Change 1. The average rate of change of y=f(x) wrt x over the interval [x 1, x 2 ]is!y!x ( ) - f( x 1 ) = y

Slope and Rate of Change

Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the

+ 4θ 4. We want to minimize this function, and we know that local minima occur when the derivative equals zero. Then consider

Math Xb Applications of Trig Derivatives 1. A woman at point A on the shore of a circular lake with radius 2 miles wants to arrive at the point C diametrically opposite A on the other side of the lake

Jump Shot Mathematics Howard Penn

Jump Shot Mathematics Howard Penn Abstract In this paper we exae variations of standard calculus problems in the context of shooting a basketball jump shot. We believe that many students will find this

13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

Version 005 Exam Review Practice Problems NOT FOR A GRADE alexander (55715) 1. Hence

Version 005 Eam Review Practice Problems NOT FOR A GRADE aleander 5575 This print-out should have 47 questions Multiple-choice questions may continue on the net column or page find all choices before answering

Homework #1 Solutions

MAT 303 Spring 203 Homework # Solutions Problems Section.:, 4, 6, 34, 40 Section.2:, 4, 8, 30, 42 Section.4:, 2, 3, 4, 8, 22, 24, 46... Verify that y = x 3 + 7 is a solution to y = 3x 2. Solution: From

12-1 Representations of Three-Dimensional Figures

Connect the dots on the isometric dot paper to represent the edges of the solid. Shade the tops of 12-1 Representations of Three-Dimensional Figures Use isometric dot paper to sketch each prism. 1. triangular

CSU Fresno Problem Solving Session. Geometry, 17 March 2012

CSU Fresno Problem Solving Session Problem Solving Sessions website: http://zimmer.csufresno.edu/ mnogin/mfd-prep.html Math Field Day date: Saturday, April 21, 2012 Math Field Day website: http://www.csufresno.edu/math/news

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

Exercise 11.1. Q.1. A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area?

11 MENSURATION Exercise 11.1 Q.1. A square and a rectangular field with measurements as given in the figure have the same perimeter. Which field has a larger area? (a) Side = 60 m (Given) Perimeter of

Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems

Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions

SAT Subject Test Practice Test II: Math Level II Time 60 minutes, 50 Questions All questions in the Math Level 1 and Math Level Tests are multiple-choice questions in which you are asked to choose the

Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122. Carroll College Mathematics Department

Active Calculus & Mathematical Modeling Activities and Voting Questions Carroll College MA 122 Carroll College Mathematics Department Last Update: June 2, 2015 2 To The Student This packet is NOT your

3600 s 1 h. 24 h 1 day. 1 day

Week 7 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

Characteristics of the Four Main Geometrical Figures

Math 40 9.7 & 9.8: The Big Four Square, Rectangle, Triangle, Circle Pre Algebra We will be focusing our attention on the formulas for the area and perimeter of a square, rectangle, triangle, and a circle.