Examples of Tasks from CCSS Edition Course 3, Unit 5
|
|
|
- Patricia Higgins
- 10 years ago
- Views:
Transcription
1 Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can still assign these questions and expect students to finish the tasks. If you are working with your student on homework, please use these solutions with the intention of increasing student understanding and independence. A list of questions to use as you work together, prepared in English and Spanish, is available. Encourage students to refer to their class notes and Math Toolkit entries for assistance. Comments in red type are not part of the solution. As you read these selected homework tasks and solutions, you will notice that some very sophisticated communication skills are expected. Students develop these over time. This is the standard for which to strive. See Research on Communication. The Algebra and Functions page might help you follow the conceptual development of the ideas you see in these examples. Main Mathematical Goals for Unit 5 Upon completion of this unit, students should be able to: recognize patterns in problem conditions and in data plots that can be described by polynomial and rational functions. write polynomial and rational function rules to describe patterns in graphs, numerical data, and problem conditions. use table, graph, or symbolic representations of polynomial and rational functions to answer questions about the situations they represent: (1) calculate y for a given x (i.e., evaluate functions); (2) find x for a given y (i.e., solve equations and inequalities); and (3) identify local max/min points and asymptotes. rewrite polynomial and rational expressions in equivalent forms by expanding or factoring, by combining like terms, and by removing common factors in numerator and denominator of rational expressions. add, subtract, and multiply polynomial and rational expressions and functions extend understanding and skill in work with quadratic functions to include completing the square, interpreting vertex form, and proving the quadratic formula. recognize and calculate complex number solutions of quadratic equations. What Solutions are Available? Lesson 1: Investigation 1 Applications Task 1 (p. 336), Review Task 24 (p. 345) Investigation 2 Applications Task 3 (p. 337), Applications Task 5 (p. 338), Connections Task 13 (p. 341), Review Task 28 (p. 346) Investigation 3 Applications Task 8 (p. 339), Reflections Task 16 (p. 342), Review Task 30 (p. 346), Review Task 31 (p. 346) Lesson 2: Investigation 1 Applications Task 1 (p. 357), Applications Task 4 (p. 358), Applications Task 5 (p. 358), Extensions Task 21 (p. 361), Review Task 26 (p. 362) Investigation 2 Applications Task 6 (p. 358), Review Task 32 (p. 363) 2015 Core-Plus Mathematics Project. All rights reserved. 1
2 Lesson 3: Investigation 1 Applications Task 4 (p. 381) Investigation 2 Applications Task 5 (p. 382), Applications Task 7 (p. 382), Connections Task 17 (p. 384), Extensions Task 24 (p. 386) Investigation 3 Extensions Task 25 (p. 389), Review Task 37 (p. 389) Investigation 4 Applications Task 10 (p. 382), Reflections Task 23 (p. 385), Review Task 40 (p. 389) Selected Homework Tasks and Expected Solutions (These solutions are for tasks in the CCSS Edition book. For homework tasks in books with earlier copyright dates, see Helping with Homework.) Lesson 1, Investigation 1, Applications Task 1 (p. 336) a c. To be completed by the student. d. Points used: ( 0.5, 0), (0, 4), (1, 5), (2, 5), (3, 4), (3.5, 0) y = 0.476x x x x 4; Since this graph is flatter near the minimum value, a quadratic function is not reasonable. But a function with even degree is a good choice. Lesson 1, Investigation 1, Review Task 24 (p. 345) In Course 3 Unit 2, Inequalities and Linear Programming, students learned to solve quadratic inequalities by factoring the inequality set equal to zero. Then they used the zeroes of the linear terms or corresponding functions to make a sketch and determine the solution. This method is shown in Part c. a, b, d. To be completed by the student. c. x 2 4x 5 0 Original inequality x 2 4x 5 = 0 Change the inequality to an equality to find the zeroes (the x-intercepts) of the function. (x 5)(x + 1) = 0 Factor the non-zero side. x 5 = 0 or x + 1 = 0 Set each factor equal to zero and solve to get the zeroes x = 5 or x = 1 of your equation. Use these with other information in the equation to graph the function Core-Plus Mathematics Project. All rights reserved. 2
3 Use the information from the graph of the corresponding function to determine your solution. The function is greater than or equal to zero when x 1 or x 5, so these intervals are the solution to the inequality x 2 4x 5 0. Lesson 1, Investigation 2, Applications Task 3 (p. 337) a d. To be completed by the student. e. 5x 5 3x 4 + 7x 3 + 3x 2 The degrees of the expressions being combined are 5 and 3. The degree of the result is 5. Lesson 1, Investigation 2, Applications Task 5 (p. 338) a, b, d f. To be completed by the student. c. To multiply (2x 2 + 3x 7)(3x + 7), you can use the distributive property twice. (2x2 + 3x 7)(3x + 7) = (3x)(2x2) + (3x)(3x) + (3x)( 7) + (7)(2x2) + (7)(3x) + (7)( 7) = 6x3 + 9x2 21x + 14x2 + 21x 49 = 6x3 + 23x2 49 Lesson 1, Investigation 2, Connections Task 13 (p. 341) a. To solve polynomial inequalities, you must find the zeroes of the corresponding polynomial function. The zeroes can be easily found by looking at the factored form, which is given to us in the problem. y = x 3 + 2x 2 11x 12 = (x 3)(x + 1)(x + 4) The zeroes are 3, 1, and 4. To solve x 3 + 2x 2 11x 12 0, one needs to look at the graph of the corresponding function as shown at the top of the following page Core-Plus Mathematics Project. All rights reserved. 3
4 By looking at the graph, we can see the function is greater than zero for x values between 4 and 1. It is also greater than zero for x values larger than 3. The solution to x 3 + 2x 2 11x 12 0 can be expressed three ways: Inequality notation: 4 x 1 or x 3 Interval notation: [ 4, 1] [3, ) Number line graph: b. To be completed by the student. Lesson 1, Investigation 2, Review Task 28 (p. 346) a. 24 = 4 6 = 2 6 ; The number 24 has many more factors like 2(12) or 3(8), etc. So, why was 4(6) chosen? The reason is the 4 is what is called a perfect square (2 2 = 4), so 4 = 2. Thus, when putting the expression in simplest equivalent form, look for factors that are perfect squares. b. 48 = 4 12 or 48 = 16 3 = = 4 3 = = 4 3 c h. To be completed by the student. Lesson 1, Investigation 3, Applications Task 8 (p. 339) a. Recall profit = income expenses. income = (number sold)(price) = (100 4x)(x) = 100x 4x 2 (from Task 7) and expenses = 2x So, one algebraic expression for profit is P(x) = (100x 4x 2 ) (2x + 150). The other simpler equivalent form is left for the student. b f. To be completed by the student Core-Plus Mathematics Project. All rights reserved. 4
5 Lesson 1, Investigation 3, Reflections Task 16 (p. 342) The answers to the following questions are for the function: f(x) = x 4 10x x 2 50x + 24 = (x 1)(x 2)(x 3)(x 4) a. It is easier to see the zeroes in the factored form. You find them by setting each linear factor equal to zero and solving. f(x) = (x 1)(x 2)(x 3)(x 4) x 1 = 0 x 2 = 0 x 3 = 0 x 4 = 0 x = 1 x = 2 x = 3 x = 4 b. It is easier to see the y-intercept in the expanded standard form. Since the y-intercept has an x-coordinate x = 0 and each term of the polynomial function except the constant term is a power of x times a constant, f(0) = 24. The y-intercept is (0, 24). c e. To be completed by the student. Lesson 1, Investigation 3, Review Task 30 (p. 346) a. x = ±4 b, c, e, f. To be completed by the student. d. x = 3 ± 19 Lesson 1, Investigation 3, Review Task 31 (p. 346) a. 4x x 15 b, d f. To be completed by the student. c. x 2 9 Lesson 2, Investigation 1, Applications Task 1 (p. 357) a. f(x) = (x + 2) 2 9 Max/min points: This particular function has a minimum point and it occurs at ( 2, 9). For any quadratic function in the vertex form f(x) = a(x h) 2 + k, the vertex (max or min) is the point (h, k). This idea was developed in the investigation in Problem 2 on page 349. It should also be written in the student s math toolkit. x-intercepts: ( 5, 0) and (1, 0) To find the x-intercepts, you let f(x) = 0 and solve. (x + 2) 2 9 = 0 (x + 2) 2 = 9 (x + 2) = ±3 x = 5 or x = 1 y-intercept: (0, 5) Find f(0) = (0 + 2) 2 9 = = 4 9 = Core-Plus Mathematics Project. All rights reserved. 5
6 Lesson 2, Investigation 1, Applications Task 4 (p. 358) These problems ask you to write a rule in vertex form. (See page 350.) To do this, you follow a procedure called completing the square. a. f(x) = x x + 11 For the time being, just put the +11 to the side. We will deal with it later. So, just consider f(x) = x x. It helps to turn this into a picture. x 6 6 x 6 x + x = x x x x x x To complete the square, we need a 6 x 6 = 36 corner square. Now the square is complete. The function now looks like f(x) = x x This is a perfect square trinomial which factors into f(x) = (x + 6) 2. Now what to do with the 11? The function f(x) = x x is obviously equivalent to the original function. So, we can factor the perfect square trinomial and combine the constant terms that are left to get this: f(x) = (x + 6) Once the function is in this form, the maximum point is easily identified, by the point ( 6, 25) Core-Plus Mathematics Project. All rights reserved. 6
7 Lesson 2, Investigation 1, Applications Task 5 (p. 358) a. x x + 11 = 0. We changed the form of the function by completing the square in Task 4 to get this new form (x + 6) 2 25 = 0. (x + 6) 2 25 = 0 (x + 6) 2 = 25 x + 6 = ± 25 x = 6 ± 5 x = 1 or x = 11 b d. To be completed by the student Lesson 2, Investigation 1, Extensions Task 21 (p. 361) Use your experience in Task 20 to solve these quadratic equations by first writing the quadratic expression in equivalent form as a product of two linear factors. a. 2x 2 + 7x + 3 = 0 (2x + 1)(x + 3) = 0 2x + 1 = 0 or x + 3 = 0 2x = 1 x = 3 x = 1 2 b f. To be completed by the student Lesson 2, Investigation 1, Review Task 26 (p. 362) a. 1 2 b. 3 8 c e. To be completed by the student Lesson 2, Investigation 2, Applications Task 6 (p. 358) a. x = 1, x = 5 2 ; rational b. x = 1, x = 2 3 ; rational c f. To be completed by the student 2015 Core-Plus Mathematics Project. All rights reserved. 7
8 Lesson 2, Investigation 2, Review Task 32 (p. 363) Students should have a copy of Selected Key Geometric Ideas from Courses 1 and 2 and/or their Math Toolkit notes as reference if they do not recall ideas being reviewed, such as the definitions of trigonometric functions on 0 θ 360. Students should be developing the habit of looking up ideas that they may not remember. θ sin θ = 6? cos θ = 5? x 2 + y 2 tan θ =?? P( 5, 6) Lesson 3, Investigation 1, Applications Task 4 (p. 381) a. One rule that shows the separate expressions for calculating income is P(x) = ( 25x x + 7,500) (7, x). The second rule is to be found by the student. P(x) b. i. = I(x) 25x 2!+!700x!+!500 25x 2!+!500x!+!7,500 Ratio of profit to income The expression can be evaluated for all x 10, 30. It makes sense to consider a domain of 0 < x < 30. There are vertical asymptotes at x = 10 and at x = 30. The remainder of Part b to be completed by the student. Lesson 3, Investigation 2, Applications Task 5 (p. 382) P(x) I(x) = 25x 2!+!700x!+!500 25(x = 2!!28x!!20) = x 2!!28x!!20 (domain is unchanged) 25x 2!+!500x!+!7,500 25(x 2!!20x!!300) (x!+!10)(x!!30) The remainder of the task is to be completed by the student. Lesson 3, Investigation 2, Applications Task 7 (p. 382) a. 4x!+!12 4(x!+!3) = = x!+!3 ; Both expressions are undefined when x = 1. 8x!+!4 4(2x!+!1) 2x!+! Core-Plus Mathematics Project. All rights reserved. 8
9 Lesson 3, Investigation 2, Connections Task 17 (p. 384) a. Remember that asymptotes are equations of lines. The asymptotes are at s = 0 (vertical) and T(s) = 0 (horizontal). b. To be completed by the student. Lesson 3, Investigation 2, Extensions Task 24 (p. 386) a. f(x) is undefined when x = 3 and when x = 2. b, d, e. To be completed by the student. c. It is undefined only when x = 2. Lesson 3, Investigation 3, Extensions Task 25 (p. 386) a. Essential discontinuity at x = 0.5; no removable discontinuities Lesson 3, Investigation 3, Review Task 37 (p. 389) a. The solution is the coordinates of all points enclosed by the solid rays P( 1 9 7, 4 9) extending from the point ( 1 7, ) 9 and the points on these rays. 4 9 b. To be completed by the student. Lesson 3, Investigation 4, Applications Task 10 (p. 382) a. 2x + 4 x 2 36 = 2(x + 2)(x + 6)(x 6) = x 2 6x 4x + 8 x(x 6)4(x + 2) x + 6 2x 2015 Core-Plus Mathematics Project. All rights reserved. 9
10 Lesson 3, Investigation 4, Reflections Task 23 (p. 385) a. Vertical asymptotes will occur only when the denominator is 0. Even when the denominator is zero, some discontinuities of a rational function may not be clearly visible in a graph when the zero of the denominator is also a zero of the numerator. Lesson 3, Investigation 4, Review Task 40 (p. 389) a. ABC DEF (HA or ASA) b, c. To be completed by the student Core-Plus Mathematics Project. All rights reserved. 10
MA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
Math Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
Algebra and Geometry Review (61 topics, no due date)
Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year.
Brunswick High School has reinstated a summer math curriculum for students Algebra 1, Geometry, and Algebra 2 for the 2014-2015 school year. Goal The goal of the summer math program is to help students
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
Polynomial Operations and Factoring
Algebra 1, Quarter 4, Unit 4.1 Polynomial Operations and Factoring Overview Number of instructional days: 15 (1 day = 45 60 minutes) Content to be learned Identify terms, coefficients, and degree of polynomials.
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form
ALGEBRA 2: 4.1 Graph Quadratic Functions in Standard Form Goal Graph quadratic functions. VOCABULARY Quadratic function A function that can be written in the standard form y = ax 2 + bx+ c where a 0 Parabola
South Carolina College- and Career-Ready (SCCCR) Algebra 1
South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
Algebra I Vocabulary Cards
Algebra I Vocabulary Cards Table of Contents Expressions and Operations Natural Numbers Whole Numbers Integers Rational Numbers Irrational Numbers Real Numbers Absolute Value Order of Operations Expression
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
LAKE ELSINORE UNIFIED SCHOOL DISTRICT
LAKE ELSINORE UNIFIED SCHOOL DISTRICT Title: PLATO Algebra 1-Semester 2 Grade Level: 10-12 Department: Mathematics Credit: 5 Prerequisite: Letter grade of F and/or N/C in Algebra 1, Semester 2 Course Description:
ALGEBRA I (Created 2014) Amherst County Public Schools
ALGEBRA I (Created 2014) Amherst County Public Schools The 2009 Mathematics Standards of Learning Curriculum Framework is a companion document to the 2009 Mathematics Standards of Learning and amplifies
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan
Lines, Lines, Lines!!! Slope-Intercept Form ~ Lesson Plan I. Topic: Slope-Intercept Form II. III. Goals and Objectives: A. The student will write an equation of a line given information about its graph.
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions
MSLC Workshop Series Math 1148 1150 Workshop: Polynomial & Rational Functions The goal of this workshop is to familiarize you with similarities and differences in both the graphing and expression of polynomial
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
is the degree of the polynomial and is the leading coefficient.
Property: T. Hrubik-Vulanovic e-mail: [email protected] Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
ALGEBRA REVIEW LEARNING SKILLS CENTER. Exponents & Radicals
ALGEBRA REVIEW LEARNING SKILLS CENTER The "Review Series in Algebra" is taught at the beginning of each quarter by the staff of the Learning Skills Center at UC Davis. This workshop is intended to be an
PRE-CALCULUS GRADE 12
PRE-CALCULUS GRADE 12 [C] Communication Trigonometry General Outcome: Develop trigonometric reasoning. A1. Demonstrate an understanding of angles in standard position, expressed in degrees and radians.
Polynomial Expressions and Equations
Polynomial Expressions and Equations This is a really close-up picture of rain. Really. The picture represents falling water broken down into molecules, each with two hydrogen atoms connected to one oxygen
Algebra 2 Notes AII.7 Functions: Review, Domain/Range. Function: Domain: Range:
Name: Date: Block: Functions: Review What is a.? Relation: Function: Domain: Range: Draw a graph of a : a) relation that is a function b) relation that is NOT a function Function Notation f(x): Names the
Graphing Rational Functions
Graphing Rational Functions A rational function is defined here as a function that is equal to a ratio of two polynomials p(x)/q(x) such that the degree of q(x) is at least 1. Examples: is a rational function
Polynomials and Quadratics
Polynomials and Quadratics Want to be an environmental scientist? Better be ready to get your hands dirty!.1 Controlling the Population Adding and Subtracting Polynomials............703.2 They re Multiplying
7.1 Graphs of Quadratic Functions in Vertex Form
7.1 Graphs of Quadratic Functions in Vertex Form Quadratic Function in Vertex Form A quadratic function in vertex form is a function that can be written in the form f (x) = a(x! h) 2 + k where a is called
DRAFT. Algebra 1 EOC Item Specifications
DRAFT Algebra 1 EOC Item Specifications The draft Florida Standards Assessment (FSA) Test Item Specifications (Specifications) are based upon the Florida Standards and the Florida Course Descriptions as
Course Outlines. 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit)
Course Outlines 1. Name of the Course: Algebra I (Standard, College Prep, Honors) Course Description: ALGEBRA I STANDARD (1 Credit) This course will cover Algebra I concepts such as algebra as a language,
Algebra Practice Problems for Precalculus and Calculus
Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials
6.1 Add & Subtract Polynomial Expression & Functions
6.1 Add & Subtract Polynomial Expression & Functions Objectives 1. Know the meaning of the words term, monomial, binomial, trinomial, polynomial, degree, coefficient, like terms, polynomial funciton, quardrtic
WARM UP EXERCSE. 2-1 Polynomials and Rational Functions
WARM UP EXERCSE Roots, zeros, and x-intercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x - a)g(x) 1 2-1 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Mathematics. Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 7: Rational and Radical Relationships
Georgia Standards of Excellence Frameworks Mathematics Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 7: Rational and Radical Relationships These materials are for nonprofit educational purposes
Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.
Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson
Section 3.2 Polynomial Functions and Their Graphs
Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P(x) = 3, Q(x) = 4x 7, R(x) = x 2 +x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 +2x+4 (b)
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
Manhattan Center for Science and Math High School Mathematics Department Curriculum
Content/Discipline Algebra 1 Semester 2: Marking Period 1 - Unit 8 Polynomials and Factoring Topic and Essential Question How do perform operations on polynomial functions How to factor different types
Algebra II Unit Number 4
Title Polynomial Functions, Expressions, and Equations Big Ideas/Enduring Understandings Applying the processes of solving equations and simplifying expressions to problems with variables of varying degrees.
This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide.
COLLEGE ALGEBRA UNIT 2 WRITING ASSIGNMENT This unit has primarily been about quadratics, and parabolas. Answer the following questions to aid yourselves in creating your own study guide. 1) What is the
HIBBING COMMUNITY COLLEGE COURSE OUTLINE
HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
Algebra 2 Year-at-a-Glance Leander ISD 2007-08. 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks
Algebra 2 Year-at-a-Glance Leander ISD 2007-08 1st Six Weeks 2nd Six Weeks 3rd Six Weeks 4th Six Weeks 5th Six Weeks 6th Six Weeks Essential Unit of Study 6 weeks 3 weeks 3 weeks 6 weeks 3 weeks 3 weeks
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Section 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c
Unit 7 Quadratic Relations of the Form y = ax 2 + bx + c Lesson Outline BIG PICTURE Students will: manipulate algebraic expressions, as needed to understand quadratic relations; identify characteristics
Graphing Linear Equations
Graphing Linear Equations I. Graphing Linear Equations a. The graphs of first degree (linear) equations will always be straight lines. b. Graphs of lines can have Positive Slope Negative Slope Zero slope
MATH 110 College Algebra Online Families of Functions Transformations
MATH 110 College Algebra Online Families of Functions Transformations Functions are important in mathematics. Being able to tell what family a function comes from, its domain and range and finding a function
MATH 21. College Algebra 1 Lecture Notes
MATH 21 College Algebra 1 Lecture Notes MATH 21 3.6 Factoring Review College Algebra 1 Factoring and Foiling 1. (a + b) 2 = a 2 + 2ab + b 2. 2. (a b) 2 = a 2 2ab + b 2. 3. (a + b)(a b) = a 2 b 2. 4. (a
Mathematics Placement
Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper
Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic
Functions: Piecewise, Even and Odd.
Functions: Piecewise, Even and Odd. MA161/MA1161: Semester 1 Calculus. Prof. Götz Pfeiffer School of Mathematics, Statistics and Applied Mathematics NUI Galway September 21-22, 2015 Tutorials, Online Homework.
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Polynomial and Rational Functions
Polynomial and Rational Functions Quadratic Functions Overview of Objectives, students should be able to: 1. Recognize the characteristics of parabolas. 2. Find the intercepts a. x intercepts by solving
Math 1. Month Essential Questions Concepts/Skills/Standards Content Assessment Areas of Interaction
Binghamton High School Rev.9/21/05 Math 1 September What is the unknown? Model relationships by using Fundamental skills of 2005 variables as a shorthand way Algebra Why do we use variables? What is a
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
The Point-Slope Form
7. The Point-Slope Form 7. OBJECTIVES 1. Given a point and a slope, find the graph of a line. Given a point and the slope, find the equation of a line. Given two points, find the equation of a line y Slope
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra
Anchorage School District/Alaska Sr. High Math Performance Standards Algebra Algebra 1 2008 STANDARDS PERFORMANCE STANDARDS A1:1 Number Sense.1 Classify numbers as Real, Irrational, Rational, Integer,
Five 5. Rational Expressions and Equations C H A P T E R
Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.
Students Currently in Algebra 2 Maine East Math Placement Exam Review Problems
Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write
Week 1: Functions and Equations
Week 1: Functions and Equations Goals: Review functions Introduce modeling using linear and quadratic functions Solving equations and systems Suggested Textbook Readings: Chapter 2: 2.1-2.2, and Chapter
2-5 Rational Functions
-5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
Introduction Assignment
PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
Springfield Technical Community College School of Mathematics, Sciences & Engineering Transfer
Springfield Technical Community College School of Mathematics, Sciences & Engineering Transfer Department: Mathematics Course Title: Algebra 2 Course Number: MAT-097 Semester: Fall 2015 Credits: 3 Non-Graduation
Graphic Designing with Transformed Functions
Math Objectives Students will be able to identify a restricted domain interval and use function translations and dilations to choose and position a portion of the graph accurately in the plane to match
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
Math 1050 Khan Academy Extra Credit Algebra Assignment
Math 1050 Khan Academy Extra Credit Algebra Assignment KhanAcademy.org offers over 2,700 instructional videos, including hundreds of videos teaching algebra concepts, and corresponding problem sets. In
BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line
College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University
Florida Math for College Readiness
Core Florida Math for College Readiness Florida Math for College Readiness provides a fourth-year math curriculum focused on developing the mastery of skills identified as critical to postsecondary readiness
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Introduction to Quadratic Functions
Introduction to Quadratic Functions The St. Louis Gateway Arch was constructed from 1963 to 1965. It cost 13 million dollars to build..1 Up and Down or Down and Up Exploring Quadratic Functions...617.2
Mathematics Curriculum
Common Core Mathematics Curriculum Table of Contents 1 Polynomial and Quadratic Expressions, Equations, and Functions MODULE 4 Module Overview... 3 Topic A: Quadratic Expressions, Equations, Functions,
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Algebra II End of Course Exam Answer Key Segment I. Scientific Calculator Only
Algebra II End of Course Exam Answer Key Segment I Scientific Calculator Only Question 1 Reporting Category: Algebraic Concepts & Procedures Common Core Standard: A-APR.3: Identify zeros of polynomials
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Lyman Memorial High School. Pre-Calculus Prerequisite Packet. Name:
Lyman Memorial High School Pre-Calculus Prerequisite Packet Name: Dear Pre-Calculus Students, Within this packet you will find mathematical concepts and skills covered in Algebra I, II and Geometry. These
In this section, you will develop a method to change a quadratic equation written as a sum into its product form (also called its factored form).
CHAPTER 8 In Chapter 4, you used a web to organize the connections you found between each of the different representations of lines. These connections enabled you to use any representation (such as a graph,
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Mathematics. Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 1: Quadratic Functions
Georgia Standards of Excellence Frameworks Mathematics Accelerated GSE Analytic Geometry B/Advanced Algebra Unit 1: Quadratic Functions These materials are for nonprofit educational purposes only. Any
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
1.6 A LIBRARY OF PARENT FUNCTIONS. Copyright Cengage Learning. All rights reserved.
1.6 A LIBRARY OF PARENT FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Identify and graph linear and squaring functions. Identify and graph cubic, square root, and reciprocal
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.
5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations
FACTORING QUADRATICS 8.1.1 and 8.1.2
FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.
Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005
Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division
The degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
