An Introduction to Calculus. Jackie Nicholas
|
|
|
- Clyde Robertson
- 9 years ago
- Views:
Transcription
1 Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney
2 Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them Derivatives can be used in economics whenever we want to talk about a rate of change or want to maximise or minimise something. For example, marginal cost is the rate of change of total cost with respect to output, so marginal cost can expressed as the derivative of total cost. In the following notes, we will give a few rules so that you can find derivatives of simple polynomial functions and then discuss how they can be used. Notation We will use y to represent our dependent variable and q as our independent variable, so we will differentiate with respect to q. We may use functional notation and write y = f(q) which means that y is a function of q. So, y = f(q)+g(q) means that y is the sum of two functions of q, one called f(q) and one called g(q). We will express the derivative of y with respect to q as dy. If we use functional notation and write y = f(q) then dy = df. That is, the derivative of y with respect to q can be written as the derivative of f with respect to q. Some rules of differentiation Rule 1. If y = c, where c is an arbitary constant, then For example, if p = 2000, then dp =0. dy =0. Rule 2. If y = kq n where n is any number and k is a constant, then dy = k(nqn 1 ). For example, if TC =2q 2, then dt C = 2(2q 2 1 )=4q. Rule 3. If y = f(q)+g(q), then dy = df + dg. For example, if TC =12q +2q 2, then dt C = 12(1q 1 1 ) + 2(2q 1 )=12+4q. These are not the only rules for differentiation, but if we consider only simple polynomials we can make do with these.
3 Mathematics Learning Centre, University of Sydney 2 An example of using these rules Adapted from S.Cheung, Mathematics Review Problems, 2004 A firm s total cost of production (TC) is given as a function of output q by the equation TC = q 3 20q q. Find the derivative of TC, marginal cost (MC), as a function of q and evaluate it for q = 10. Solution MC = dt C = 3q 2 20(2q) = 3q 2 40q When q = 10, MC = 3(10) 2 40(10) = 120. What does the derivative mean and how can we use it The derivative of the function y = f(q) gives us a way of calculating the slope of the tangent to the curve at each point q. Figure 1. Figure 1 shows the graph of a function and the tangent to the curve at an arbitrary point. The slope of the tangent line illustrated is given by the derivative of the function evaluated at the arbitrary point. Therefore, we can use the derivative of a function to determine whether or not it has a maximum or minimum value in the following way.
4 Mathematics Learning Centre, University of Sydney 3 Figures 2 and 3 show functions with a maximum and a minimum respectively. Note, that at the maximum and minimum, the tangents to the curves are horizontal. That is, the derivatives are zero. Figure 2. Figure 3. For simple polynomials, any maximum or minimum will occur when the derivative is zero. A point where the derivative is zero is called a critical point. We now have a way of finding maxima and minima, the first step of which is to find any critical points. Finding the critical point: an example Adapted from S.Cheung, Mathematics Review Problems, 2004 The average cost (AC) per unit of output q is given by the equation AC = q 2 20q Find the level of output q at which average cost is a minimum. Find the minimum value of average cost. Solution Our average cost function is a simple polynomial and so a minimum will occur only at a critical point. Therefore, we need the derivative of average cost with respect to q. dac =2q 20. A critical point is a point where the derivative is zero. So, dac = 0 when q =10. We can now conclude that there is only one possible value of q that minimises average cost and it is when q = 10. When q = 10, AC = (10) 2 20(10) = 120. This is the minimum value for average cost.
5 Mathematics Learning Centre, University of Sydney 4 Determining the nature of critical points (optional) In the previous example, there was only one possible value of q that could give us a minimum. In other situations, there could be more than one critical point and so we need a method to decide whether or not our critical point is a maximum or a minimum or neither. First, let s look at the relationship between the function and the derivative. In Figure 1, the function is increasing and the slope of the tangent to the curve at the point illustrated is positive. Clearly, if we pick another point on this curve, we will get a tangent with a different slope but the slope will still be positive. So, if the function y = f(q) is increasing, then the derivative is positive. Similarly, if we have a function y = f(q) which is decreasing, the derivative is negative. This is illustrated in Figure 4. Figure 4. Figures 1 and 4 indicate to us a way of deducing something about the function if we know about its derivative. If the derivative is positive for some interval of q values, then the function is increasing for that interval of q values. And If the derivative is negative for some interval of q values, then the function is decreasing for that interval of q values. We can use this to deduce the nature of a critical point. If the function has a critical point at q = a, and for q<athe derivative is positive and for q>athe derivative is negative, then the function has a (local) maximum at q = a. This is because for q<a, the function is increasing and for q>athe function is decreasing. So, the point q = a must be a maximum. This is illustrated in Figure 5.
6 Mathematics Learning Centre, University of Sydney 5 Similarly, if the function has a critical point at q = a, and for q<athe derivative is negative and for q>athe derivative is positive, then the function has a (local) minimum at q = a. This is because for q<a, the function is decreasing and for q>athe function is increasing. So, the point q = a must be a minimum. This is illustrated in Figure 6. Figure 5. Figure 6. Another example Suppose that a firm s profits (which we denote by π) is a function of its output q. Suppose the relationship between these variables is given by π =80q 4q For what value of q is the firm s profits maximised. Evaluate π for this value of q. Solution To maximise profits we differentiate π with respect to q. dπ =80 8q. The critical point occurs when dπ = 0, ie when 80 8q = 0 ie when q = 10. When q<10 (say q = 9), dπ > 0soπ is increasing for q<10. When q>10 (say q = 11), dπ < 0soπ is decreasing for q>10. Therfore, there is a maximum at q = 10. Profit is maximised when q = 10, ie the maximum profit is π = 80(10) 4(10) = 200.
2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
Multi-variable Calculus and Optimization
Multi-variable Calculus and Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Multi-variable Calculus and Optimization 1 / 51 EC2040 Topic 3 - Multi-variable Calculus
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
2013 MBA Jump Start Program
2013 MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Algebra Review Calculus Permutations and Combinations [Online Appendix: Basic Mathematical Concepts] 2 1 Equation of
Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
Costs of Production and Profit Maximizing Production: 3 examples.
Costs of Production and Profit Maximizing Production: 3 examples. In this handout, we analyze costs and profit maximizing output decisions by looking at three different possible costs structures. Three
A Detailed Price Discrimination Example
A Detailed Price Discrimination Example Suppose that there are two different types of customers for a monopolist s product. Customers of type 1 have demand curves as follows. These demand curves include
Microeconomics and mathematics (with answers) 5 Cost, revenue and profit
Microeconomics and mathematics (with answers) 5 Cost, revenue and profit Remarks: = uantity Costs TC = Total cost (= AC * ) AC = Average cost (= TC ) MC = Marginal cost [= (TC)'] FC = Fixed cost VC = (Total)
AP Calculus BC 2008 Scoring Guidelines
AP Calculus BC 8 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
2.2 Derivative as a Function
2.2 Derivative as a Function Recall that we defined the derivative as f (a) = lim h 0 f(a + h) f(a) h But since a is really just an arbitrary number that represents an x-value, why don t we just use x
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
Calculus 1st Semester Final Review
Calculus st Semester Final Review Use the graph to find lim f ( ) (if it eists) 0 9 Determine the value of c so that f() is continuous on the entire real line if f ( ) R S T, c /, > 0 Find the limit: lim
PART A: For each worker, determine that worker's marginal product of labor.
ECON 3310 Homework #4 - Solutions 1: Suppose the following indicates how many units of output y you can produce per hour with different levels of labor input (given your current factory capacity): PART
Math 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Increasing for all. Convex for all. ( ) Increasing for all (remember that the log function is only defined for ). ( ) Concave for all.
1. Differentiation The first derivative of a function measures by how much changes in reaction to an infinitesimal shift in its argument. The largest the derivative (in absolute value), the faster is evolving.
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
5.1 Derivatives and Graphs
5.1 Derivatives and Graphs What does f say about f? If f (x) > 0 on an interval, then f is INCREASING on that interval. If f (x) < 0 on an interval, then f is DECREASING on that interval. A function has
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Firms that survive in the long run are usually those that A) remain small. B) strive for the largest
AP Calculus BC 2013 Free-Response Questions
AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Numerical Solution of Differential Equations
Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant
Analyzing Functions Intervals of Increase & Decrease Lesson 76
(A) Lesson Objectives a. Understand what is meant by the terms increasing/decreasing as it relates to functions b. Use graphic and algebraic methods to determine intervals of increase/decrease c. Apply
AP Calculus BC 2006 Free-Response Questions
AP Calculus BC 2006 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
Linear functions Increasing Linear Functions. Decreasing Linear Functions
3.5 Increasing, Decreasing, Max, and Min So far we have been describing graphs using quantitative information. That s just a fancy way to say that we ve been using numbers. Specifically, we have described
A power series about x = a is the series of the form
POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to
Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS
DUSP 11.203 Frank Levy Microeconomics Sept. 16, 2010 NOTES ON CALCULUS AND UTILITY FUNCTIONS These notes have three purposes: 1) To explain why some simple calculus formulae are useful in understanding
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
Microeconomics Topic 6: Be able to explain and calculate average and marginal cost to make production decisions.
Microeconomics Topic 6: Be able to explain and calculate average and marginal cost to make production decisions. Reference: Gregory Mankiw s Principles of Microeconomics, 2 nd edition, Chapter 13. Long-Run
AP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Calculus AB 2014 Scoring Guidelines
P Calculus B 014 Scoring Guidelines 014 The College Board. College Board, dvanced Placement Program, P, P Central, and the acorn logo are registered trademarks of the College Board. P Central is the official
AP Calculus AB 2006 Scoring Guidelines
AP Calculus AB 006 Scoring Guidelines The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to college
or, put slightly differently, the profit maximizing condition is for marginal revenue to equal marginal cost:
Chapter 9 Lecture Notes 1 Economics 35: Intermediate Microeconomics Notes and Sample Questions Chapter 9: Profit Maximization Profit Maximization The basic assumption here is that firms are profit maximizing.
1 Error in Euler s Method
1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
Long-Run Average Cost. Econ 410: Micro Theory. Long-Run Average Cost. Long-Run Average Cost. Economies of Scale & Scope Minimizing Cost Mathematically
Slide 1 Slide 3 Econ 410: Micro Theory & Scope Minimizing Cost Mathematically Friday, November 9 th, 2007 Cost But, at some point, average costs for a firm will tend to increase. Why? Factory space and
2.1 Increasing, Decreasing, and Piecewise Functions; Applications
2.1 Increasing, Decreasing, and Piecewise Functions; Applications Graph functions, looking for intervals on which the function is increasing, decreasing, or constant, and estimate relative maxima and minima.
DERIVATIVES AS MATRICES; CHAIN RULE
DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we
Functions: Piecewise, Even and Odd.
Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 21-22, 2015 Tutorials, Online Homework.
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)
Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight. These are: If x(t) represents the
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization
Lecture 2. Marginal Functions, Average Functions, Elasticity, the Marginal Principle, and Constrained Optimization 2.1. Introduction Suppose that an economic relationship can be described by a real-valued
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
AP Calculus BC 2001 Free-Response Questions
AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B)
AP CALCULUS AB 2007 SCORING GUIDELINES (Form B) Question 4 Let f be a function defined on the closed interval 5 x 5 with f ( 1) = 3. The graph of f, the derivative of f, consists of two semicircles and
MATH 10550, EXAM 2 SOLUTIONS. x 2 + 2xy y 2 + x = 2
MATH 10550, EXAM SOLUTIONS (1) Find an equation for the tangent line to at the point (1, ). + y y + = Solution: The equation of a line requires a point and a slope. The problem gives us the point so we
Inequalities - Absolute Value Inequalities
3.3 Inequalities - Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
14.1. Basic Concepts of Integration. Introduction. Prerequisites. Learning Outcomes. Learning Style
Basic Concepts of Integration 14.1 Introduction When a function f(x) is known we can differentiate it to obtain its derivative df. The reverse dx process is to obtain the function f(x) from knowledge of
x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1
Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:
AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be
AP Calculus BC 2010 Free-Response Questions
AP Calculus BC 2010 Free-Response Questions The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded
18.01 Single Variable Calculus Fall 2006
MIT OpenCourseWare http://ocw.mit.edu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Unit : Derivatives A. What
AP Calculus AB 2010 Free-Response Questions Form B
AP Calculus AB 2010 Free-Response Questions Form B The College Board The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity.
10.2 Series and Convergence
10.2 Series and Convergence Write sums using sigma notation Find the partial sums of series and determine convergence or divergence of infinite series Find the N th partial sums of geometric series and
1.7 Graphs of Functions
64 Relations and Functions 1.7 Graphs of Functions In Section 1.4 we defined a function as a special type of relation; one in which each x-coordinate was matched with only one y-coordinate. We spent most
The Derivative. Philippe B. Laval Kennesaw State University
The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition
Market Supply in the Short Run
Equilibrium in Perfectly Competitive Markets (Assume for simplicity that all firms have access to the same technology and input markets, so they all have the same cost curves.) Market Supply in the Short
7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
LIMITS AND CONTINUITY
LIMITS AND CONTINUITY 1 The concept of it Eample 11 Let f() = 2 4 Eamine the behavior of f() as approaches 2 2 Solution Let us compute some values of f() for close to 2, as in the tables below We see from
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Math Placement Test Practice Problems
Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211
AP CALCULUS AB 2006 SCORING GUIDELINES (Form B) Question 4
AP CALCULUS AB 2006 SCORING GUIDELINES (Form B) Question 4 The rate, in calories per minute, at which a person using an exercise machine burns calories is modeled by the function 1 3 3 2 f. In the figure
AP CALCULUS AB 2009 SCORING GUIDELINES
AP CALCULUS AB 2009 SCORING GUIDELINES Question 5 x 2 5 8 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points in
Keynesian Macroeconomic Theory
2 Keynesian Macroeconomic Theory 2.1. The Keynesian Consumption Function 2.2. The Complete Keynesian Model 2.3. The Keynesian-Cross Model 2.4. The IS-LM Model 2.5. The Keynesian AD-AS Model 2.6. Conclusion
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.
Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =
CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY
CHAPTER 10 MARKET POWER: MONOPOLY AND MONOPSONY EXERCISES 3. A monopolist firm faces a demand with constant elasticity of -.0. It has a constant marginal cost of $0 per unit and sets a price to maximize
3 Contour integrals and Cauchy s Theorem
3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
List the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
1 Calculus of Several Variables
1 Calculus of Several Variables Reading: [Simon], Chapter 14, p. 300-31. 1.1 Partial Derivatives Let f : R n R. Then for each x i at each point x 0 = (x 0 1,..., x 0 n) the ith partial derivative is defined
AP Calculus AB 2007 Scoring Guidelines Form B
AP Calculus AB 7 Scoring Guidelines Form B The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
Calculus with Parametric Curves
Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function
a cos x + b sin x = R cos(x α)
a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this
1. (from Stewart, page 586) Solve the initial value problem.
. (from Stewart, page 586) Solve the initial value problem.. (from Stewart, page 586) (a) Solve y = y. du dt = t + sec t u (b) Solve y = y, y(0) = 0., u(0) = 5. (c) Solve y = y, y(0) = if possible. 3.
Nonlinear Systems of Ordinary Differential Equations
Differential Equations Massoud Malek Nonlinear Systems of Ordinary Differential Equations Dynamical System. A dynamical system has a state determined by a collection of real numbers, or more generally
Scalar Valued Functions of Several Variables; the Gradient Vector
Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,
Lecture 7: Continuous Random Variables
Lecture 7: Continuous Random Variables 21 September 2005 1 Our First Continuous Random Variable The back of the lecture hall is roughly 10 meters across. Suppose it were exactly 10 meters, and consider
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
AP Calculus AB 2013 Free-Response Questions
AP Calculus AB 2013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded
Chapter 8. Competitive Firms and Markets
Chapter 8. Competitive Firms and Markets We have learned the production function and cost function, the question now is: how much to produce such that firm can maximize his profit? To solve this question,
c. Given your answer in part (b), what do you anticipate will happen in this market in the long-run?
Perfect Competition Questions Question 1 Suppose there is a perfectly competitive industry where all the firms are identical with identical cost curves. Furthermore, suppose that a representative firm
Lecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
Mark Howell Gonzaga High School, Washington, D.C.
Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,
D) Marginal revenue is the rate at which total revenue changes with respect to changes in output.
Ch. 9 1. Which of the following is not an assumption of a perfectly competitive market? A) Fragmented industry B) Differentiated product C) Perfect information D) Equal access to resources 2. Which of
u dx + y = 0 z x z x = x + y + 2 + 2 = 0 6) 2
DIFFERENTIAL EQUATIONS 6 Many physical problems, when formulated in mathematical forms, lead to differential equations. Differential equations enter naturally as models for many phenomena in economics,
Problems 1-21 could be on the no Derive part. Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2
MTH 120 Practice Test #1 Sections 1.2, 2.2, 2.3, 3.1, 3.3, 3.4, 4.1, 4.2 Use the properties of limits to help decide whether the limit eists. If the limit eists, find its value. 1) lim 5 2) lim 3 2-25
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
AP Calculus AB 2005 Free-Response Questions
AP Calculus AB 25 Free-Response Questions The College Board: Connecting Students to College Success The College Board is a not-for-profit membership association whose mission is to connect students to
