Inverse Trig Functions

Size: px
Start display at page:

Download "Inverse Trig Functions"

Transcription

1 Inverse Trig Functions c A Math Support Center Capsule February, 009 Introuction Just as trig functions arise in many applications, so o the inverse trig functions. What may be most surprising is that they are useful not only in the calculation of angles given the lengths of the sies of a right triangle, but they also give us solutions to some common integrals. For example, suppose you nee to evaluate the following integral: b a x x for some appropriate values of a an b. You can use the inverse sine function to solve it! In this capsule we o not attempt to erive the formulas that we will use; you shoul look at your textbook for erivations an complete explanations. This material will simply summarize the key results an go through some examples of how to use them. As usual, all angles use here are in raians. Restrictions on the Domains of the Trig Functions A function must be one-to-one for it to have an inverse. As we are sure you know, the trig functions are not one-to-one an in fact they are perioic (i.e. their values repeat themselves perioically). So in orer to efine inverse functions we nee to restrict the omain of each trig function to a region in which it is one-to-one but also attains all of its values. We o this by selecting a specific perio for each function an using this as a omain on which an inverse can be efine. Clearly there are an infinite number of ifferent restrictions we coul chose but the following are choices that are normally use.

2 Stanar Restricte Domains Function Domain Range sin(x) [ π, π ] [, ] cos(x) [0, π] [, ] tan(x) ( π, π ) (, ) cot(x) (0, π) (, ) sec(x) [0, π ) ( π, π] (, ] [, ) csc(x) [ π, 0) (0, π ] (, ] [, ) Definitions of the Inverse Functions When the trig functions are restricte to the omains above they become one-to-one functions, so we can efine the inverse functions. For the sine function we use the notation sin (x) or arcsin(x). Both are rea arc sine. Look carefully at where we have place the -. Written this way it inicates the inverse of the sine function. If, instea, we write (sin(x)) we mean the fraction sin(x). The other functions are similar. The following table summarizes the omains an ranges of the inverse trig functions. Note that for each inverse trig function we have simply swappe the omain an range for the corresponing trig function. Stanar Restricte Domains Function Domain Range sin (x) [, ] [ π, π ] cos (x) [, ] [0, π] tan (x) (, ) ( π, π ) cot (x) (, ) (0, π) sec (x) (, ] [, ) [0, π ) ( π, π] csc (x) (, ] [, ) [ π, 0) (0, π ] We can now efine the inverse functions more clearly. For the arcsin function we efine y sin (x) if x, y is in [ π, π ], an sin(y) x

3 Note that this is only efine when x is in the interval [, ]. The other inverse functions are similarly efine using the corresponing trig functions. Some Useful Ientities Here are a few ientities that you may fin helpful. cos (x) + cos ( x) π sin (x) + cos (x) π tan ( x) tan (x) Practicing with the Inverse Functions Example : Fin the value of tan(sin ( 5 ). Solution: The best way to solve this sort of problem is to raw a triangle for yourself using the Pythagorian Theorem. 5 θ 6 Here we use θ for the value of sin ( 5 ). Notice that we labele the hypotenuse an the sie opposite θ by using the value of the sin of the angle. We then use the Pythagorian Theorem to get the remaining sie. We now have the information that is neee to fin tan(θ). Since tan(θ) opposite ajacent, the answer is 4 6 Example : Fin the value of sin(cos ( 3 5 )). Solution: Look at the following picture: In this picture we let θ cos ( 3 5 ). Then 0 θ π an cosθ 3 5. Because cos(θ) is negative, θ must be in the secon quarant, i.e. θ π. Using the Pythagorean 3 π θ

4 Theorem an the fact that θ is in the secon quarant we get that sin(θ) Note that although θ oes not lie in the restricte omain we use to efine the arcsin function, the unrestricte sin function is efine in the secon quarant an so we are free to use this fact. Derivatives of Inverse Trig Functions The erivatives of the inverse trig functions are shown in the following table. Function sin (x) cos (x) tan (x) cot (x) sec (x) csc (x) Derivatives Derivative x (sin x) x, x < x (cos x), x < x x (tan x) +x x (cot x) +x x (sec x) x, x > x x (csc x) x x, x > In practice we often are intereste in calculating the erivatives when the variable x is replace by a function u(x). This requires the use of the chain rule. For example, x (sin u) u u x The other functions are hanle in a similar way. u x u, u < Example : Fin the erivative of y cos (x 3 ) for x 3 < Solution: Note that x 3 < if an only if x <, so the erivative is efine whenever x <. 4

5 x (cos (x 3 )) (x 3 ) x (x3 ) (3x ) (x 3 ) 3x x 6 Example : Fin the erivative of y tan ( 3x). Solution: x (tan ( 3x)) + ( 3x) x ( 3x) + ( 3x) 3x 3 3 3x ( + 3x) Exercise : For each of the following, fin the erivative of the given function with respect to the inepenent variable. (a) y tan t 4 (b) z t cot ( + t ) (c) x sin t 4 () s t t + cos t (e) y sin x (f) z cot ( y ) y 5

6 Solutions: (a) y tan t 4 y t t tan (t 4 ) + (t 4 ) t (t4 ) 4t3 + t 8 (b) z t cot ( + t ) z t t t cot ( + t ) cot ( + t ) + t cot ( + t ) + ( + t ) (t) t t 4 + t + (c) x sin t 4 x t t sin t 4 ( t 4 ) t ( t 4 ) ( t 4 ) ( t4 ) ( 4t 3 ) + t 4 t 4 ( t3 ) t t 4 ( t3 ) t t 4 6

7 () s t t + cos t s t t t t + t cos t ( t ) t ( t ) ( t) ( + t ) t t + ( t ) t t ( t )( t ) + t ( t )( t ) ( t ) + t ( t ) ( t )( t ) t ( t ) 3 t ( t ) ( t ) ( t ) (e) y sin x y x x sin x ( x) x x x x x( x) 7

8 (f) z cot ( y ) y z y y cot ( y ) y y +( y ) ( y ) +y ( y ) y ( y ) y y ( y ) y ( y ) ( y ) +y ( y ) +y ( y +y ) y +y 4 +y (+y ) y +y 4 ( y ) y ( y) ( y ) ( y ) y ( y) Solving Integrals The formulas liste above for the erivatives lea us to some nice ways to solve some common integrals. The following is a list of useful ones. These formulas hol for any constant a 0 u a u sin ( u a ) + C for u < a u a +u a tan ( u a ) + C for all u u u u a a sec u a + C for u > a > 0 Exercise : Verify each of the equations above by taking the erivative of the right han sie. We now want to use these formulas to solve some common integrals. Example : Evaluate the integral x 9 6x Solution: Let a 3 an u 4x. Then 6x (4x) u an u 4x. We get the following for 6x < 9: 8

9 x 9 6x 4 u a u 4 sin ( u a ) + C 4 sin ( 4x 3 ) + C 4 sin ( 4 3 x) + C Exercise 3: Evaluate the following integrals. (a) (b) (c) () (e) (f) x 5 4x y 36+4y z z 5+z 4 sin x x 0 cos x x 5+4x x 7 x 5 x+4x Solutions: (a) x u 5 4x. For this problem use the formula a 5, u x an u x, giving you (b) y. Use the formula u 36+4y an u y. This gives us y 36+4y a +u a u x 5 4x sin u a + C with u a u sin ( x 5 ) + C a tan ( u a ) + C with a 6, u y u ( a +u )( 6 ) tan ( y 6 ) + C tan ( y 3 ) + C (c) z z. In orer to make the calculations a bit simpler, it is useful to multiply 5+z 4 the numerator an enominator by in orer to get the term 4z 4 instea of z 4 in the enominator. This gives us z z z z. 5+z 4 0+4z 4 Now let u z, u 4z z an a 0 an we have z z 4 z z 5+z 4 u 0+4z 4 ( 0) +u 0 tan ( z 0 ) + C () sin x x 0 cos x. Let u cos x, u sin x x an a 0. Then sin x x 0 cos x ( ) sin x x 0 cos x sin ( cos x 0 ) + C 9

10 (e) form x 5+4x x. We want to transform this expression into something with the u a. To o this we nee to complete the square of the expression in the u enominator as follows: 5 + 4x x x x x x 9 (x 4x + 4) (3) (x ) This gives us x 5+4x x x (3) (x ) sin ( x 3 ) + C (f) 7 x. Again we nee to complete the square. This time we want to transform 5 x+4x the expression into something with the form u. We rewrite the enominator as a +u follows: 5 x + 4x x + 4x (4) + (x 3) Now, letting u x 3 an u x we get 7 x 5 x+4x 7 x 7 (4) +(x 3) 8 tan ( x 3 4 ) + C 0

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and

Here the units used are radians and sin x = sin(x radians). Recall that sin x and cos x are defined and continuous everywhere and Lecture 9 : Derivatives of Trigonometric Functions (Please review Trigonometry uner Algebra/Precalculus Review on the class webpage.) In this section we will look at the erivatives of the trigonometric

More information

Solutions to Exercises, Section 5.1

Solutions to Exercises, Section 5.1 Instructor s Solutions Manual, Section 5.1 Exercise 1 Solutions to Exercises, Section 5.1 1. Find all numbers t such that ( 1 3,t) is a point on the unit circle. For ( 1 3,t)to be a point on the unit circle

More information

Math Placement Test Practice Problems

Math Placement Test Practice Problems Math Placement Test Practice Problems The following problems cover material that is used on the math placement test to place students into Math 1111 College Algebra, Math 1113 Precalculus, and Math 2211

More information

Trigonometric Functions and Triangles

Trigonometric Functions and Triangles Trigonometric Functions and Triangles Dr. Philippe B. Laval Kennesaw STate University August 27, 2010 Abstract This handout defines the trigonometric function of angles and discusses the relationship between

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus

Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Trigonometry Review with the Unit Circle: All the trig. you ll ever need to know in Calculus Objectives: This is your review of trigonometry: angles, six trig. functions, identities and formulas, graphs:

More information

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS.

WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. WORKBOOK. MATH 30. PRE-CALCULUS MATHEMATICS. DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE Contributor: U.N.Iyer Department of Mathematics and Computer Science, CP 315, Bronx Community College, University

More information

Evaluating trigonometric functions

Evaluating trigonometric functions MATH 1110 009-09-06 Evaluating trigonometric functions Remark. Throughout this document, remember the angle measurement convention, which states that if the measurement of an angle appears without units,

More information

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

More information

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota

Elliptic Functions sn, cn, dn, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Elliptic Functions sn, cn, n, as Trigonometry W. Schwalm, Physics, Univ. N. Dakota Backgroun: Jacobi iscovere that rather than stuying elliptic integrals themselves, it is simpler to think of them as inverses

More information

Introduction to Integration Part 1: Anti-Differentiation

Introduction to Integration Part 1: Anti-Differentiation Mathematics Learning Centre Introuction to Integration Part : Anti-Differentiation Mary Barnes c 999 University of Syney Contents For Reference. Table of erivatives......2 New notation.... 2 Introuction

More information

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox

INVERSE TRIGONOMETRIC FUNCTIONS. Colin Cox INVERSE TRIGONOMETRIC FUNCTIONS Colin Cox WHAT IS AN INVERSE TRIG FUNCTION? Used to solve for the angle when you know two sides of a right triangle. For example if a ramp is resting against a trailer,

More information

The Deadly Sins of Algebra

The Deadly Sins of Algebra The Deadly Sins of Algebra There are some algebraic misconceptions that are so damaging to your quantitative and formal reasoning ability, you might as well be said not to have any such reasoning ability.

More information

Answers to the Practice Problems for Test 2

Answers to the Practice Problems for Test 2 Answers to the Practice Problems for Test 2 Davi Murphy. Fin f (x) if it is known that x [f(2x)] = x2. By the chain rule, x [f(2x)] = f (2x) 2, so 2f (2x) = x 2. Hence f (2x) = x 2 /2, but the lefthan

More information

20. Product rule, Quotient rule

20. Product rule, Quotient rule 20. Prouct rule, 20.1. Prouct rule Prouct rule, Prouct rule We have seen that the erivative of a sum is the sum of the erivatives: [f(x) + g(x)] = x x [f(x)] + x [(g(x)]. One might expect from this that

More information

GRE Prep: Precalculus

GRE Prep: Precalculus GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach

More information

Semester 2, Unit 4: Activity 21

Semester 2, Unit 4: Activity 21 Resources: SpringBoard- PreCalculus Online Resources: PreCalculus Springboard Text Unit 4 Vocabulary: Identity Pythagorean Identity Trigonometric Identity Cofunction Identity Sum and Difference Identities

More information

Unit 6 Trigonometric Identities, Equations, and Applications

Unit 6 Trigonometric Identities, Equations, and Applications Accelerated Mathematics III Frameworks Student Edition Unit 6 Trigonometric Identities, Equations, and Applications nd Edition Unit 6: Page of 3 Table of Contents Introduction:... 3 Discovering the Pythagorean

More information

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function

Section 5.4 More Trigonometric Graphs. Graphs of the Tangent, Cotangent, Secant, and Cosecant Function Section 5. More Trigonometric Graphs Graphs of the Tangent, Cotangent, Secant, and Cosecant Function 1 REMARK: Many curves have a U shape near zero. For example, notice that the functions secx and x +

More information

Math 230.01, Fall 2012: HW 1 Solutions

Math 230.01, Fall 2012: HW 1 Solutions Math 3., Fall : HW Solutions Problem (p.9 #). Suppose a wor is picke at ranom from this sentence. Fin: a) the chance the wor has at least letters; SOLUTION: All wors are equally likely to be chosen. The

More information

Lines. We have learned that the graph of a linear equation. y = mx +b

Lines. We have learned that the graph of a linear equation. y = mx +b Section 0. Lines We have learne that the graph of a linear equation = m +b is a nonvertical line with slope m an -intercept (0, b). We can also look at the angle that such a line makes with the -ais. This

More information

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C

y cos 3 x dx y cos 2 x cos x dx y 1 sin 2 x cos x dx y 1 u 2 du u 1 3u 3 C Trigonometric Integrals In this section we use trigonometric identities to integrate certain combinations of trigonometric functions. We start with powers of sine and cosine. EXAMPLE Evaluate cos 3 x dx.

More information

How to Avoid the Inverse Secant (and Even the Secant Itself)

How to Avoid the Inverse Secant (and Even the Secant Itself) How to Avoi the Inverse Secant (an Even the Secant Itself) S A Fulling Stephen A Fulling (fulling@mathtamue) is Professor of Mathematics an of Physics at Teas A&M University (College Station, TX 7783)

More information

RIGHT TRIANGLE TRIGONOMETRY

RIGHT TRIANGLE TRIGONOMETRY RIGHT TRIANGLE TRIGONOMETRY The word Trigonometry can be broken into the parts Tri, gon, and metry, which means Three angle measurement, or equivalently Triangle measurement. Throughout this unit, we will

More information

Chapter 11. Techniques of Integration

Chapter 11. Techniques of Integration Chapter Techniques of Integration Chapter 6 introduced the integral. There it was defined numerically, as the limit of approximating Riemann sums. Evaluating integrals by applying this basic definition

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 14 10/27/2008 MOMENT GENERATING FUNCTIONS Contents 1. Moment generating functions 2. Sum of a ranom number of ranom variables 3. Transforms

More information

Section 2.7 One-to-One Functions and Their Inverses

Section 2.7 One-to-One Functions and Their Inverses Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

More information

Notes and questions to aid A-level Mathematics revision

Notes and questions to aid A-level Mathematics revision Notes and questions to aid A-level Mathematics revision Robert Bowles University College London October 4, 5 Introduction Introduction There are some students who find the first year s study at UCL and

More information

Section 6-3 Double-Angle and Half-Angle Identities

Section 6-3 Double-Angle and Half-Angle Identities 6-3 Double-Angle and Half-Angle Identities 47 Section 6-3 Double-Angle and Half-Angle Identities Double-Angle Identities Half-Angle Identities This section develops another important set of identities

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring

Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring Page 1 9 Trigonometry of Right Triangles Right Triangles A right triangle, as the one shown in Figure 5, is a triangle that has one angle measuring 90. The side opposite to the right angle is the longest

More information

The Quick Calculus Tutorial

The Quick Calculus Tutorial The Quick Calculus Tutorial This text is a quick introuction into Calculus ieas an techniques. It is esigne to help you if you take the Calculus base course Physics 211 at the same time with Calculus I,

More information

SAT Subject Math Level 2 Facts & Formulas

SAT Subject Math Level 2 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

More information

Introduction Assignment

Introduction Assignment PRE-CALCULUS 11 Introduction Assignment Welcome to PREC 11! This assignment will help you review some topics from a previous math course and introduce you to some of the topics that you ll be studying

More information

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles Definition of Trigonometric Functions using Right Triangle: C hp A θ B Given an right triangle ABC, suppose angle θ is an angle inside ABC, label the leg osite θ the osite side, label the leg acent to

More information

Mannheim curves in the three-dimensional sphere

Mannheim curves in the three-dimensional sphere Mannheim curves in the three-imensional sphere anju Kahraman, Mehmet Öner Manisa Celal Bayar University, Faculty of Arts an Sciences, Mathematics Department, Muraiye Campus, 5, Muraiye, Manisa, urkey.

More information

6.1 Basic Right Triangle Trigonometry

6.1 Basic Right Triangle Trigonometry 6.1 Basic Right Triangle Trigonometry MEASURING ANGLES IN RADIANS First, let s introduce the units you will be using to measure angles, radians. A radian is a unit of measurement defined as the angle at

More information

The Derivative. Philippe B. Laval Kennesaw State University

The Derivative. Philippe B. Laval Kennesaw State University The Derivative Philippe B. Laval Kennesaw State University Abstract This handout is a summary of the material students should know regarding the definition and computation of the derivative 1 Definition

More information

SOLVING TRIGONOMETRIC EQUATIONS

SOLVING TRIGONOMETRIC EQUATIONS Mathematics Revision Guides Solving Trigonometric Equations Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 SOLVING TRIGONOMETRIC

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved.

5.3 SOLVING TRIGONOMETRIC EQUATIONS. Copyright Cengage Learning. All rights reserved. 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

To differentiate logarithmic functions with bases other than e, use

To differentiate logarithmic functions with bases other than e, use To ifferentiate logarithmic functions with bases other than e, use 1 1 To ifferentiate logarithmic functions with bases other than e, use log b m = ln m ln b 1 To ifferentiate logarithmic functions with

More information

Trigonometry for AC circuits

Trigonometry for AC circuits Trigonometry for AC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular.

Parallel and Perpendicular. We show a small box in one of the angles to show that the lines are perpendicular. CONDENSED L E S S O N. Parallel and Perpendicular In this lesson you will learn the meaning of parallel and perpendicular discover how the slopes of parallel and perpendicular lines are related use slopes

More information

Trigonometry Review Workshop 1

Trigonometry Review Workshop 1 Trigonometr Review Workshop Definitions: Let P(,) be an point (not the origin) on the terminal side of an angle with measure θ and let r be the distance from the origin to P. Then the si trig functions

More information

TRIGONOMETRY Compound & Double angle formulae

TRIGONOMETRY Compound & Double angle formulae TRIGONOMETRY Compound & Double angle formulae In order to master this section you must first learn the formulae, even though they will be given to you on the matric formula sheet. We call these formulae

More information

Example Optimization Problems selected from Section 4.7

Example Optimization Problems selected from Section 4.7 Example Optimization Problems selecte from Section 4.7 19) We are aske to fin the points ( X, Y ) on the ellipse 4x 2 + y 2 = 4 that are farthest away from the point ( 1, 0 ) ; as it happens, this point

More information

Chapter 7 Outline Math 236 Spring 2001

Chapter 7 Outline Math 236 Spring 2001 Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will

More information

Dear Accelerated Pre-Calculus Student:

Dear Accelerated Pre-Calculus Student: Dear Accelerated Pre-Calculus Student: I am very excited that you have decided to take this course in the upcoming school year! This is a fastpaced, college-preparatory mathematics course that will also

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry

Angles and Quadrants. Angle Relationships and Degree Measurement. Chapter 7: Trigonometry Chapter 7: Trigonometry Trigonometry is the study of angles and how they can be used as a means of indirect measurement, that is, the measurement of a distance where it is not practical or even possible

More information

Lagrangian and Hamiltonian Mechanics

Lagrangian and Hamiltonian Mechanics Lagrangian an Hamiltonian Mechanics D.G. Simpson, Ph.D. Department of Physical Sciences an Engineering Prince George s Community College December 5, 007 Introuction In this course we have been stuying

More information

Vector Math Computer Graphics Scott D. Anderson

Vector Math Computer Graphics Scott D. Anderson Vector Math Computer Graphics Scott D. Anderson 1 Dot Product The notation v w means the dot product or scalar product or inner product of two vectors, v and w. In abstract mathematics, we can talk about

More information

Techniques of Integration

Techniques of Integration CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

More information

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places.

Find the length of the arc on a circle of radius r intercepted by a central angle θ. Round to two decimal places. SECTION.1 Simplify. 1. 7π π. 5π 6 + π Find the measure of the angle in degrees between the hour hand and the minute hand of a clock at the time shown. Measure the angle in the clockwise direction.. 1:0.

More information

10.2 Systems of Linear Equations: Matrices

10.2 Systems of Linear Equations: Matrices SECTION 0.2 Systems of Linear Equations: Matrices 7 0.2 Systems of Linear Equations: Matrices OBJECTIVES Write the Augmente Matrix of a System of Linear Equations 2 Write the System from the Augmente Matrix

More information

Trigonometry Hard Problems

Trigonometry Hard Problems Solve the problem. This problem is very difficult to understand. Let s see if we can make sense of it. Note that there are multiple interpretations of the problem and that they are all unsatisfactory.

More information

General Physics 1. Class Goals

General Physics 1. Class Goals General Physics 1 Class Goals Develop problem solving skills Learn the basic concepts of mechanics and learn how to apply these concepts to solve problems Build on your understanding of how the world works

More information

Inverse Functions and Logarithms

Inverse Functions and Logarithms Section 3. Inverse Functions and Logarithms 1 Kiryl Tsishchanka Inverse Functions and Logarithms DEFINITION: A function f is called a one-to-one function if it never takes on the same value twice; that

More information

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles

4.3 & 4.8 Right Triangle Trigonometry. Anatomy of Right Triangles 4.3 & 4.8 Right Triangle Trigonometry Anatomy of Right Triangles The right triangle shown at the right uses lower case a, b and c for its sides with c being the hypotenuse. The sides a and b are referred

More information

1. Introduction circular definition Remark 1 inverse trigonometric functions

1. Introduction circular definition Remark 1 inverse trigonometric functions 1. Introduction In Lesson 2 the six trigonometric functions were defined using angles determined by points on the unit circle. This is frequently referred to as the circular definition of the trigonometric

More information

a cos x + b sin x = R cos(x α)

a cos x + b sin x = R cos(x α) a cos x + b sin x = R cos(x α) In this unit we explore how the sum of two trigonometric functions, e.g. cos x + 4 sin x, can be expressed as a single trigonometric function. Having the ability to do this

More information

Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only

Friday, January 29, 2016 9:15 a.m. to 12:15 p.m., only ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Friday, January 9, 016 9:15 a.m. to 1:15 p.m., only Student Name: School Name: The possession

More information

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam.

Extra Credit Assignment Lesson plan. The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. Extra Credit Assignment Lesson plan The following assignment is optional and can be completed to receive up to 5 points on a previously taken exam. The extra credit assignment is to create a typed up lesson

More information

Calculus 1: Sample Questions, Final Exam, Solutions

Calculus 1: Sample Questions, Final Exam, Solutions Calculus : Sample Questions, Final Exam, Solutions. Short answer. Put your answer in the blank. NO PARTIAL CREDIT! (a) (b) (c) (d) (e) e 3 e Evaluate dx. Your answer should be in the x form of an integer.

More information

Sample Problems. 10. 1 2 cos 2 x = tan2 x 1. 11. tan 2 = csc 2 tan 2 1. 12. sec x + tan x = cos x 13. 14. sin 4 x cos 4 x = 1 2 cos 2 x

Sample Problems. 10. 1 2 cos 2 x = tan2 x 1. 11. tan 2 = csc 2 tan 2 1. 12. sec x + tan x = cos x 13. 14. sin 4 x cos 4 x = 1 2 cos 2 x Lecture Notes Trigonometric Identities page Sample Problems Prove each of the following identities.. tan x x + sec x 2. tan x + tan x x 3. x x 3 x 4. 5. + + + x 6. 2 sec + x 2 tan x csc x tan x + cot x

More information

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives

1 TRIGONOMETRY. 1.0 Introduction. 1.1 Sum and product formulae. Objectives TRIGONOMETRY Chapter Trigonometry Objectives After studying this chapter you should be able to handle with confidence a wide range of trigonometric identities; be able to express linear combinations of

More information

2.2 Separable Equations

2.2 Separable Equations 2.2 Separable Equations 73 2.2 Separable Equations An equation y = f(x, y) is called separable provided algebraic operations, usually multiplication, division and factorization, allow it to be written

More information

Exponential Functions: Differentiation and Integration. The Natural Exponential Function

Exponential Functions: Differentiation and Integration. The Natural Exponential Function 46_54.q //4 :59 PM Page 5 5 CHAPTER 5 Logarithmic, Eponential, an Other Transcenental Functions Section 5.4 f () = e f() = ln The inverse function of the natural logarithmic function is the natural eponential

More information

ANALYTICAL METHODS FOR ENGINEERS

ANALYTICAL METHODS FOR ENGINEERS UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

More information

Linear Equations and Inequalities

Linear Equations and Inequalities Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................

More information

Trigonometric Functions: The Unit Circle

Trigonometric Functions: The Unit Circle Trigonometric Functions: The Unit Circle This chapter deals with the subject of trigonometry, which likely had its origins in the study of distances and angles by the ancient Greeks. The word trigonometry

More information

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

Functions and their Graphs

Functions and their Graphs Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

MATH 381 HOMEWORK 2 SOLUTIONS

MATH 381 HOMEWORK 2 SOLUTIONS MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

More information

2 Integrating Both Sides

2 Integrating Both Sides 2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation

More information

y or f (x) to determine their nature.

y or f (x) to determine their nature. Level C5 of challenge: D C5 Fining stationar points of cubic functions functions Mathematical goals Starting points Materials require Time neee To enable learners to: fin the stationar points of a cubic

More information

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)

Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic

More information

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, [email protected] http://www.math.umn.edu/ garrett/

Calculus Refresher, version 2008.4. c 1997-2008, Paul Garrett, garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Calculus Refresher, version 2008.4 c 997-2008, Paul Garrett, [email protected] http://www.math.umn.eu/ garrett/ Contents () Introuction (2) Inequalities (3) Domain of functions (4) Lines (an other items

More information

Euler s Formula Math 220

Euler s Formula Math 220 Euler s Formula Math 0 last change: Sept 3, 05 Complex numbers A complex number is an expression of the form x+iy where x and y are real numbers and i is the imaginary square root of. For example, + 3i

More information

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes

Trigonometry LESSON ONE - Degrees and Radians Lesson Notes 210 180 = 7 6 Trigonometry Example 1 Define each term or phrase and draw a sample angle. Angle Definitions a) angle in standard position: Draw a standard position angle,. b) positive and negative angles:

More information

The Method of Partial Fractions Math 121 Calculus II Spring 2015

The Method of Partial Fractions Math 121 Calculus II Spring 2015 Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method

More information

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY

Geometry Notes RIGHT TRIANGLE TRIGONOMETRY Right Triangle Trigonometry Page 1 of 15 RIGHT TRIANGLE TRIGONOMETRY Objectives: After completing this section, you should be able to do the following: Calculate the lengths of sides and angles of a right

More information

Solutions to Homework 10

Solutions to Homework 10 Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1

Georgia Department of Education Kathy Cox, State Superintendent of Schools 7/19/2005 All Rights Reserved 1 Accelerated Mathematics 3 This is a course in precalculus and statistics, designed to prepare students to take AB or BC Advanced Placement Calculus. It includes rational, circular trigonometric, and inverse

More information

TOPIC 4: DERIVATIVES

TOPIC 4: DERIVATIVES TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the

More information

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179

Give an expression that generates all angles coterminal with the given angle. Let n represent any integer. 9) 179 Trigonometry Chapters 1 & 2 Test 1 Name Provide an appropriate response. 1) Find the supplement of an angle whose measure is 7. Find the measure of each angle in the problem. 2) Perform the calculation.

More information

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its

(1.) The air speed of an airplane is 380 km/hr at a bearing of. Find the ground speed of the airplane as well as its (1.) The air speed of an airplane is 380 km/hr at a bearing of 78 o. The speed of the wind is 20 km/hr heading due south. Find the ground speed of the airplane as well as its direction. Here is the diagram:

More information

Lecture L25-3D Rigid Body Kinematics

Lecture L25-3D Rigid Body Kinematics J. Peraire, S. Winall 16.07 Dynamics Fall 2008 Version 2.0 Lecture L25-3D Rigi Boy Kinematics In this lecture, we consier the motion of a 3D rigi boy. We shall see that in the general three-imensional

More information

Lesson 9: Radicals and Conjugates

Lesson 9: Radicals and Conjugates Student Outcomes Students understand that the sum of two square roots (or two cube roots) is not equal to the square root (or cube root) of their sum. Students convert expressions to simplest radical form.

More information

D.3. Angles and Degree Measure. Review of Trigonometric Functions

D.3. Angles and Degree Measure. Review of Trigonometric Functions APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric

More information

ALGEBRA 2/TRIGONOMETRY

ALGEBRA 2/TRIGONOMETRY ALGEBRA /TRIGONOMETRY The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION ALGEBRA /TRIGONOMETRY Tuesday, January 8, 014 1:15 to 4:15 p.m., only Student Name: School Name: The possession

More information

Algebra 2: Themes for the Big Final Exam

Algebra 2: Themes for the Big Final Exam Algebra : Themes for the Big Final Exam Final will cover the whole year, focusing on the big main ideas. Graphing: Overall: x and y intercepts, fct vs relation, fct vs inverse, x, y and origin symmetries,

More information

Mathematics Placement Examination (MPE)

Mathematics Placement Examination (MPE) Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital

More information

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm. PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

More information

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product)

v 1 v 3 u v = (( 1)4 (3)2, [1(4) ( 2)2], 1(3) ( 2)( 1)) = ( 10, 8, 1) (d) u (v w) = (u w)v (u v)w (Relationship between dot and cross product) 0.1 Cross Product The dot product of two vectors is a scalar, a number in R. Next we will define the cross product of two vectors in 3-space. This time the outcome will be a vector in 3-space. Definition

More information