Performance evaluation
|
|
|
- Abraham Richards
- 10 years ago
- Views:
Transcription
1 Performance evaluation Arquitecturas Avanzadas de Computadores Departamento de Ingeniería Electrónica y de Telecomunicaciones Facultad de Ingeniería
2 Bibliography and evaluation Bibliography Lecture slides Chapter 4: Computer Organization and Design The hardware/software interface, D. A. Patterson y J. L. Henessy, Morgan Kaufman Publishers, 3rd Edition, Chapter 1: Computer architecture A quantitative approach, J. Henessy and D. Patterson, Morgan Kaufman, 5th Edition, 2011 (previous editions may be good too). Evaluation Test I (15%) covering units 1-2 2
3 How good is a computer? We can think of many parameters: Porcessor s clock rate Power consumed by a program Execution time for a program Number of tasks done per second Reliability Aesthetic appearance Social repercussion, etc These are the metrics, the things we want to estimate or measure (not all of them are easy to measure though) How should we compare two computer systems? 3
4 Performance: Latency vs. Throughput Latency: time to finish a fixed task Throughput: number of tasks per unit of time Different: exploit parallelism for throughput, not latency Usually a trade-off: latency vs. throughput Choose definition of performance that matches your goals Scientific program: latency; web server: throughput? Example: transport people 10 km Car: capacity = 5, speed = 60 kmh Bus: capacity = 60, speed = 20 kmh Latency: car = 10 min, bus = 30 min Throughput: car = 15 pph (count return trip), bus = 60 pph 4
5 Example: latency vs. throughput Do the following changes to a computer system increase throughput, decrease response time or both? a) Replacing the processor with a faster version b) Adding more processors to a systems that uses multiple processors for separate tasks (a web sever) Answer a) Both b) Throughput 5
6 Comparing Performance System a is x times faster than b if latency a = latency(b) x throughput a = throughput b x System a is x% faster than b if latency a = latency(b) (1 + x 100) throughput a = throughput b (1 + x 100) Car/bus example Latency? Car is 3 times (and 200%) faster than bus Throughput? Bus is 4 times (and 300%) faster than car 6
7 Performance definitions Let s define our final goal as to minimize the execution time for some application, then we can define performance in terms of execution time as follows: performance a = 1 execution_time(a) 7
8 Execution time Execution time is affected by multiple factors in a computer system: execution time = CPU time + disk access + memory access + I/O activities + OS overhead We will focus on CPU time since we ll study mostly the processor. However, some applications depend heavily on e.g. disk access performance. 8
9 CPU time We measure CPU time in seconds, but Remember that computer HW works synchronously, with a clock signal, having a period and a frequency data reg logic reg clock How to relate clock cycles with CPU time? 9
10 Clock cycles and CPU time Just use one of the two simple formulas: CPU time = clock cycles * cycle time Or using clock rate CPU time = clock cycles / cycle rate Classic designer s tradeoff : Attempting to reduce the clock cycles may lead to reducing the clock rate too, and vice versa 10
11 Book exercise 11
12 Answer 12
13 How about instructions? Since a program executes instructions, they should also play a part in the CPU performance equations So far we had: CPU time = clock cycles * cycle time Now we will also say that: clock cycles = instructions for a program * average clock cycles per instruction IC: Instruction Count Static IC vs. dynamic IC What is needed to determine each? CPI: Cycles Per Instruction Can be used to compare two ISA implementations 13
14 14
15 The CPU performance equation Finally, the classic formula that incorporates the three key factors that affect performance is: CPU time = Instruction Count * CPI * cycle time Or CPU time = Instruction Count * CPI / clock rate 15
16 CPU Performance Equation Factors affecting CPU execution time: Factor Inst. count CPI Clock rate Program x (x) Compiler x (x) ISA x x (x) Microarchitecture x x Technology x CPU time = Instruction Count * CPI / clock rate 16
17 Cycles per Instruction (CPI) Depends on the instruction CPIi = Execution Time of Instruction i * Clock Rate Computing the total CPI: Example: program dependent! 17
18 Another CPI Example Assume a processor with instruction frequencies and costs Integer ALU: 50%, 1 cycle Load: 20%, 5 cycle Store: 10%, 1 cycle Branch: 20%, 2 cycle Which change would improve performance more? a) Faster branch prediction to reduce branch cost to 1 cycle? b) Better data cache to reduce load cost to 3 cycles? Compute CPI Base = 0.5* * * *2 = 2 A = 0.5* * * *1 = 1.8 B = 0.5* * * *2 = 1.6 (winner) 18
19 Book example 19
20 Answer 20
21 IPC, MIPS and GHz The metrics you are most likely to see in marketing are IPC (instruction per cycle), MIPS (million instruction per second) and GHz How are they incomplete? Back to the CPU time formula: 1/IPC 1/MIPS 1/GHz Which processor would you buy? Processor A: CPI = 2, clock = 5 GHz Processor B: CPI = 1, clock = 3 GHz Probably A, but B is faster (assuming same ISA/compiler) Meta-point: danger of partial performance metrics! GHz can be boosted artificially by design (lower the other 2 terms) e.g., 800 MHz PentiumIII faster than 1 GHz Pentium4! 21
22 Gene Amdahl American computer architect Born in 1922 Worked for IBM until 1970 Founded Amdahl Corporation to compete in the mainframe market against IBM Proposed the later known as Amdahl s Law during the 1967 Spring Joint Computer Conference 22
23 Amdahl s law Suppose an enhancement speeds up a fraction f of a task by a factor of Sf If f is small Sf doesn t matter. Concentrate effort on improving frequently occurring events or frequently used 23
24 Practicing Amdahl s law 1. What is the percentage of time each instruction takes? 2. How much is the total time reduced if the time for FP instructions is reduced by 20%? How much is the total speed up? 3. How much is the total time reduced if the time for L/S instructions is reduced by 20%? How much is the total speed up? 4. Can the total time be reduced by 20% by reducing only the time for branch instructions? 5. What s the theoretical speed up limit by reducing the branch instructions time? 24
25 Another exercise 25
Unit 4: Performance & Benchmarking. Performance Metrics. This Unit. CIS 501: Computer Architecture. Performance: Latency vs.
This Unit CIS 501: Computer Architecture Unit 4: Performance & Benchmarking Metrics Latency and throughput Speedup Averaging CPU Performance Performance Pitfalls Slides'developed'by'Milo'Mar0n'&'Amir'Roth'at'the'University'of'Pennsylvania'
! Metrics! Latency and throughput. ! Reporting performance! Benchmarking and averaging. ! CPU performance equation & performance trends
This Unit CIS 501 Computer Architecture! Metrics! Latency and throughput! Reporting performance! Benchmarking and averaging Unit 2: Performance! CPU performance equation & performance trends CIS 501 (Martin/Roth):
EEM 486: Computer Architecture. Lecture 4. Performance
EEM 486: Computer Architecture Lecture 4 Performance EEM 486 Performance Purchasing perspective Given a collection of machines, which has the» Best performance?» Least cost?» Best performance / cost? Design
on an system with an infinite number of processors. Calculate the speedup of
1. Amdahl s law Three enhancements with the following speedups are proposed for a new architecture: Speedup1 = 30 Speedup2 = 20 Speedup3 = 10 Only one enhancement is usable at a time. a) If enhancements
CSEE W4824 Computer Architecture Fall 2012
CSEE W4824 Computer Architecture Fall 2012 Lecture 2 Performance Metrics and Quantitative Principles of Computer Design Luca Carloni Department of Computer Science Columbia University in the City of New
CPU Performance. Lecture 8 CAP 3103 06-11-2014
CPU Performance Lecture 8 CAP 3103 06-11-2014 Defining Performance Which airplane has the best performance? 1.6 Performance Boeing 777 Boeing 777 Boeing 747 BAC/Sud Concorde Douglas DC-8-50 Boeing 747
Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle?
Lecture 3: Evaluating Computer Architectures Announcements - Reminder: Homework 1 due Thursday 2/2 Last Time technology back ground Computer elements Circuits and timing Virtuous cycle of the past and
EE361: Digital Computer Organization Course Syllabus
EE361: Digital Computer Organization Course Syllabus Dr. Mohammad H. Awedh Spring 2014 Course Objectives Simply, a computer is a set of components (Processor, Memory and Storage, Input/Output Devices)
Week 1 out-of-class notes, discussions and sample problems
Week 1 out-of-class notes, discussions and sample problems Although we will primarily concentrate on RISC processors as found in some desktop/laptop computers, here we take a look at the varying types
Quiz for Chapter 1 Computer Abstractions and Technology 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,
Pipelining Review and Its Limitations
Pipelining Review and Its Limitations Yuri Baida [email protected] [email protected] October 16, 2010 Moscow Institute of Physics and Technology Agenda Review Instruction set architecture Basic
Introducción. Diseño de sistemas digitales.1
Introducción Adapted from: Mary Jane Irwin ( www.cse.psu.edu/~mji ) www.cse.psu.edu/~cg431 [Original from Computer Organization and Design, Patterson & Hennessy, 2005, UCB] Diseño de sistemas digitales.1
Lizy Kurian John Electrical and Computer Engineering Department, The University of Texas as Austin
BUS ARCHITECTURES Lizy Kurian John Electrical and Computer Engineering Department, The University of Texas as Austin Keywords: Bus standards, PCI bus, ISA bus, Bus protocols, Serial Buses, USB, IEEE 1394
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected].
Computer Architecture Lecture 2: Instruction Set Principles (Appendix A) Chih Wei Liu 劉 志 尉 National Chiao Tung University [email protected] Review Computers in mid 50 s Hardware was expensive
How To Understand The Design Of A Microprocessor
Computer Architecture R. Poss 1 What is computer architecture? 2 Your ideas and expectations What is part of computer architecture, what is not? Who are computer architects, what is their job? What is
Computer Architecture Syllabus of Qualifying Examination
Computer Architecture Syllabus of Qualifying Examination PhD in Engineering with a focus in Computer Science Reference course: CS 5200 Computer Architecture, College of EAS, UCCS Created by Prof. Xiaobo
Course on Advanced Computer Architectures
Course on Advanced Computer Architectures Surname (Cognome) Name (Nome) POLIMI ID Number Signature (Firma) SOLUTION Politecnico di Milano, September 3rd, 2015 Prof. C. Silvano EX1A ( 2 points) EX1B ( 2
Virtualization and Cloud Computing. Sorav Bansal
Virtualization and Cloud Computing Sorav Bansal Administrivia Instructors: Sorav Bansal, Huzur Saran, Gautam Shroff (Tata Consultancy Services) Webpage: http://www.cse.iitd.ernet.in/~sbansal/csl862 Syllabus:
Chapter 2. Why is some hardware better than others for different programs?
Chapter 2 1 Performance Measure, Report, and Summarize Make intelligent choices See through the marketing hype Key to understanding underlying organizational motivation Why is some hardware better than
Communicating with devices
Introduction to I/O Where does the data for our CPU and memory come from or go to? Computers communicate with the outside world via I/O devices. Input devices supply computers with data to operate on.
Computer Organization and Components
Computer Organization and Components IS5, fall 25 Lecture : Pipelined Processors ssociate Professor, KTH Royal Institute of Technology ssistant Research ngineer, University of California, Berkeley Slides
Driving force. What future software needs. Potential research topics
Improving Software Robustness and Efficiency Driving force Processor core clock speed reach practical limit ~4GHz (power issue) Percentage of sustainable # of active transistors decrease; Increase in #
Computer Performance. Topic 3. Contents. Prerequisite knowledge Before studying this topic you should be able to:
55 Topic 3 Computer Performance Contents 3.1 Introduction...................................... 56 3.2 Measuring performance............................... 56 3.2.1 Clock Speed.................................
A Lab Course on Computer Architecture
A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,
Performance Metrics and Scalability Analysis. Performance Metrics and Scalability Analysis
Performance Metrics and Scalability Analysis 1 Performance Metrics and Scalability Analysis Lecture Outline Following Topics will be discussed Requirements in performance and cost Performance metrics Work
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Real-Time Scheduling 1 / 39
Real-Time Scheduling 1 / 39 Multiple Real-Time Processes A runs every 30 msec; each time it needs 10 msec of CPU time B runs 25 times/sec for 15 msec C runs 20 times/sec for 5 msec For our equation, A
Software and the Concurrency Revolution
Software and the Concurrency Revolution A: The world s fastest supercomputer, with up to 4 processors, 128MB RAM, 942 MFLOPS (peak). 2 Q: What is a 1984 Cray X-MP? (Or a fractional 2005 vintage Xbox )
Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design
Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards [email protected] At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components
Execution Cycle. Pipelining. IF and ID Stages. Simple MIPS Instruction Formats
Execution Cycle Pipelining CSE 410, Spring 2005 Computer Systems http://www.cs.washington.edu/410 1. Instruction Fetch 2. Instruction Decode 3. Execute 4. Memory 5. Write Back IF and ID Stages 1. Instruction
Instruction Set Architecture. or How to talk to computers if you aren t in Star Trek
Instruction Set Architecture or How to talk to computers if you aren t in Star Trek The Instruction Set Architecture Application Compiler Instr. Set Proc. Operating System I/O system Instruction Set Architecture
Networking Virtualization Using FPGAs
Networking Virtualization Using FPGAs Russell Tessier, Deepak Unnikrishnan, Dong Yin, and Lixin Gao Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Massachusetts,
Computer Organization. and Instruction Execution. August 22
Computer Organization and Instruction Execution August 22 CSC201 Section 002 Fall, 2000 The Main Parts of a Computer CSC201 Section Copyright 2000, Douglas Reeves 2 I/O and Storage Devices (lots of devices,
Processor Architectures
ECPE 170 Jeff Shafer University of the Pacific Processor Architectures 2 Schedule Exam 3 Tuesday, December 6 th Caches Virtual Memory Input / Output OperaKng Systems Compilers & Assemblers Processor Architecture
Computer Architecture
Computer Architecture Random Access Memory Technologies 2015. április 2. Budapest Gábor Horváth associate professor BUTE Dept. Of Networked Systems and Services [email protected] 2 Storing data Possible
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM
ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-12: ARM 1 The ARM architecture processors popular in Mobile phone systems 2 ARM Features ARM has 32-bit architecture but supports 16 bit
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING
COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.
Scaling in a Hypervisor Environment
Scaling in a Hypervisor Environment Richard McDougall Chief Performance Architect VMware VMware ESX Hypervisor Architecture Guest Monitor Guest TCP/IP Monitor (BT, HW, PV) File System CPU is controlled
Design Cycle for Microprocessors
Cycle for Microprocessors Raúl Martínez Intel Barcelona Research Center Cursos de Verano 2010 UCLM Intel Corporation, 2010 Agenda Introduction plan Architecture Microarchitecture Logic Silicon ramp Types
System Models for Distributed and Cloud Computing
System Models for Distributed and Cloud Computing Dr. Sanjay P. Ahuja, Ph.D. 2010-14 FIS Distinguished Professor of Computer Science School of Computing, UNF Classification of Distributed Computing Systems
Five Families of ARM Processor IP
ARM1026EJ-S Synthesizable ARM10E Family Processor Core Eric Schorn CPU Product Manager ARM Austin Design Center Five Families of ARM Processor IP Performance ARM preserves SW & HW investment through code
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Introduction to Microprocessors
Introduction to Microprocessors Yuri Baida [email protected] [email protected] October 2, 2010 Moscow Institute of Physics and Technology Agenda Background and History What is a microprocessor?
INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER
Course on: Advanced Computer Architectures INSTRUCTION LEVEL PARALLELISM PART VII: REORDER BUFFER Prof. Cristina Silvano Politecnico di Milano [email protected] Prof. Silvano, Politecnico di Milano
Solution: start more than one instruction in the same clock cycle CPI < 1 (or IPC > 1, Instructions per Cycle) Two approaches:
Multiple-Issue Processors Pipelining can achieve CPI close to 1 Mechanisms for handling hazards Static or dynamic scheduling Static or dynamic branch handling Increase in transistor counts (Moore s Law):
Thread level parallelism
Thread level parallelism ILP is used in straight line code or loops Cache miss (off-chip cache and main memory) is unlikely to be hidden using ILP. Thread level parallelism is used instead. Thread: process
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations
Load Balancing on a Non-dedicated Heterogeneous Network of Workstations Dr. Maurice Eggen Nathan Franklin Department of Computer Science Trinity University San Antonio, Texas 78212 Dr. Roger Eggen Department
Capacity Planning for Microsoft SharePoint Technologies
Capacity Planning for Microsoft SharePoint Technologies Capacity Planning The process of evaluating a technology against the needs of an organization, and making an educated decision about the configuration
Fastboot Techniques for x86 Architectures. Marcus Bortel Field Application Engineer QNX Software Systems
Fastboot Techniques for x86 Architectures Marcus Bortel Field Application Engineer QNX Software Systems Agenda Introduction BIOS and BIOS boot time Fastboot versus BIOS? Fastboot time Customizing the boot
Computer Systems Structure Input/Output
Computer Systems Structure Input/Output Peripherals Computer Central Processing Unit Main Memory Computer Systems Interconnection Communication lines Input Output Ward 1 Ward 2 Examples of I/O Devices
Central Processing Unit (CPU)
Central Processing Unit (CPU) CPU is the heart and brain It interprets and executes machine level instructions Controls data transfer from/to Main Memory (MM) and CPU Detects any errors In the following
More on Pipelining and Pipelines in Real Machines CS 333 Fall 2006 Main Ideas Data Hazards RAW WAR WAW More pipeline stall reduction techniques Branch prediction» static» dynamic bimodal branch prediction
Architecture of Hitachi SR-8000
Architecture of Hitachi SR-8000 University of Stuttgart High-Performance Computing-Center Stuttgart (HLRS) www.hlrs.de Slide 1 Most of the slides from Hitachi Slide 2 the problem modern computer are data
Virtualization. Pradipta De [email protected]
Virtualization Pradipta De [email protected] Today s Topic Virtualization Basics System Virtualization Techniques CSE506: Ext Filesystem 2 Virtualization? A virtual machine (VM) is an emulation
Java Performance. Adrian Dozsa TM-JUG 18.09.2014
Java Performance Adrian Dozsa TM-JUG 18.09.2014 Agenda Requirements Performance Testing Micro-benchmarks Concurrency GC Tools Why is performance important? We hate slow web pages/apps We hate timeouts
Overview. CISC Developments. RISC Designs. CISC Designs. VAX: Addressing Modes. Digital VAX
Overview CISC Developments Over Twenty Years Classic CISC design: Digital VAX VAXÕs RISC successor: PRISM/Alpha IntelÕs ubiquitous 80x86 architecture Ð 8086 through the Pentium Pro (P6) RJS 2/3/97 Philosophy
Advanced Computer Architecture
Advanced Computer Architecture Instructor: Andreas Moshovos [email protected] Fall 2005 Some material is based on slides developed by profs. Mark Hill, David Wood, Guri Sohi and Jim Smith at the
64-Bit versus 32-Bit CPUs in Scientific Computing
64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
VLIW Processors. VLIW Processors
1 VLIW Processors VLIW ( very long instruction word ) processors instructions are scheduled by the compiler a fixed number of operations are formatted as one big instruction (called a bundle) usually LIW
AMD Opteron Quad-Core
AMD Opteron Quad-Core a brief overview Daniele Magliozzi Politecnico di Milano Opteron Memory Architecture native quad-core design (four cores on a single die for more efficient data sharing) enhanced
Q. Consider a dynamic instruction execution (an execution trace, in other words) that consists of repeats of code in this pattern:
Pipelining HW Q. Can a MIPS SW instruction executing in a simple 5-stage pipelined implementation have a data dependency hazard of any type resulting in a nop bubble? If so, show an example; if not, prove
Instruction Set Design
Instruction Set Design Instruction Set Architecture: to what purpose? ISA provides the level of abstraction between the software and the hardware One of the most important abstraction in CS It s narrow,
Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. [email protected]. MemoryHierarchy- 1
Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN [email protected] Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor
Computer Architecture-I
Computer Architecture-I 1. Die Yield is given by the formula, Assignment 1 Solution Die Yield = Wafer Yield x (1 + (Defects per unit area x Die Area)/a) -a Let us assume a wafer yield of 100% and a 4 for
RAID. RAID 0 No redundancy ( AID?) Just stripe data over multiple disks But it does improve performance. Chapter 6 Storage and Other I/O Topics 29
RAID Redundant Array of Inexpensive (Independent) Disks Use multiple smaller disks (c.f. one large disk) Parallelism improves performance Plus extra disk(s) for redundant data storage Provides fault tolerant
Software Pipelining. for (i=1, i<100, i++) { x := A[i]; x := x+1; A[i] := x
Software Pipelining for (i=1, i
CPS104 Computer Organization and Programming Lecture 18: Input-Output. Robert Wagner
CPS104 Computer Organization and Programming Lecture 18: Input-Output Robert Wagner cps 104 I/O.1 RW Fall 2000 Outline of Today s Lecture The I/O system Magnetic Disk Tape Buses DMA cps 104 I/O.2 RW Fall
Chapter 1: Introduction. What is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments
Quiz for Chapter 6 Storage and Other I/O Topics 3.10
Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [6 points] Give a concise answer to each
Building Blocks for PRU Development
Building Blocks for PRU Development Module 1 PRU Hardware Overview This session covers a hardware overview of the PRU-ICSS Subsystem. Author: Texas Instruments, Sitara ARM Processors Oct 2014 2 ARM SoC
Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup
Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to
18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two
age 1 18-742 Lecture 4 arallel rogramming II Spring 2005 rof. Babak Falsafi http://www.ece.cmu.edu/~ece742 write X Memory send X Memory read X Memory Slides developed in part by rofs. Adve, Falsafi, Hill,
NVIDIA Tools For Profiling And Monitoring. David Goodwin
NVIDIA Tools For Profiling And Monitoring David Goodwin Outline CUDA Profiling and Monitoring Libraries Tools Technologies Directions CScADS Summer 2012 Workshop on Performance Tools for Extreme Scale
Pentium vs. Power PC Computer Architecture and PCI Bus Interface
Pentium vs. Power PC Computer Architecture and PCI Bus Interface CSE 3322 1 Pentium vs. Power PC Computer Architecture and PCI Bus Interface Nowadays, there are two major types of microprocessors in the
Application. Performance Testing
Application Performance Testing www.mohandespishegan.com شرکت مهندش پیشگان آزمون افسار یاش Performance Testing March 2015 1 TOC Software performance engineering Performance testing terminology Performance
The Bus (PCI and PCI-Express)
4 Jan, 2008 The Bus (PCI and PCI-Express) The CPU, memory, disks, and all the other devices in a computer have to be able to communicate and exchange data. The technology that connects them is called the
CISC, RISC, and DSP Microprocessors
CISC, RISC, and DSP Microprocessors Douglas L. Jones ECE 497 Spring 2000 4/6/00 CISC, RISC, and DSP D.L. Jones 1 Outline Microprocessors circa 1984 RISC vs. CISC Microprocessors circa 1999 Perspective:
CS:APP Chapter 4 Computer Architecture. Wrap-Up. William J. Taffe Plymouth State University. using the slides of
CS:APP Chapter 4 Computer Architecture Wrap-Up William J. Taffe Plymouth State University using the slides of Randal E. Bryant Carnegie Mellon University Overview Wrap-Up of PIPE Design Performance analysis
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower The traditional approach better performance Why computers are
Client/Server and Distributed Computing
Adapted from:operating Systems: Internals and Design Principles, 6/E William Stallings CS571 Fall 2010 Client/Server and Distributed Computing Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Traditional
Contents. Chapter 1. Introduction
Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual
Chapter 2 Logic Gates and Introduction to Computer Architecture
Chapter 2 Logic Gates and Introduction to Computer Architecture 2.1 Introduction The basic components of an Integrated Circuit (IC) is logic gates which made of transistors, in digital system there are
TRACE PERFORMANCE TESTING APPROACH. Overview. Approach. Flow. Attributes
TRACE PERFORMANCE TESTING APPROACH Overview Approach Flow Attributes INTRODUCTION Software Testing Testing is not just finding out the defects. Testing is not just seeing the requirements are satisfied.
CS 6290 I/O and Storage. Milos Prvulovic
CS 6290 I/O and Storage Milos Prvulovic Storage Systems I/O performance (bandwidth, latency) Bandwidth improving, but not as fast as CPU Latency improving very slowly Consequently, by Amdahl s Law: fraction
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
Enterprise Applications
Enterprise Applications Chi Ho Yue Sorav Bansal Shivnath Babu Amin Firoozshahian EE392C Emerging Applications Study Spring 2003 Functionality Online Transaction Processing (OLTP) Users/apps interacting
Capacity Estimation for Linux Workloads
Capacity Estimation for Linux Workloads Session L985 David Boyes Sine Nomine Associates 1 Agenda General Capacity Planning Issues Virtual Machine History and Value Unique Capacity Issues in Virtual Machines
Chapter 13 Selected Storage Systems and Interface
Chapter 13 Selected Storage Systems and Interface Chapter 13 Objectives Appreciate the role of enterprise storage as a distinct architectural entity. Expand upon basic I/O concepts to include storage protocols.
EC 362 Problem Set #2
EC 362 Problem Set #2 1) Using Single Precision IEEE 754, what is FF28 0000? 2) Suppose the fraction enhanced of a processor is 40% and the speedup of the enhancement was tenfold. What is the overall speedup?
Datacenter Operating Systems
Datacenter Operating Systems CSE451 Simon Peter With thanks to Timothy Roscoe (ETH Zurich) Autumn 2015 This Lecture What s a datacenter Why datacenters Types of datacenters Hyperscale datacenters Major
This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?
This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo
ICS 143 - Principles of Operating Systems
ICS 143 - Principles of Operating Systems Lecture 5 - CPU Scheduling Prof. Nalini Venkatasubramanian [email protected] Note that some slides are adapted from course text slides 2008 Silberschatz. Some
Chapter 2 - Computer Organization
Chapter 2 - Computer Organization CPU organization Basic Elements and Principles Parallelism Memory Storage Hierarchy I/O Fast survey of devices Character Codes Ascii, Unicode Homework: Chapter 1 # 2,
Logical Operations. Control Unit. Contents. Arithmetic Operations. Objectives. The Central Processing Unit: Arithmetic / Logic Unit.
Objectives The Central Processing Unit: What Goes on Inside the Computer Chapter 4 Identify the components of the central processing unit and how they work together and interact with memory Describe how
Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit
Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the
U. Wisconsin CS/ECE 752 Advanced Computer Architecture I
U. Wisconsin CS/ECE 752 Advanced Computer Architecture I Prof. David A. Wood Unit 0: Introduction Slides developed by Amir Roth of University of Pennsylvania with sources that included University of Wisconsin
