# IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW

Save this PDF as:

Size: px
Start display at page:

Download "IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW"

## Transcription

1 JOURNAL OF THEORETICAL AND APPLIED MECHANICS 49, 1, pp , Warsaw 2011 IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW Zbigniew Zarzycki Sylwester Kudźma Kamil Urbanowicz West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Szczecin, Poland; The paper presents the problem of modelling and simulation of transients during turbulent fluid flow in hydraulic pipes. The instantaneous wallshearstressonapipewallispresentedintheformofintegralconvolution of a weighting function and local acceleration of the liquid. This weighting function depends on the dimensionless time and Reynolds number. Its original, very complicated mathematical structure is approximated to a simpler form which is useful for practical engineering calculations. The paper presents an efficient way to solve the integral convolution based on the method given by Trikha(1975) for laminar flow. AnapplicationofanimprovedmethodwiththeuseoftheMethodof Characteristic for the case of unsteady flow(water hammer) is presented. This method is characterised by high efficiency compared to traditional numerical schemes. Key words: unsteady pipe flow, transients, waterhammer, efficient numerical simulation Notation c 0 [ms 1 ] acousticwavespeed p[kgm 1 s 2 ] pressure s[s 1 ] Laplaceoperator t[s] time v[ms 1 ] instantaneousmeanflowvelocity t=νt/r 2 [ ] dimensionlesstime

2 136 Z. Zarzycki et al. v[ms 1 ] averagevalueofvelocityincross-sectionofpipe v z [ms 1 ] axialvelocity w[ ] weightingfunction z[m] distancealongpipeaxis L[m] pipelength R[m] radiusofpipe Re=2Rv/ν[ ] Reynoldsnumber µ[kgm 1 s 1 ] dynamicviscosity ν[m 2 s 1 ] kinematicviscosity λ[ ] Darcy-Weisbach friction coefficient ρ 0 [kgm 3 ] fluiddensity(constant) τ w,τ wq,τ wu [kgm 1 s 2 ] wallshearstress,wallshearstressforquasi-steady flow, unsteady wall shear stress, respectively Ω=ωR 2 /ν[ ] dimensionlessfrequency 1. Introduction There are many problems concerning the issue of unsteady flow in pipes, and they include such phenomena as: energy dissipation, fluid-structure interactions, cavitation(for example column separation) and many others. It would beverydifficult,ifnotimpossible,toaccountforallthephenomenainjustone mathematical model. This paper is devoted to the problem of energy dissipation and it concerns unsteady friction modelling of the liquid in pipes during turbulent liquid pipe flow. The commonly used quasi-steady, one-dimensional(1d) model in which the wall shear stress is approximated by means of Darcy-Weisbach formula is correct for slow changes of the liquid velocity field in the pipe cross-section, i.e. either for small accelerations or for low frequencies(if the flow is pulsating). Theformulaisalsocorrectforthewaterhammereffectforitsfirstwavecycle. Thismodeldoesnottakeintoaccountthegradientofspeedchangingintime, whichisdirectedintotheradialdirection,andso,asaresult,thechanging energy dissipation is not taken into account either. Models which represent unsteady friction losses can be divided into two groups.thefirstarethoseinwhichtheshearstressconnectedwiththeunsteady friction term is proportional to the instantaneous local acceleration(daily et al., 1956; Carrtens and Roller, 1959; Sawfat and Polder, 1973). This group

3 Improved method for simulating transients contains a popular model developed by Brunone et al.(1994, 1995) in which theunsteadyfrictiontermisasumoftwoterms:thefirstofwhichisproportional to the instantaneous local acceleration and the other is proportional to the instantaneous convective acceleration. Vitkovsky et al.(2000) improved Brunone s model by introducing a sign to the convective acceleration. Inthesecondgroupofmodels,theunsteadywallshearstressdependson the past flow accelerations. These models are based on a two-dimensional(2d) equationofmotionandtheytakeintoaccountthevelocityfieldwhichcanbe changeable in time in the cross-section of the pipe. Zielke(1968) proposed forthefirsttimealaminarflowmodelinwhichtheinstantaneousshearstress depends on the instantaneous pipe flow acceleration and the weighting function ofthepastvelocitychanges.inthecaseofunsteadyturbulentflow,modelsof friction losses are mainly based on the eddy viscosity distribution in the crosssection of the pipe determined for a steady flow. The following models should be listed: two and three region models(vardy, 1980; Vardy and Brown, 1995, 1996, 2003, 2004, 2007; Vardy et al. 1993) and as well as Zarzycki s four-layer model(zarzycki, 1993, 1994, 2000). Lately, Vardy and Brown(2004) used an idealised viscosity distribution model for a rough pipe flow. Unsteady friction models are used for simulation of transients in pipes. The traditional numerical method of unsteady friction calculation proposed byzielke(1968),requiresalargeamountofcomputermemoryandistime consuming. Therefore, Trikha(1975) and then Suzuki(1991) and Schohl(1993) improved Zielke s method making it more effective. In the case of unsteady turbulent flow, Rahl and Barlamond(1996) and then Ghidaoui and Mansour(2002) used Vardy s model to simulate the waterhammer effect. These methods provide only approximated results. They are not very effective and cannot be considered to be satisfactory. Theaimofthepresentpaperistodevelopaneffectivemethodofsimulating shear stress for unsteady turbulent pipe flow, a method that would be similar to that proposed by Trikha and Schoohl for laminar flow. That also involves developing an approximated model of the weighting function, which can be useful for effective simulation of transients. 2. Equations of unsteady turbulent flow Unsteady, axisymmetric turbulent flow of a Newtonian fluid in a long pipe with a constant internal radius and rigid walls is considered. In addition, the following assumptions are made:

4 138 Z. Zarzycki et al. constant distribution of pressure in the pipe cross-section, body forces and thermal effects are negligible, mean velocity in the pipe cross-section is considerably smaller than the speedofsoundinthefluid. The following approximate equation, presented in the previous papers by Ohmi et al.( , 1985), Zarzycki(1993), which omits small terms in the fundamental equation for unsteady flow and in which the Reynolds stress termisdescribedbyusingeddyviscosityν t,isused v z t = 1 p ρ 0 z +ν 2 v ( z Σ r 2 + r ν ) Σ r +ν Σ vz r r (2.1) wherev z,p averagedintime,respectively:velocitycomponentintheaxial directionandpressure, ρ 0 densityoftheliquid(constant), t time, z distancealongthepipeaxis,r radialdistancefromthepipeaxis. Themodifiededdyviscositycoefficient ν Σ isthesumofthekinematic viscositycoefficientνandtheeddyviscositycoefficientν t,thatis ν Σ =ν+ν t (2.2) Itisassumedthatchangesofthecoefficientν t resultingfromtheflowchange intimearenegligible,whichmeansthat ν t isonlyafunctionoftheradial distance r. In practice, this limits the analysis to relatively short periods of time Turbulent kinematics viscosity distributions Inordertodescribethedistributionoftheturbulentviscositycoefficientν t throughout the pipe cross-section, the flow region is divided into several layers and,foreachofthem,thefunctionν t (r)hastobedetermined.byanalogy to steady pipe flow, the following regions of flow can be distinguished: VS (Viscous Sublayer), BL(Buffer Layer), DTL(Developed Turbulent Layer) and TC(Turbulent Core)(Hussain and Reynolds(1975)). This is shown in Fig.1.ThedistributionofeddyviscositypresentedinFig.1wascreatedon thebasisofexperimentaldataofthecoefficient ν t providedbylaufer(for Re= )andnunner(forre= )andpublishedbyhinze(1953)as wellasdataaboutaregionclosetothewall,whichwasprovidedbyschubauer and published by Hussain and Reynolds(1975). That was presented in depth by Zarzycki(1993, 1994).

5 Improved method for simulating transients Fig.1.Schematicrepresentationofthefour-regionmodelofν t Theradialdistancesr 1,r 2 andr 3 fromthepipecentrelineareasfollows r j =R y(y j + ) j=1,2,3 y 1 + =0.2R+ y 2 + =35 y+ 3 =5 (2.3) where: y + =yv /νisthedimensionlessdistance y, y distancefromthe pipewall,v = τ ws /ρ 0 dynamicvelocity,τ ws wallshearstressforsteady flow,r + =Rv /ν dimensionlessradiusrofthepipe. Thecoefficientofturbulentviscosity ν t isexpressedforparticularlayers (except the buffer layer) as follows ν t =α i r+β i i=1,3,4 α 1 =0 α 3 = ν t1 ν t2 r 2 r 1 α 4 =0 (2.4) β 1 =0 β 2 =ν t2 α 3 r 2 β 4 =ν t1 Forthebufferlayer(r 2 r<r 3 ),ν t isexpressedasfollows ν t =0.01(y + ) 2 ν (2.5) Expressions,whichdefinethequantitiesν t1,ν t2,r 1,r 2 andr 3 havethefollowing forms ν t1 =0.016 v 2 ν ν t2 =12.25ν (2.6) and r 1 =0.8 r 2 = ( ) v R r 3 = (1 20 2) v R (2.7)

6 140 Z. Zarzycki et al. Thequantitiesν t1,r 2 andr 3,whichdefinethedistributionofthecoefficientν t, dependonadimensionlessdynamicvelocity v,whichisdeterminedinthe following way v = 4 2R v = λ s Re s (2.8) ν where:λ s isthefrictioncoefficientforsteadyflow,re s =2Rv s /ν Reynolds numberforsteadyflow,v s meanfluidvelocityinthepipecross-section. Sincewehave λ s =λ s (Re s )then,forsmoothpipes,theprofileofthe coefficientν t inthepipecross-sectiondependsonlyonthere s number. However,if insteadofthere s weassumetheinstantaneousreynolds number Re = 2Rv/ν (v instantaneous, averaged in the pipe cross-section fluidvelocity)and insteadofλ s weassumeaquasi-steadyfrictioncoefficientλ q =λ q (Re),thenthepresenteddistributionofthecoefficientν t will becomeaquasi-steadyone.inthispaperλ q isdeterminedfromtheprandtl formula 1 =0.869ln(Re λ q ) 0.8 (2.9) λq 2.2. Momentum equations for particular layers For the four-layer model of the flow region, equation(2.1) breaks up into four equations. Introducing the differential operator D = / t into equation (2.1), we obtain: for the viscous sublayer Dv z1 = 1 ρ 0 p z +ν ( 2 v z1 r r v ) z1 r (2.10) fortheremaininglayersoftheflowregion Dv zi = 1 p ρ 0 z +ν 2 v ( zi Σ r 2 + νσ ) r +ν Σ vzi r r (2.11) where:i=2,3,4 (i=2forthebl, i=3forthedtland i=4forthe TC),v zi istheaxialcomponentofthevelocityforparticularlayersoftheflow region,ν Σ =ν+ν t effectivecoefficientofturbulentviscosity. Equations(2.10)and(2.11)(fori=3,4)canberesolvedusingrelationship (2.4) into the modified Bessel equations. Equation(2.11)(for i = 2), taking into account the fact that

7 Improved method for simulating transients r R r 1 2 for r 2 r<r 3 (2.12) assumes the form of a differential equation of Euler type. The solutions to the momentum equations for particular layers are shown in papers(zarzycki, 1993, 1994, 2000). 3. Wall shear stress and weighting function Integratingequation(2.1)overthepipecross-section(fromr=0tor=R) andconsideringthat / t=d,weobtain ρ 0 Dv+ p z +2 R τ w=0 (3.1) Bydeterminingthewallshearstressatthepipewallτ w asfollows τ w = ρ 0 ν v z1 r we obtain a relationship of the following type (3.2) r=r τ w =f(d,re) p z (3.3) Equations(3.1)and(3.3)enableonetodeterminetransferfunctionĜτvthat describes hydraulic resistance, relating the pipe wall shear stress and the mean velocity Ĝ τv ( D,Re)= τ w v (3.4) where v=(r/ν)v, τ w =[R 2 /(ρ 0 ν 2 )]τ w, p=[r 2 /(ρ 0 ν 2 )]pdenotedimensionless velocity, wall shear stress, and pressure, respectively. AprecisemathematicalformofthetransferfunctionĜτvisverycomplex and was presented by Zarzycki(1994). Thequantity D=(R 2 /ν) / tpresentsthedimensionlessdifferentialoperator. Takingintoaccounttransferfunction(3.4)for D=ŝ(whereŝ=sR 2 /ν isthedimensionlesslaplaceoperator)onecanexpressthestress τ w asa sumofquasi-steadywallshearstressτ wq andintegralconvolutionofthefluid acceleration v/ t and the weighting function w(t), i.e. as a convolution of

8 142 Z. Zarzycki et al. the fluid acceleration v/ t and the step response g(t)(zielke, 1968; Zarzycki, 1993, 2000), i.e. τ w (t)=τ wq + 2µ R whereτ wq isdescribedbythefollowingexpression t 0 v (u)w(t u)du (3.5) t τ wq = 1 8 λ qρ 0 v v (3.6) The graph of weighting function w(t) for different Reynolds numbers and for thelaminarflowispresentedinfig.2. Fig. 2. The weighting functions for turbulent and laminar flow The weighting function approaches zero when time tends to infinity. This tendency becomes stronger for higher Reynolds numbers. 4. Approximated weighting function model Theweightingfunctionhasacomplexmathematicalformanditisnotvery useful to calculate and simulate unsteady turbulent flow(zarzycki, 1994, 2000). Zarzycki(1994) approximated it to the following form

9 Improved method for simulating transients w apr =C 1 t Ren (4.1) wherec= ,n= However, numerical calculations that include this function lead to some complications(dividing by zero) as time and the Reynolds number are to be found in the denominator. Hence, in order to improve the effectiveness of calculations, the function will be approximated with a simpler form. Additionally, it is suggested that the approximated function should meet the following assumptions: 1) its form should be similar to Trikha s(trikha, 1975) or Schohl s(schohl, 1993) models(methods of simulating shear stress based on these models are very effective), 2) its mathematical form should allow an easy way of carrying out Laplace transformation. This is important for simulating oscillating or pulsating flow by the matrix method(wylie and Streeter, 1993). In order to meet the above presented criteria, a number of possible forms of the function were investigated. The form which was eventually selected can begivenby n w N ( t)=(c 1 Re c2 +c 3 ) A i e b i t (4.2) wherei=1,2,...,n. Determining the coefficients of the weighting function was carried out in two stages in the following way: a)thefirststage.intherangeofthereynoldsnumbersre ,10 7, a several equally distributed points were chosen, and for each of them weighting functions were estimated using Statistica programme. Estimationwasconductedfortherangeofdimensionaltime t 10 6,10. b) The second stage. Two-dimensional weighting function w( t, Re) was estimated using Matlab s module for optimization. For the optimization procedure, the following assumption was formulated: todeterminethedecisionvariablesvector x=[x 1,x 2,...,x 19 ], where: x 1 =c 1,x 2 =c 2,x 3 =c 3,x 4 =A 1,x 5 =b 1,x 6 =A 2, x 7 =b 2,...,x 18 =A 8,x 19 =b 8 (arecoefficientsof(4.2)) i=1 which minimizes the vector objective function minf(x)=[f(x)] (4.3)

10 144 Z. Zarzycki et al. where r ( w N(i) ( t,re) w i ( t,re) ) 2 f(x)= (4.4) i=1 w i ( t,re) and satisfies the following limitation g(x)= 10 7 [ ] w N ( t,re)d t dre [ ] w( t,re)d t dre= (4.5) Inrelation(4.4)thearguments tandrewereselectedsothatthedetermined points(pairs of numbers) on the plane t Re would uniformly cover the interval t 10 5,10 1 andre= ,10 7,andthattheywouldbedifferentfrom thepointsselectedatthefirststage.atotalofr=1000pointswereusedin the calculations. The values of coefficients in Eq.(4.2), determined at the first stage, were used as the starting points(the values of elements of the decision variables vector) for the optimization. Once the optimization problems were formulated in the way described above, calculations were conducted using Matlab and its function fgoalattain. Details of the whole process of a new weighting function estimation were described by Zarzycki and Kudźma(2004). On the basis of the above assumptions and calculations that were conducted later, the final form of the weighting function was established 8 w N ( t)=(c 1 Re c 2 +c 3 ) A i e b i t i=1 (4.6) c 1 = ;c 2 = ;c 3 = ;A 1 =0.224,A 2 =1.644, A 3 =2.934,A 4 =5.794,A 5 =11.28,A 6 =19.909,A 7 =34.869,A 8 =63.668; b 1 = ,b 2 =8.44,b 3 =88.02,b 4 =480.5,b 5 =2162,b 6 =8425, b 7 =29250,b 8 = The present form of the weighting function contrary to the one put forward in(zarzycki and Kudźma, 2004) contains eight terms. As it turned out, the effective method of calculating wall shear stress presented later in this work is more sensitive to inaccurate fit between the proposed function and the original. Therefore, in order to ensure correct mapping, the number of elements of the new weighting function was increased from six to eight. In addition, a comparison was made of new expression(4.6) course and Zarzycki s model with the weighting function of Vardy and Brown(2003)

11 Improved method for simulating transients w( t)= 1 2 π t exp ( t C ) (4.7) where:c =12.86/Re κ ;κ=log 10 (15.29/Re ). The accuracy of Zarzycki s mapping of the weighting function by the new function is as follow: ForarangeofReynoldsnumbersbetween Re 10 7 and dimensionlesstimebetween10 5 t 10 1,therelativeerrorsatisfies condition w N( t) w( t) 0.05 w( t) Graphical comparison of the newly estimated function and models of weighing function by Zarzycki and Vardy-Brown are presented in Fig. 3. The relative errorofthenewfunctionandzarzycki smodelispresentedinfig.4.asitis shown,theerrorinsomeareasisupto5%butithastobementionedthatthe run of the new function is between the models of Vardy-Brown and Zarzycki weighting functions. There is no clear evidence of better consistency with the experimentforawiderangeofreynoldsnumbersuptonow,soitisambiguous which models should be mapped more precisely by the new function. The authors did not want to complicate the form of weighting expression through an increase of the number of exponential components thus left it in form(4.6). But,itisworthtomentionthatitispossibletoincreaseaccuracyofmapping the original weight in a wider range of Reynolds numbers or dimensionless time in the case of new more precise and experimentally tested models. The lowest limit of usage of the new weighting function for dimensionless timeis t=10 5.Forthepresentedmethodoftransientssimulationsitisa satisfactory value from the point of engineering view. It permit simulations of low viscosity fluids in quite large pipe radius(e.g. for fluid which viscosity ν=1mm 2 /sacceptablediameter=0.3m).ithastobealsomentionedthat suchabigradiusofthepipelinehasusuallylonglength,whatmeans,in consequence, low frequency of transients pressure oscillations. It allows one to take a quite big time step in numerical calculations, which is in the acceptable range of dimensionless time. In order to quantitatively assess a mapping of Zarzycki s model by the new expression for selected Reynolds numbers, a relative error is calculated according to the expression relative error = w N( t) w( t) (4.8) w( t)

12 146 Z. Zarzycki et al. Fig. 3. Comparison of Vardy-Brown s, Zarzycki s and new weighting function runs fordifferentreynoldsnumbers:(a)re=10 4,(b)Re=10 6 Fig. 4. The relative error between the new function and Zarzycki s weighting functionmodelforre=10 4 ResultsofitsusageareshownforthecaseofReynoldsnumberRe=10 4 in Fig. 4. In the case of harmonically pulsating flow, a transfer matrix method is usually used(wylie and Streeter, 1993). For this method, an adequate(laminar or turbulent) weighting function transformed into Laplace domain is needed.

13 Improved method for simulating transients Next,theLaplacevariableissubstitutetbyŝ=jΩ. Conducting the above mentioned transformations, the new weighting function takes the following form w N (jω)=(c 1 Re c 2 +c 3 ) 8 i=1 A i jω+b i (4.9) where:ω=ωr 2 /νisthedimensionlessangularfrequency. InFig.5,acomparisonofrealandimaginarypartsofnewweightingfunction(4.9) with Zarzycki and Vardy-Brown models is presented. Fig. 5. Comparison of the new weighting function with models by Zarzycki and Vardy-BrownforRe=10 4 To sum up, it should be pointed out that new approximating function(5.3) well reflects the weight of the unsteady friction model for turbulent flow for t 10 5 and 2000 Re 10 7.However,asfarasfrequencyisconcerned, thepresentedrelationisrightforadimensionlessfrequencyω 10.These particular ranges are most important as far as engineering applications and precision of numerical simulations are concerned. 5. Improvement of the approximation method for simulations of wall shear stress Numerical calculations of the unsteady wall shear stress(convolution of the local liquid acceleration and the weighting function) in the traditional approach is both time-consuming and takes a lot of computer memory space(suzuki et al., 1991). In papers by Trikha(1975) and Schohl(1993) another, more efficient method of calculating unsteady shear stress for laminar flow was presented.

14 148 Z. Zarzycki et al. This section presents the implementation of Trikha s method into calculationsofwallshearstressforturbulentflowusingthedevelopedhereformof weighting function(4.6). Weighting function(4.6) can be given by 8 w N (t)= w i (5.1) i=1 wherew i =(c 1 Re c 2 +c 3 )A i e b iνt/r 2. Using the above form of the weighting function, the unsteady term of pipe wallshearstressτ wn canbewrittenas τ wu = 2µ R 8 y i (t) (5.2) i=1 where t y i (t)=(c 1 Re c 2 +c 3 )A i e b i ν R 2t 0 e b i ν R 2u v (u)du (5.3) u TheReynoldsnumberwasusedintheaboveexpressionsasavariabletobe updated at every iterative step. This approach was also suggested by Vardy etal.(1993). Because in the characteristics method calculations are carried out for some fixed time intervals, then y i (t+ t)= t+ t 0 w i (t+ t u) v u (u)du= t =e b i ν R 2 t (c 1 Re c 2 +c 3 )A i e b i ν R 2t e b i ν R 2u v } 0 {{ } y i (t) +(c 1 Re c 2 +c 3 )A i e b i ν t+ t R 2(t+ t) e b i ν R 2u v u (u)du } {{ t } y i (t) While comparing relations(5.4) and(5.3), we obtain u (u)du + (5.4) y i (t+ t)=y i (t)e b i ν R 2 t + y i (t) (5.5)

15 Improved method for simulating transients where y i (t)=(c 1 Re c 2 +c 3 )A i e b i ν t+ t R 2(t+ t) e b i ν R 2u v t (u)du (5.6) u Ifintheabovegivenexpressiondescribing y i (t),weassumethatv(u)is alinearfunction [v(u) =au+b]intheintervalfrom tto t+ t,then its derivative calculated after time given by v(u)/ u can be treated as a constant whose value can be determined from the following expression: [v(t+ t) v(t)]/ t.onthestrengthofthisassumption,wecanwrite y i (t) (c 1 Re c 2 +c 3 )A i e b i ν R 2(t+ t) [v(t+ t) v(t)] t =(c 1 Re c 2 +c 3 )A i e b i ν R 2(t+ t) [v(t+ t) v(t)] t b i ν =(c 1 Re c 2 +c 3 ) A ir 2 tb i ν y i (t+ t) y i (t)e b i ν R 2 t + R 2 t+ t e b i ν R 2u du= t (e b i ν R 2(t+ t) e b i ν R 2t) = (1 e b i ν R 2 t) [v(t+ t) v(t)] (5.7) (5.8) +(c 1 Re c 2 +c 3 ) A ir 2 (1 e b i ν R tb i ν 2 t) [v(t+ t) v(t)] τ wu (t+ t)= 2µ 8 y i (t+ t) (5.9) R τ wu (t+ t) 2µ R i=1 8 i=1 +(c 1 Re c 2 +c 3 ) A ir 2 tb i ν y i (t)e b i ν R 2 t + (1 e b i ν R 2 t) [v(t+ t) v(t)] (5.10) Atthebeginningofsimulations(i.e.atthefirstiterativestep),thevalueofall termsofy i (t)equalszero.ateverysubsequenttimestep,thesevalueschange according to Eq.(5.5).

16 150 Z. Zarzycki et al. 6. Results of waterhammer simulations and efficiency of the method 6.1. Governingequations The unsteady flow, accompanying the water hammer effect, may be described by a set of the following partial differential equations(wylie and Streeter, 1993): equation of continuity p v t +c2 0ρ 0 =0 (6.1) x equation of motion v t +1 p ρ 0 x + 2τ =0 (6.2) ρ 0 R wherev=v(x,t)istheaveragevelocityofliquidinthepipecross-section, p=p(x,t) averagepressureinthepipecross-section, R innerradiusof thetube,τ wallshearsterss,ρ 0 densityoffluid,c 0 velocityofpressure wavepropagation,t time,x axiallocationalongthepipe. A waterhammer simulation is carried out by the method of characteristics (MOC). This method(for small Mach number flow) transform equations(6.1), (6.2) into the following systems of equations(wylie and Streeter, 1993) if ±dp±ρ 0 c 0 dv+ 2τ wa dt=0 (6.3) R dz=±c 0 dt (6.4) Details of the further procedure of calculation may be found in papers by Zarzycki and Kudźma(2004) or Zarzycki et al.(2007) Numericalsimulation The investigated system(tank-pipeline-valve) is presented in Fig. 6. For calculations, the following data were assumed(wichowski, 1984): lengthofhydrauliclinel=3600m innerdiameteroftubed=0.62m thicknessoftubewallg=0.016m modulusofelasticityoftubewallmaterial(castiron)e= Pa bulkmodulusofliquide L = Pa

17 Improved method for simulating transients Fig.6.Schemeofthepipelinesystem;1 hydraulicpipeline,2 cut-offvalve, 3 tank,v 0 directionoffluidflow(initialcondition) velocityofpressurewavepropagationc 0 =1072m/s initialvelocityoffluidflowv 0 =1.355m/s densityofwaterρ 0 =1000kg/m 3 kinematicviscosityoffluidν= m 2 /s The critical Reynolds number is calculated according to the following equation(ohmi et al., 1985) Re c =800 Ω (6.5) whereω=ωr 2 /νisthedimensionlessangularfrequency;ω=2π/t angularfrequency; T =4L/c 0 periodofpressurepulsation, L lengthof pipe. ThevalueofReynoldsnumberattheinitialconditionisRe=2Rv 0 /ν= ,thecriticalReynoldsnumberaccordingtoEq.(6.5)Re c = , so(re>re c )andtheflowisregardedasturbulent. Theunsteadystateofthesystemwasachievedbyacompleteclosureof thevalveforatimelongerthanahalfofthewave speriodinthepipe,i.e. t z =90s>2L/c 0 =6.72s,consequentlyitcanberegardedasanexample of a complex waterhammer(wylie and Streeter, 1993). Closure of the valve proceeded according to the characteristics presented in Fig. 7(Wichowski, 1984).ThepresentedcharacteristicsillustratethevariableliquidflowrateQ z through the valve due to its slow shutdown. Two simulation cases were investigated: inthefirstone,theunsteadystressτ wu wascalculatedbymeansofeq. (5.10) by making use of new weighting function(4.6), inthesecondone,theunsteadystress τ wu wascalculatedusingthe traditional method(zielke, 1968). Theresultsofnumericalsimulationatthevalvecarriedoutforagiven numberoftimestepsispresentedinfig.8.asonecansee,afterthevalve

18 152 Z. Zarzycki et al. Fig. 7. Flow characteristics of closing of the water supply valve closure which lasts 90s, there are still evident significant pressure pulsations. Thiseffectiscausedbyverylargeinertiaoftheliquid(highvalueofthe Reynolds number and a substantial length of the liquid line). Therefore, despite the long time of valve closure, disappearing pressure pulsations are still present intheline. Fig. 8. Pressure fluctuation at the valve after its closure The comparison of two simulations, using the old and new method of calculations of unsteady frictional losses presented in Fig. 8 shows a good agreement of the results obtained, and thus confirms that the model of efficient computation satisfactorily replaces the traditional method. However, an important difference that can be observed in the simulations is the time of numerical calculations. Figure 9 presents the dependence of timenecessarytocarryoutcalculationsonthenumberoftimestepsusedfor the simulations. As it can be clearly seen, the time of numerical calculations carried out by means of the traditional method using Zarzycki s weighting function(4.1) is much longer than that used to calculate it using the presented

19 Improved method for simulating transients Fig. 9. Comparison of numerical computation times method. Moreover, the time necessary to carry out the calculations conducted for the traditional method increases exponentially, along with the increase of the number of time steps. However, for the effective method the time increases slowlyinalinearway. Onthebasisoftheabovepresentedinvestigations,itcanbestatedthatthe presently developed method of simulating pressure changes and flow velocity, while taking into account the unsteady friction loss expressed by(5.10), is an effective method which can replace the tradition method and which offers satisfactory accuracy. 7. Conclusions The paper presented the transfer function relating the pipe wall shear stress and the mean velocity. It is based on a four-region distribution of eddy viscosityatthecross-sectionofthepipe.thismodelwasusedtodeterminethe unsteady wall shear stress as integral convolution of acceleration and weighting function similarly as it was done for laminar flow(see e.g. Zielke, 1968). However, the weighting function has a complex mathematical form and it is not very convenient to use it for simulating transient flows. Therefore, it was approximated to a simpler form, which was a sum of eight exponential summands. For this form of the weighting function and approximated in this way, an effective method of simulating wall shear stress was developed. The most important conclusions which can be drawn from this study are as follows: Theweightingfunctiondependsonthedimensionlesstime t=νt/r 2 (asinthecaseforlaminarflow)andadditionallyonthereynoldsnumber Re.

20 154 Z. Zarzycki et al. The weighting function approaches zero as the time increases. For a given valueofdimensionlesstimeitisgreaterinthecaseoflaminarflowandit decreasesalongwiththeincreaseofreynoldsnumberreinthecaseof turbulent flow. It means that the hydraulic resistance with an increase inthereynoldsnumberregoesfastertoaquasi-steadyvalue,whichis associated with increase of damping. Approximated weighting function(4.6) proves to be a precise expression intherange 10 5 t 10 1 and Re 10 7 (relativeerror smallerthan5%). The present approximated method of calculating wall shear stress(which incidentally is similar to Trikha s method developed for laminar flow) makes it possible to significantly reduce the time necessary to carry out calculations as compared with the traditional method. Theweightingfunctiondevelopedinthisstudyshowsagoodfitwith Vardy s model for short times(high frequencies). However, the discrepancy between the values of weighting function obtained in both methods increase together with the increase of Reynolds number. It should bepointedoutthatbothfunctionswereobtainedonthebasisofdetermined distribution of eddy viscosity. This is justified for high frequencies (Brownetal.,1969).Itseemsthatforthemeanbandoffrequenciesanother model would be more appropriate. A model in which eddy viscosity, except for viscous sublayer, would be determined using turbulent kinetic energymodels(e.g.k ε,k l). Theweightingfunctionhasaformwhichcaneasilyundergothefirst Laplace transformation and then Fourier transform. This is useful for determination a frequency characteristics of a long hydraulic pipeline systems. References 1. Abreu J.W., Almeida A.B., 2000, Pressure transients dissipative effects: a contribution for their computational prediction, 8th International Conference on Pressure Surges, BHR Group, The Hague, Netherlands, Bergant A., Simpson A.R., 1994, Estimating unsteady friction in transient cavitating pipe flow, Proc., 2nd Int. Conf. On Water Pipeline Systems, BHRA Group Conf. Series Publ., 10, UK, Edinburgh, May, 2-15

### UNIVERSAL WEIGHTING FUNCTION IN MODELING TRANSIENT CAVITATING PIPE FLOW

JOURNAL OF THEORETICAL AND APPLIED MECHANICS 50, 4, pp. 889-902, Warsaw 2012 50th Anniversary of JTAM UNIVERSAL WEIGHTING FUNCTION IN MODELING TRANSIENT CAVITATING PIPE FLOW Kamil Urbanowicz, Zbigniew

More information

### NEW EFFICIENT APPROXIMATION OF WEIGHTING FUNCTIONS FOR SIMULATIONS OF UNSTEADY FRICTION LOSSES IN LIQUID PIPE FLOW

JOURNAL OF THEORETICAL AND APPLIED MECHANICS 50, 2, pp. 487-508, Warsaw 2012 50th Anniversary of JTAM NEW EFFICIENT APPROXIMATION OF WEIGHTING FUNCTIONS FOR SIMULATIONS OF UNSTEADY FRICTION LOSSES IN LIQUID

More information

### Hydraulic Transients used for Leakage Detection in Water Distribution Systems

Hydraulic Transients used for Leakage Detection in Water Distribution Systems Dídia Covas and Helena Ramos Instituto Superior Técnico, Dept. Civil Engineering, Lisbon, Portugal ABSTRACT The current paper

More information

### NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

### SIMULATION OF TRANSIENT FLOWS IN A HYDRAULIC SYSTEMWITHALONGLIQUIDLINE

JOURNAL OF THEORETICAL AND APPLIED MECHANICS 45, 4, pp. 853-871, Warsaw 2007 SIMULATION OF TRANSIENT FLOWS IN A HYDRAULIC SYSTEMWITHALONGLIQUIDLINE Zbigniew Zarzycki Sylwester Kudźma Szczecin University

More information

### Chapter 8 Steady Incompressible Flow in Pressure Conduits

Chapter 8 Steady Incompressible Flow in Pressure Conduits Outline 8.1 Laminar Flow and turbulent flow Reynolds Experiment 8.2 Reynolds number 8.3 Hydraulic Radius 8.4 Friction Head Loss in Conduits of

More information

### Experiment 3 Pipe Friction

EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

### Viscous Flow in Pipes

Viscous Flow in Pipes Excerpted from supplemental materials of Prof. Kuang-An Chang, Dept. of Civil Engin., Texas A&M Univ., for his spring 2008 course CVEN 311, Fluid Dynamics. (See a related handout

More information

### 4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

### Open channel flow Basic principle

Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

### DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

### ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

More information

### Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

### AA200 Chapter 9 - Viscous flow along a wall

AA200 Chapter 9 - Viscous flow along a wall 9.1 The no-slip condition 9.2 The equations of motion 9.3 Plane, Compressible Couette Flow (Review) 9.4 The viscous boundary layer on a wall 9.5 The laminar

More information

### Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

### 20 years of FSI experiments in Dundee

20 years of FSI experiments in Dundee Arris S Tijsseling a, Alan E Vardy b a Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

More information

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

### du u U 0 U dy y b 0 b

BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

### ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW

Engineering MECHANICS, Vol. 21, 2014, No. 6, p. 371 379 371 ANALYTICAL VELOCITY PROFILE IN TUBE FOR LAMINAR AND TURBULENT FLOW Jaroslav Štigler* A new analytical formula of the velocity profile for both

More information

### Unsteady Pressure Measurements

Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

More information

### CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt

INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing

More information

### INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

### Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

### Applied Fluid Mechanics

Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

### Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

### L r = L m /L p. L r = L p /L m

NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

More information

### Chapter Six. Non-Newtonian Liquid

Chapter Six Non-Newtonian Liquid For many fluids a plot of shear stress against shear rate does not give a straight line. These are so-called Non-Newtonian Fluids. Plots of shear stress against shear rate

More information

### E 490 Fundamentals of Engineering Review. Fluid Mechanics. M. A. Boles, PhD. Department of Mechanical & Aerospace Engineering

E 490 Fundamentals of Engineering Review Fluid Mechanics By M. A. Boles, PhD Department of Mechanical & Aerospace Engineering North Carolina State University Archimedes Principle and Buoyancy 1. A block

More information

### Head Loss in Pipe Systems Laminar Flow and Introduction to Turbulent Flow

Head Loss in Pipe Systems Laminar Flow and Introduction to Turbulent Flow ME 322 Lecture Slides, Winter 2007 Gerald Recktenwald January 23, 2007 Associate Professor, Mechanical and Materials Engineering

More information

### Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

### ENSC 283 Introduction and Properties of Fluids

ENSC 283 Introduction and Properties of Fluids Spring 2009 Prepared by: M. Bahrami Mechatronics System Engineering, School of Engineering and Sciences, SFU 1 Pressure Pressure is the (compression) force

More information

### Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

### A new approach to using the classic pressure-time method of discharge measurements

TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 123, 2011, 57 70 ADAM ADAMKOWSKI and WALDEMAR JANICKI A new approach to using the classic pressure-time method of discharge measurements The Szewalski

More information

### Pressure drop in pipes...

Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

More information

### OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

### Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

### Mathematical model and numerical computations of transient pipe flows with fluid-structure interaction

TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY No. 122, 2010, 77 94 SŁAWOMIR HENCLIK Mathematical model and numerical computations of transient pipe flows with fluid-structure interaction The Szewalski

More information

### Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

### Basic Equations, Boundary Conditions and Dimensionless Parameters

Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

### HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW

HWR 431 / 531 HYDROGEOLOGY LAB SECTION LABORATORY 2 DARCY S LAW Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed

More information

### The Viscosity of Fluids

Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

### 1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

### Basic Principles in Microfluidics

Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

### Viscous flow in pipe

Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

### Appendix 4-C. Open Channel Theory

4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

### Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED

More information

### Introduction to Turbulent Flow

CBE 6333, R. Levicky 1 Introduction to Turbulent Flow Turbulent Flow. In turbulent flow, the velocity components and other variables (e.g. pressure, density - if the fluid is compressible, temperature

More information

### Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

### APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

### Fluid flow in circular and noncircular pipes is commonly encountered in

cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped

More information

### Distinguished Professor George Washington University. Graw Hill

Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

### CBE 6333, R. Levicky 1. Potential Flow

CBE 6333, R. Levicky Part I. Theoretical Background. Potential Flow Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by negligible viscosity effects. Viscous

More information

### Fundamentals of Fluid Mechanics

Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

### Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

### Chapter 1. Governing Equations of Fluid Flow and Heat Transfer

Chapter 1 Governing Equations of Fluid Flow and Heat Transfer Following fundamental laws can be used to derive governing differential equations that are solved in a Computational Fluid Dynamics (CFD) study

More information

### measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,

Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow

More information

### Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

### FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

### Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

### Mass Transfer in Laminar & Turbulent Flow. Mass Transfer Coefficients

Mass Transfer in Laminar & Turbulent Flow Mass Transfer Coefficients 25 MassTransfer.key - January 3, 204 Convective Heat & Mass Transfer T T w T in bulk and T w near wall, with a complicated T profile

More information

### pressure inside the valve just before the final release of air. in pipeline systems resulting from 2p 1 p a m C D A o

BY SRINIVASA LINGIREDDY, DON J. WOOD, AND NAFTALI ZLOZOWER It is a common practice to locate air valves at high elevations along water transmission mains. Improper sizing of an air valve could lead to

More information

### Macroscopic Balances for Nonisothermal Systems

Transport Phenomena Macroscopic Balances for Nonisothermal Systems 1 Macroscopic Balances for Nonisothermal Systems 1. The macroscopic energy balance 2. The macroscopic mechanical energy balance 3. Use

More information

### Experiment (13): Flow channel

Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

### Chapter 13 OPEN-CHANNEL FLOW

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

### Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

### Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 22 Laminar and Turbulent flows

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 22 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. So

More information

### AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle

More information

### People s Physics book 3e Ch 25-1

The Big Idea: In most realistic situations forces and accelerations are not fixed quantities but vary with time or displacement. In these situations algebraic formulas cannot do better than approximate

More information

### OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

More information

### Fluent Software Training TRN Boundary Conditions. Fluent Inc. 2/20/01

Boundary Conditions C1 Overview Inlet and Outlet Boundaries Velocity Outline Profiles Turbulence Parameters Pressure Boundaries and others... Wall, Symmetry, Periodic and Axis Boundaries Internal Cell

More information

### ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

### Calculating resistance to flow in open channels

Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

More information

### Dynaflow Lectures Surge analysis. Rotterdam, June 12 th, 2008

Dynaflow Lectures Surge analysis Rotterdam, June 12 th, 2008 Agenda What are surges and what causes them How to reduce the impact of surges Case Conclusions 2 Surges are variations in pressures that are

More information

### BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW

BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW ABSTRACT by Anthony J.Grass* and Ragaet N.M.Ayoub** An experimental study is described in which the rate of transport of fine sand over a flat

More information

### Dimensional Analysis

Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

### Optimization of electronic devices placement on printed circuit board

Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities

More information

### Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

More information

### CHAPTER 4 FLOW IN CHANNELS

CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely

More information

### NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS

TASK QUARTERLY 15 No 3 4, 317 328 NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS WOJCIECH ARTICHOWICZ Department of Hydraulic Engineering, Faculty

More information

### Entrance Conditions. Chapter 8. Islamic Azad University

Chapter 8 Convection: Internal Flow Islamic Azad University Karaj Branch Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume laminar flow with

More information

### ANALYSIS OF OPEN-CHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER

Reprint from RIVERTECH 96 Proceedings from the1st International Conference On New/Emerging Concepts for Rivers Organized by the International Water Resources Association Held September 22-26, 1996, Chicago,

More information

### Module 2 : Convection. Lecture 20a : Illustrative examples

Module 2 : Convection Lecture 20a : Illustrative examples Objectives In this class: Examples will be taken where the concepts discussed for heat transfer for tubular geometries in earlier classes will

More information

### 1. Introduction, fluid properties (1.1, and handouts)

1. Introduction, fluid properties (1.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Applications of fluid mechanics

More information

### Sub Module Design of experiments

Sub Module 1.6 6. Design of experiments Goal of experiments: Experiments help us in understanding the behavior of a (mechanical) system Data collected by systematic variation of influencing factors helps

More information

### F mg (10.1 kg)(9.80 m/s ) m

Week 9 homework IMPORTANT NOTE ABOUT WEBASSIGN: In the WebAssign versions of these problems, various details have been changed, so that the answers will come out differently. The method to find the solution

More information

### A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

More information

### FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

### For Water to Move a driving force is needed

RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

### Hydraulic losses in pipes

Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

More information

### Water hammering in fire fighting installation

Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering

More information

### Transactions on Engineering Sciences vol 5, 1994 WIT Press, ISSN

Heat transfer from thermally developing flow of non-newtonian fluids in rectangular ducts B.T.F. Chung & Z.J. Zhang Department of Mechanical Engineering, The University of Akron, Akron, ABSTRACT The purpose

More information

### AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

### Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

### Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids

Journal of etroleum and Gas Exploration Research (ISSN 76-6510) Vol. () pp. 07-03, February, 01 Available online http://www.interesjournals.org/jger Copyright 01 International Research Journals Review

More information

### Turbulence Lengthscales and Spectra

School of Mechanical Aerospace and Civil Engineering TPFE MSc Advanced Turbulence Modelling Introduction RANS based schemes, studied in previous lectures, average the effect of turbulent structures. Turbulence

More information

### CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

### STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

### Sediment deposition in a rigid monsoon drain

Intl. J. River Basin Management Vol. 6, No. 1 (2008), pp. 23 30 2008 IAHR, INBO & IAHS Sediment deposition in a rigid monsoon drain AMINUDDIN AB. GHANI, Professor and Deputy Director, River Engineering

More information

### Practice Problems on Bernoulli s Equation. V car. Answer(s): p p p V. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Sep 15

bernoulli_0 A person holds their hand out of a car window while driving through still air at a speed of V car. What is the maximum pressure on the person s hand? V car 0 max car p p p V C. Wassgren, Purdue

More information