# Solutions to Practice Problems for Test 4

Size: px
Start display at page:

Transcription

1 olutions to Practice Problems for Test 4 1. Let be the line segmentfrom the point (, 1, 1) to the point (,, 3). Evaluate the line integral y ds. Answer: First, we parametrize the line segment from (, 1, 1) to (,, 3): for t 1. Thus, Thus, x(t) (, 1, 1) + t(, 1, ) (t, 1 + t, 1 + t) x (t) (, 1, ) x (t) We can now evaluate the line integral: 1 [ ] 1 y ds (1 + t)3 dt 3 t + t 9. Let be the curve in R 3 defined by the equations r 1, z θ with endpoints (x, y, z) (1,, ) and (x, y, z) (1,, π). Evaluate the following line integral: xz dx + yz dy + z dz Answer: We can parameterize this curve using the parameter t θ. ince r 1, we have the parametric equations: x cos t y sin t z t t π The bounds for t come from the endpoints (x, y, z) (1,, ) and (x, y, z) (1,, π). Thus: dx sin t dt dy cos t dt dz dt 1

2 We can now compute the vector line integral: ( xz dx + yz dy + z dz ) t cos t sin t + t cos t sin t + t dt [ 1 3 t3 t dt ] π 8π onsider the vector field F(x, y, z) (sin(x ) + y) i + (x + z) j + y k. (a) Is F conservative? (b) Let be the curve parameterized by x sin t y cos t π t π z t Use your answer to part (a) to evaluate F ds. Answer: (a) To see if F is conservative, we compute F: i j k F x y z sin(x ) + y x + z y Yes, F is conservative. (1 1) i + j + (1 1) k (b) The trick to this part is to realize that is a closed loop. At t π, the parametric equations give x, y 1, and z π, and at t π, the parametric equations give the same values. ince F is conservative, there exists some function f such that f F. Thus: F ds f(, 1, π ) f(, 1, π )

3 You can also use tokes s Theorem to obtain the same answer (we have to use tokes s Theorem instead of Green s Theorem because the curve is in R 3 ). Let be a surface with as the boundary (this is where it is important that is a closed curve if was not closed, there could not be a surface with as the boundary). Then, by tokes s Theorem: F ds ( F) da da 4. onsider the vector field F(x, y, z) y i+(x + z cos y) j+(e z + sin y) k. (a) Find a function f such that f F. (b) Let be the curve parameterized by x t y t sin t t π z t cos t Use your answer to part (a) to evaluate F ds. Answer: (a) We want a function f such that f x y and f y x + z cos y and f z ez + sin y From the first equation, we see that f(x, y, z) xy + g(y, z) where g(y, z) is some function of y and z. If we differentiate this equation for f with respect to y, we obtain f y x + g y omparing with the previous expression for f y Thus: g(y, z) z sin y + h(z) 3, we see that g y z cos y.

4 where h(z) is some function of z. ombining with the previous expression for f, we get f(x, y, z) xy + z sin y + h(z) If we differentiate this equation for f with respect to z, we obtain f z sin y + dh dz omparing with the previous expression for f z Thus: h(z) e z + Thus: f(x, y, z) xy + z sin y + e z +, we see that dh dz ez. (b) At t, the curve is at the point (,, ). At t π, the curve is at the point (π,, π). Thus: ] (π,, π) F ds [xy + z sin y + e z e π 1 (,,) 5. onsider the region R bounded by the parabolas y x and x y. Let be the boundary of R oriented counterclockwise. Use Green s Theorem to evaluate (y + e x ) dx + ( x + cos(y ) ) dy Answer: The vector field is F ( y + e x, x + cos(y ) ). Thus, Thus by Green s Theorem, rot(f) 1 1 4

5 1 x 1 [ ] x ( F ds 1 dy dx y dx ) x x dx x x [ 3 x3/ 1 ] 1 y 3 x Let R be the region bounded by the curve x 3t t 3, y 6t t : x 1 Use Green s Theorem to find the area of the region R. Answer: First, we need to find the bounds for t. In particular, we want to know when the curve passes through the origin. etting 3t t 3 and 6t t and solving, we get t and t 3. Thus, our bounds are t 3. If you plot some points for the parametric equation, you will notice that the parametrization goes clockwise around the region instead of the counterclockwise that is required for Green s Theorem. This means, we will need to negate the integral. It is okay to not notice this at this point in the problem if we didn t notice, then we would get a negative answer, and since the area must be positive, we would realize that the orientation was incorrect and make the answer positive. We need to find a vector field F such that rot(f) 1. The vector field F y i will work (as would x j or lots of other possibilities). 5

6 Then, by Green s Theorem: We have: R da y dx D x 3t t 3 dx (6t 3t ) dt y 6t t dy (6 4t) dt with t 3. Thus: da R D y dx (6t t )(6t 3t ) dt 7. Evaluate the surface integral z da where is the surface z x + y, z. Answer: First we parameterize the surface. The surface has equation z r; we will use the parameters t r and u θ. Then, the parametric equations for the surface are: x t cos u y t sin u z t t u π The tangent vectors to the surface are: T t (cos u, sin u, 1) T u ( t sin u, t cos u, ) 6

7 And the normal vector to the surface is i j k T t T u cos u sin u 1 t sin u t cos u t cos u i t sin u j + t k Thus: da T t T u dt du t cos u + t sin u + t dt du t + t dt du t dt du t dt du Thus: z da 8 3 t T t T u dt du 16π du 3 t dt du 8. Use geometric reasoning to evaluate the following surface integrals: (a) The integral x + y + z da where is the surface x + y + z 4, z. (b) The integral (x i + y j) da where is the surface x + y 4, 1 z 3, oriented with unit normal vectors pointing outwards. (c) The integral (z k) da where is the disc x + y 9 on the plane z 4, oriented with unit normal vectors pointing upwards. 7

8 Answer: (a) The surface is a the top half of a sphere of radius centered at the origin. On the surface, the value of x + y + z is. Thus: x + y + z da da (surface area of ) The area of the top half of the sphere is 4πr π( ) 8π. Thus: x + y + z da (8π) 16π (b) We want to write the integral as a scalar surface integral F N da where N is the unit normal vector to the surface. ince is a cylinder about the z-axis, the vector x i + y j is normal to and points in the outward direction. o: N x i + y j x + y On the surface, x + y 4, so N x i + y j Thus, (x, y, ) F N (x, y, ) x + y Thus, we want to evaluate the integral da (surface area of cylinder) The surface area of the cylinder is πrh π()(3 1) 8π. Thus, (x i + y j) da (8π) 16π 8

9 (c) We want to write the integral as a scalar surface integral F N da where N is the unit normal vector to the surface. ince is disc on the plane z 4, the vector N k is normal to and points in the upward direction. o: F N (,, z) (,, 1) z On the plane z 4, we have F N z 4. Thus, we want to evaluate the integral 4 da 4(area of the disc) The area of the disc is πr π(3) 9π. Thus, (z k) da 4(9π) 36π 9. Let be the surface defined by z 5 x y with z 1, oriented with downward pointing normal. onsider the following vector field: F (e z + 1) i + y j + y cos(x ) k Use tokes s Theorem to evaluate ( F) da. Answer: By tokes s Theorem, ( F) da F ds The boundary of is defined by the equations 1 5 x y, z 1 (this is the intersection of the surface with the plane z 1). Thus, boundary is the circle x + y 4 in the plane z 1. We can parameterize this curve as follows: x cos t y sin t z 1 t π 9

10 Thus: dx sin t dt dy cos t dt dz ince the surface is oriented with unit normals pointing downwards, the curve needs to be oriented clockwise. We have currently oriented it counterclockwise, so we will need to negate the integral. Now, we can compute the integral: F ds (e z + 1) dx + y dy + y cos(x ) dz ( (e + 1)( sin t) + sin t( cos t) + sin t cos(4 cos t)() ) dt ( (e + 1) sin t + 4 sin t cos t) dt [ (e + 1) cos t + sin t ] π Note: Here is a slightly quicker way to see that the integral is. By tokes s Theorem, if two surfaces have the same boundary, then the two surface integrals of F must be the equal (since both surface integrals equal the line integral on the boundary). In this problem, we could consider the disc inside the circle x + y 4 in the plane z 1. The surface integral on this disc must be equal to the surface integral that we want to compute. On this disc, z 1, so F (e + 1) i + y j + y cos(x ) k Also, the unit normal vector to the disc is N k. And, if we compute ( F) N we get. o the surface integral must be. 1

11 1. (a) Find a vector field F such that F x k. (b) Use tokes s Theorem to evaluate ( x k ) da where be the surface z sin(r π), r 1, oriented with unit normal vectors pointing upwards. Answer: (a) One such vector field is F yx i. (Another such vector field is 1 3 x3 j, and there are many more.) (b) By tokes s Theorem and part (a): ( x k ) da ( yx i) ds The boundary of is the curve defined by the equations z sin(π) and r 1. This is the circle x + y 1 in the xy-plane. We can parameterize the boundary of as follows: Thus: x cos t y sin t z dx sin t dt dy cos t dt dz t π ince the surface is oriented with unit normals pointing upwards, the curve needs to be oriented counterclockwise, which is the way it is oriented by this parametrization. Thus: ( yx i) ds yx dx sin t cos t( sin t) dt sin t cos t dt 11

12 ince sin(t) sin t cos t and sin t 1 (1 cos(t)), we have: ( yx i) ds sin t cos t dt 1 (1 cos(4t)) dt sin (t) dt (t 14 )] π sin(4t) [ 1 8 π 4 1

### Fundamental Theorems of Vector Calculus

Fundamental Theorems of Vector Calculus We have studied the techniques for evaluating integrals over curves and surfaces. In the case of integrating over an interval on the real line, we were able to use

### Solutions for Review Problems

olutions for Review Problems 1. Let be the triangle with vertices A (,, ), B (4,, 1) and C (,, 1). (a) Find the cosine of the angle BAC at vertex A. (b) Find the area of the triangle ABC. (c) Find a vector

### This makes sense. t 2 1 + 1/t 2 dt = 1. t t 2 + 1dt = 2 du = 1 3 u3/2 u=5

1. (Line integrals Using parametrization. Two types and the flux integral) Formulas: ds = x (t) dt, d x = x (t)dt and d x = T ds since T = x (t)/ x (t). Another one is Nds = T ds ẑ = (dx, dy) ẑ = (dy,

### Section 12.6: Directional Derivatives and the Gradient Vector

Section 26: Directional Derivatives and the Gradient Vector Recall that if f is a differentiable function of x and y and z = f(x, y), then the partial derivatives f x (x, y) and f y (x, y) give the rate

### Solutions - Homework sections 17.7-17.9

olutions - Homework sections 7.7-7.9 7.7 6. valuate xy d, where is the triangle with vertices (,, ), (,, ), and (,, ). The three points - and therefore the triangle between them - are on the plane x +

### Chapter 17. Review. 1. Vector Fields (Section 17.1)

hapter 17 Review 1. Vector Fields (Section 17.1) There isn t much I can say in this section. Most of the material has to do with sketching vector fields. Please provide some explanation to support your

### Solutions to Homework 10

Solutions to Homework 1 Section 7., exercise # 1 (b,d): (b) Compute the value of R f dv, where f(x, y) = y/x and R = [1, 3] [, 4]. Solution: Since f is continuous over R, f is integrable over R. Let x

### Vector Calculus Solutions to Sample Final Examination #1

Vector alculus s to Sample Final Examination #1 1. Let f(x, y) e xy sin(x + y). (a) In what direction, starting at (,π/), is f changing the fastest? (b) In what directions starting at (,π/) is f changing

### If Σ is an oriented surface bounded by a curve C, then the orientation of Σ induces an orientation for C, based on the Right-Hand-Rule.

Oriented Surfaces and Flux Integrals Let be a surface that has a tangent plane at each of its nonboundary points. At such a point on the surface two unit normal vectors exist, and they have opposite directions.

### FINAL EXAM SOLUTIONS Math 21a, Spring 03

INAL EXAM SOLUIONS Math 21a, Spring 3 Name: Start by printing your name in the above box and check your section in the box to the left. MW1 Ken Chung MW1 Weiyang Qiu MW11 Oliver Knill h1 Mark Lucianovic

### PROBLEM SET. Practice Problems for Exam #1. Math 1352, Fall 2004. Oct. 1, 2004 ANSWERS

PROBLEM SET Practice Problems for Exam # Math 352, Fall 24 Oct., 24 ANSWERS i Problem. vlet R be the region bounded by the curves x = y 2 and y = x. A. Find the volume of the solid generated by revolving

### Line and surface integrals: Solutions

hapter 5 Line and surface integrals: olutions Example 5.1 Find the work done by the force F(x, y) x 2 i xyj in moving a particle along the curve which runs from (1, ) to (, 1) along the unit circle and

### Vector surface area Differentials in an OCS

Calculus and Coordinate systems EE 311 - Lecture 17 1. Calculus and coordinate systems 2. Cartesian system 3. Cylindrical system 4. Spherical system In electromagnetics, we will often need to perform integrals

### Review Sheet for Test 1

Review Sheet for Test 1 Math 261-00 2 6 2004 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And

### Differentiation of vectors

Chapter 4 Differentiation of vectors 4.1 Vector-valued functions In the previous chapters we have considered real functions of several (usually two) variables f : D R, where D is a subset of R n, where

### AB2.5: Surfaces and Surface Integrals. Divergence Theorem of Gauss

AB2.5: urfaces and urface Integrals. Divergence heorem of Gauss epresentations of surfaces or epresentation of a surface as projections on the xy- and xz-planes, etc. are For example, z = f(x, y), x =

### 4.2. LINE INTEGRALS 1. 2 2 ; z = t. ; y = sin

4.2. LINE INTEGRALS 1 4.2 Line Integrals MATH 294 FALL 1982 FINAL # 7 294FA82FQ7.tex 4.2.1 Consider the curve given parametrically by x = cos t t ; y = sin 2 2 ; z = t a) Determine the work done by the

### 3 Contour integrals and Cauchy s Theorem

3 ontour integrals and auchy s Theorem 3. Line integrals of complex functions Our goal here will be to discuss integration of complex functions = u + iv, with particular regard to analytic functions. Of

### Math 21a Curl and Divergence Spring, 2009. 1 Define the operator (pronounced del ) by. = i

Math 21a url and ivergence Spring, 29 1 efine the operator (pronounced del by = i j y k z Notice that the gradient f (or also grad f is just applied to f (a We define the divergence of a vector field F,

### Math 241, Exam 1 Information.

Math 241, Exam 1 Information. 9/24/12, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.1-14.3. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241fa12/241.html)

### A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS

A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors

### RAJALAKSHMI ENGINEERING COLLEGE MA 2161 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS PART A

RAJALAKSHMI ENGINEERING COLLEGE MA 26 UNIT I - ORDINARY DIFFERENTIAL EQUATIONS. Solve (D 2 + D 2)y = 0. 2. Solve (D 2 + 6D + 9)y = 0. PART A 3. Solve (D 4 + 4)x = 0 where D = d dt 4. Find Particular Integral:

### 10 Polar Coordinates, Parametric Equations

Polar Coordinates, Parametric Equations ½¼º½ ÈÓÐ Ö ÓÓÖ Ò Ø Coordinate systems are tools that let us use algebraic methods to understand geometry While the rectangular (also called Cartesian) coordinates

### F = 0. x ψ = y + z (1) y ψ = x + z (2) z ψ = x + y (3)

MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists

### Practice Final Math 122 Spring 12 Instructor: Jeff Lang

Practice Final Math Spring Instructor: Jeff Lang. Find the limit of the sequence a n = ln (n 5) ln (3n + 8). A) ln ( ) 3 B) ln C) ln ( ) 3 D) does not exist. Find the limit of the sequence a n = (ln n)6

### Analysis of Stresses and Strains

Chapter 7 Analysis of Stresses and Strains 7.1 Introduction axial load = P / A torsional load in circular shaft = T / I p bending moment and shear force in beam = M y / I = V Q / I b in this chapter, we

### The Vector or Cross Product

The Vector or ross Product 1 ppendix The Vector or ross Product We saw in ppendix that the dot product of two vectors is a scalar quantity that is a maximum when the two vectors are parallel and is zero

### ( 1)2 + 2 2 + 2 2 = 9 = 3 We would like to make the length 6. The only vectors in the same direction as v are those

1.(6pts) Which of the following vectors has the same direction as v 1,, but has length 6? (a), 4, 4 (b),, (c) 4,, 4 (d), 4, 4 (e) 0, 6, 0 The length of v is given by ( 1) + + 9 3 We would like to make

### (a) We have x = 3 + 2t, y = 2 t, z = 6 so solving for t we get the symmetric equations. x 3 2. = 2 y, z = 6. t 2 2t + 1 = 0,

Name: Solutions to Practice Final. Consider the line r(t) = 3 + t, t, 6. (a) Find symmetric equations for this line. (b) Find the point where the first line r(t) intersects the surface z = x + y. (a) We

### LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE. Contents

LINEAR MAPS, THE TOTAL DERIVATIVE AND THE CHAIN RULE ROBERT LIPSHITZ Abstract We will discuss the notion of linear maps and introduce the total derivative of a function f : R n R m as a linear map We will

### Method of Green s Functions

Method of Green s Functions 8.303 Linear Partial ifferential Equations Matthew J. Hancock Fall 006 We introduce another powerful method of solving PEs. First, we need to consider some preliminary definitions

### L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has

The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:

### 299ReviewProblemSolutions.nb 1. Review Problems. Final Exam: Wednesday, 12/16/2009 1:30PM. Mathematica 6.0 Initializations

99ReviewProblemSolutions.nb Review Problems Final Exam: Wednesday, /6/009 :30PM Mathematica 6.0 Initializations R.) Put x@td = t - and y@td = t -. Sketch on the axes below the curve traced out by 8x@tD,

### 88 CHAPTER 2. VECTOR FUNCTIONS. . First, we need to compute T (s). a By definition, r (s) T (s) = 1 a sin s a. sin s a, cos s a

88 CHAPTER. VECTOR FUNCTIONS.4 Curvature.4.1 Definitions and Examples The notion of curvature measures how sharply a curve bends. We would expect the curvature to be 0 for a straight line, to be very small

### 1. First-order Ordinary Differential Equations

Advanced Engineering Mathematics 1. First-order ODEs 1 1. First-order Ordinary Differential Equations 1.1 Basic concept and ideas 1.2 Geometrical meaning of direction fields 1.3 Separable differential

### Calculus with Parametric Curves

Calculus with Parametric Curves Suppose f and g are differentiable functions and we want to find the tangent line at a point on the parametric curve x f(t), y g(t) where y is also a differentiable function

### vector calculus 2 Learning outcomes

29 ontents vector calculus 2 1. Line integrals involving vectors 2. Surface and volume integrals 3. Integral vector theorems Learning outcomes In this Workbook you will learn how to integrate functions

### MULTIPLE INTEGRALS. h 2 (y) are continuous functions on [c, d] and let f(x, y) be a function defined on R. Then

MULTIPLE INTEGALS 1. ouble Integrals Let be a simple region defined by a x b and g 1 (x) y g 2 (x), where g 1 (x) and g 2 (x) are continuous functions on [a, b] and let f(x, y) be a function defined on.

### x 2 + y 2 = 1 y 1 = x 2 + 2x y = x 2 + 2x + 1

Implicit Functions Defining Implicit Functions Up until now in this course, we have only talked about functions, which assign to every real number x in their domain exactly one real number f(x). The graphs

### Review B: Coordinate Systems

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics 8.02 Review B: Coordinate Systems B.1 Cartesian Coordinates... B-2 B.1.1 Infinitesimal Line Element... B-4 B.1.2 Infinitesimal Area Element...

### Review Solutions MAT V1102. 1. (a) If u = 4 x, then du = dx. Hence, substitution implies 1. dx = du = 2 u + C = 2 4 x + C.

Review Solutions MAT V. (a) If u 4 x, then du dx. Hence, substitution implies dx du u + C 4 x + C. 4 x u (b) If u e t + e t, then du (e t e t )dt. Thus, by substitution, we have e t e t dt e t + e t u

### PRACTICE FINAL. Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 10cm.

PRACTICE FINAL Problem 1. Find the dimensions of the isosceles triangle with largest area that can be inscribed in a circle of radius 1cm. Solution. Let x be the distance between the center of the circle

### Chapter 2. Parameterized Curves in R 3

Chapter 2. Parameterized Curves in R 3 Def. A smooth curve in R 3 is a smooth map σ : (a, b) R 3. For each t (a, b), σ(t) R 3. As t increases from a to b, σ(t) traces out a curve in R 3. In terms of components,

### Exam 1 Sample Question SOLUTIONS. y = 2x

Exam Sample Question SOLUTIONS. Eliminate the parameter to find a Cartesian equation for the curve: x e t, y e t. SOLUTION: You might look at the coordinates and notice that If you don t see it, we can

### The Math Circle, Spring 2004

The Math Circle, Spring 2004 (Talks by Gordon Ritter) What is Non-Euclidean Geometry? Most geometries on the plane R 2 are non-euclidean. Let s denote arc length. Then Euclidean geometry arises from the

### Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Exam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice exam contributors: Benita Albert Oak Ridge High School,

### Techniques of Integration

CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration

### Solutions to old Exam 1 problems

Solutions to old Exam 1 problems Hi students! I am putting this old version of my review for the first midterm review, place and time to be announced. Check for updates on the web site as to which sections

### 6. Define log(z) so that π < I log(z) π. Discuss the identities e log(z) = z and log(e w ) = w.

hapter omplex integration. omplex number quiz. Simplify 3+4i. 2. Simplify 3+4i. 3. Find the cube roots of. 4. Here are some identities for complex conjugate. Which ones need correction? z + w = z + w,

### Area and Arc Length in Polar Coordinates

Area and Arc Length in Polar Coordinates The Cartesian Coordinate System (rectangular coordinates) is not always the most convenient way to describe points, or relations in the plane. There are certainly

### Section 11.1: Vectors in the Plane. Suggested Problems: 1, 5, 9, 17, 23, 25-37, 40, 42, 44, 45, 47, 50

Section 11.1: Vectors in the Plane Page 779 Suggested Problems: 1, 5, 9, 17, 3, 5-37, 40, 4, 44, 45, 47, 50 Determine whether the following vectors a and b are perpendicular. 5) a = 6, 0, b = 0, 7 Recall

### Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Difference Equations to Differential Equations Section 4.4 Using the Fundamental Theorem As we saw in Section 4.3, using the Fundamental Theorem of Integral Calculus reduces the problem of evaluating a

### SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253

SOLUTIONS TO HOMEWORK ASSIGNMENT #4, MATH 253 1. Prove that the following differential equations are satisfied by the given functions: (a) 2 u + 2 u 2 y + 2 u 2 z =0,whereu 2 =(x2 + y 2 + z 2 ) 1/2. (b)

### 4 More Applications of Definite Integrals: Volumes, arclength and other matters

4 More Applications of Definite Integrals: Volumes, arclength and other matters Volumes of surfaces of revolution 4. Find the volume of a cone whose height h is equal to its base radius r, by using the

### Figure 2.1: Center of mass of four points.

Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would

### MATH 381 HOMEWORK 2 SOLUTIONS

MATH 38 HOMEWORK SOLUTIONS Question (p.86 #8). If g(x)[e y e y ] is harmonic, g() =,g () =, find g(x). Let f(x, y) = g(x)[e y e y ].Then Since f(x, y) is harmonic, f + f = and we require x y f x = g (x)[e

### AP Calculus AB First Semester Final Exam Practice Test Content covers chapters 1-3 Name: Date: Period:

AP Calculus AB First Semester Final Eam Practice Test Content covers chapters 1- Name: Date: Period: This is a big tamale review for the final eam. Of the 69 questions on this review, questions will be

### Scalar Valued Functions of Several Variables; the Gradient Vector

Scalar Valued Functions of Several Variables; the Gradient Vector Scalar Valued Functions vector valued function of n variables: Let us consider a scalar (i.e., numerical, rather than y = φ(x = φ(x 1,

### Solutions to Homework 5

Solutions to Homework 5 1. Let z = f(x, y) be a twice continously differentiable function of x and y. Let x = r cos θ and y = r sin θ be the equations which transform polar coordinates into rectangular

### Surface Normals and Tangent Planes

Surface Normals and Tangent Planes Normal and Tangent Planes to Level Surfaces Because the equation of a plane requires a point and a normal vector to the plane, nding the equation of a tangent plane to

### SOLUTIONS. f x = 6x 2 6xy 24x, f y = 3x 2 6y. To find the critical points, we solve

SOLUTIONS Problem. Find the critical points of the function f(x, y = 2x 3 3x 2 y 2x 2 3y 2 and determine their type i.e. local min/local max/saddle point. Are there any global min/max? Partial derivatives

### M PROOF OF THE DIVERGENCE THEOREM AND STOKES THEOREM

68 Theor Supplement Section M M POOF OF THE DIEGENE THEOEM ND STOKES THEOEM In this section we give proofs of the Divergence Theorem Stokes Theorem using the definitions in artesian coordinates. Proof

### Mark Howell Gonzaga High School, Washington, D.C.

Be Prepared for the Calculus Eam Mark Howell Gonzaga High School, Washington, D.C. Martha Montgomery Fremont City Schools, Fremont, Ohio Practice eam contributors: Benita Albert Oak Ridge High School,

### Mechanics 1: Conservation of Energy and Momentum

Mechanics : Conservation of Energy and Momentum If a certain quantity associated with a system does not change in time. We say that it is conserved, and the system possesses a conservation law. Conservation

### 1 3 4 = 8i + 20j 13k. x + w. y + w

) Find the point of intersection of the lines x = t +, y = 3t + 4, z = 4t + 5, and x = 6s + 3, y = 5s +, z = 4s + 9, and then find the plane containing these two lines. Solution. Solve the system of equations

### Implicit Differentiation

Implicit Differentiation Sometimes functions are given not in the form y = f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x. Such functions

### Derive 5: The Easiest... Just Got Better!

Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; mbeaudin@seg.etsmtl.ca 1. Introduction Engineering

### 6 Further differentiation and integration techniques

56 6 Further differentiation and integration techniques Here are three more rules for differentiation and two more integration techniques. 6.1 The product rule for differentiation Textbook: Section 2.7

### 13.4 THE CROSS PRODUCT

710 Chapter Thirteen A FUNDAMENTAL TOOL: VECTORS 62. Use the following steps and the results of Problems 59 60 to show (without trigonometry) that the geometric and algebraic definitions of the dot product

### Math 1B, lecture 5: area and volume

Math B, lecture 5: area and volume Nathan Pflueger 6 September 2 Introduction This lecture and the next will be concerned with the computation of areas of regions in the plane, and volumes of regions in

### DERIVATIVES AS MATRICES; CHAIN RULE

DERIVATIVES AS MATRICES; CHAIN RULE 1. Derivatives of Real-valued Functions Let s first consider functions f : R 2 R. Recall that if the partial derivatives of f exist at the point (x 0, y 0 ), then we

### MAT 1341: REVIEW II SANGHOON BAEK

MAT 1341: REVIEW II SANGHOON BAEK 1. Projections and Cross Product 1.1. Projections. Definition 1.1. Given a vector u, the rectangular (or perpendicular or orthogonal) components are two vectors u 1 and

### Determine whether the following lines intersect, are parallel, or skew. L 1 : x = 6t y = 1 + 9t z = 3t. x = 1 + 2s y = 4 3s z = s

Homework Solutions 5/20 10.5.17 Determine whether the following lines intersect, are parallel, or skew. L 1 : L 2 : x = 6t y = 1 + 9t z = 3t x = 1 + 2s y = 4 3s z = s A vector parallel to L 1 is 6, 9,

### MATH 425, PRACTICE FINAL EXAM SOLUTIONS.

MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator

### www.mathsbox.org.uk ab = c a If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Further Pure Summary Notes. Roots of Quadratic Equations For a quadratic equation ax + bx + c = 0 with roots α and β Sum of the roots Product of roots a + b = b a ab = c a If the coefficients a,b and c

### Adding vectors We can do arithmetic with vectors. We ll start with vector addition and related operations. Suppose you have two vectors

1 Chapter 13. VECTORS IN THREE DIMENSIONAL SPACE Let s begin with some names and notation for things: R is the set (collection) of real numbers. We write x R to mean that x is a real number. A real number

### Microeconomic Theory: Basic Math Concepts

Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts

### Section 2.7 One-to-One Functions and Their Inverses

Section. One-to-One Functions and Their Inverses One-to-One Functions HORIZONTAL LINE TEST: A function is one-to-one if and only if no horizontal line intersects its graph more than once. EXAMPLES: 1.

### Feb 28 Homework Solutions Math 151, Winter 2012. Chapter 6 Problems (pages 287-291)

Feb 8 Homework Solutions Math 5, Winter Chapter 6 Problems (pages 87-9) Problem 6 bin of 5 transistors is known to contain that are defective. The transistors are to be tested, one at a time, until the

### Class Meeting # 1: Introduction to PDEs

MATH 18.152 COURSE NOTES - CLASS MEETING # 1 18.152 Introduction to PDEs, Fall 2011 Professor: Jared Speck Class Meeting # 1: Introduction to PDEs 1. What is a PDE? We will be studying functions u = u(x

### Answer Key for the Review Packet for Exam #3

Answer Key for the Review Packet for Eam # Professor Danielle Benedetto Math Ma-Min Problems. Show that of all rectangles with a given area, the one with the smallest perimeter is a square. Diagram: y

### Merton College Maths for Physics Prelims October 10, 2005 MT I. Calculus. { y(x + δx) y(x)

Merton College Maths for Physics Prelims October 10, 2005 1. From the definition of the derivative, dy = lim δx 0 MT I Calculus { y(x + δx) y(x) evaluate d(x 2 )/. In the same way evaluate d(sin x)/. 2.

### ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE

i93 c J SYSTEMS OF CURVES 695 ON CERTAIN DOUBLY INFINITE SYSTEMS OF CURVES ON A SURFACE BY C H. ROWE. Introduction. A system of co 2 curves having been given on a surface, let us consider a variable curvilinear

### Equations Involving Lines and Planes Standard equations for lines in space

Equations Involving Lines and Planes In this section we will collect various important formulas regarding equations of lines and planes in three dimensional space Reminder regarding notation: any quantity

### Physics of the Atmosphere I

Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 Ulrich.Platt@iup.uni-heidelberg.de heidelberg.de Last week The conservation of mass implies the continuity equation:

### The small increase in x is. and the corresponding increase in y is. Therefore

Differentials For a while now, we have been using the notation dy to mean the derivative of y with respect to. Here is any variable, and y is a variable whose value depends on. One of the reasons that

### the points are called control points approximating curve

Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.

### 27.3. Introduction. Prerequisites. Learning Outcomes

olume Integrals 27. Introduction In the previous two sections, surface integrals (or double integrals) were introduced i.e. functions were integrated with respect to one variable and then with respect

### ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: Unit code: QCF Level: 4 Credit value: 15 ANALYTICAL METHODS FOR ENGINEERS A/601/1401 OUTCOME - TRIGONOMETRIC METHODS TUTORIAL 1 SINUSOIDAL FUNCTION Be able to analyse and model engineering situations

### Stokes' Theorem Examples

Stokes' Theorem Eamples Stokes' Theorem relates surface integrals and line integrals. STOKES' TEOREM Let F be a vector field. Let be an oriented surface, and let be the boundar curve of, oriented using

### Mohr s Circle. Academic Resource Center

Mohr s Circle Academic Resource Center Introduction The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr s Circle. This graphical representation is

### SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA

SECOND DERIVATIVE TEST FOR CONSTRAINED EXTREMA This handout presents the second derivative test for a local extrema of a Lagrange multiplier problem. The Section 1 presents a geometric motivation for the

### Math 265 (Butler) Practice Midterm II B (Solutions)

Math 265 (Butler) Practice Midterm II B (Solutions) 1. Find (x 0, y 0 ) so that the plane tangent to the surface z f(x, y) x 2 + 3xy y 2 at ( x 0, y 0, f(x 0, y 0 ) ) is parallel to the plane 16x 2y 2z

### Two vectors are equal if they have the same length and direction. They do not

Vectors define vectors Some physical quantities, such as temperature, length, and mass, can be specified by a single number called a scalar. Other physical quantities, such as force and velocity, must

### Math 53 Worksheet Solutions- Minmax and Lagrange

Math 5 Worksheet Solutions- Minmax and Lagrange. Find the local maximum and minimum values as well as the saddle point(s) of the function f(x, y) = e y (y x ). Solution. First we calculate the partial

### SAT Subject Math Level 2 Facts & Formulas

Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Arithmetic Sequences: PEMDAS (Parentheses

### Math 2443, Section 16.3

Math 44, Section 6. Review These notes will supplement not replace) the lectures based on Section 6. Section 6. i) ouble integrals over general regions: We defined double integrals over rectangles in the