IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW

Size: px
Start display at page:

Download "IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW"

Transcription

1 JOURNAL OF THEORETICAL AND APPLIED MECHANICS 49, 1, pp , Warsaw 2011 IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW Zbigniew Zarzycki Sylwester Kudźma Kamil Urbanowicz West Pomeranian University of Technology, Faculty of Mechanical Engineering and Mechatronics, Szczecin, Poland; The paper presents the problem of modelling and simulation of transients during turbulent fluid flow in hydraulic pipes. The instantaneous wallshearstressonapipewallispresentedintheformofintegralconvolution of a weighting function and local acceleration of the liquid. This weighting function depends on the dimensionless time and Reynolds number. Its original, very complicated mathematical structure is approximated to a simpler form which is useful for practical engineering calculations. The paper presents an efficient way to solve the integral convolution based on the method given by Trikha(1975) for laminar flow. AnapplicationofanimprovedmethodwiththeuseoftheMethodof Characteristic for the case of unsteady flow(water hammer) is presented. This method is characterised by high efficiency compared to traditional numerical schemes. Key words: unsteady pipe flow, transients, waterhammer, efficient numerical simulation Notation c 0 [ms 1 ] acousticwavespeed p[kgm 1 s 2 ] pressure s[s 1 ] Laplaceoperator t[s] time v[ms 1 ] instantaneousmeanflowvelocity t=νt/r 2 [ ] dimensionlesstime

2 136 Z. Zarzycki et al. v[ms 1 ] averagevalueofvelocityincross-sectionofpipe v z [ms 1 ] axialvelocity w[ ] weightingfunction z[m] distancealongpipeaxis L[m] pipelength R[m] radiusofpipe Re=2Rv/ν[ ] Reynoldsnumber µ[kgm 1 s 1 ] dynamicviscosity ν[m 2 s 1 ] kinematicviscosity λ[ ] Darcy-Weisbach friction coefficient ρ 0 [kgm 3 ] fluiddensity(constant) τ w,τ wq,τ wu [kgm 1 s 2 ] wallshearstress,wallshearstressforquasi-steady flow, unsteady wall shear stress, respectively Ω=ωR 2 /ν[ ] dimensionlessfrequency 1. Introduction There are many problems concerning the issue of unsteady flow in pipes, and they include such phenomena as: energy dissipation, fluid-structure interactions, cavitation(for example column separation) and many others. It would beverydifficult,ifnotimpossible,toaccountforallthephenomenainjustone mathematical model. This paper is devoted to the problem of energy dissipation and it concerns unsteady friction modelling of the liquid in pipes during turbulent liquid pipe flow. The commonly used quasi-steady, one-dimensional(1d) model in which the wall shear stress is approximated by means of Darcy-Weisbach formula is correct for slow changes of the liquid velocity field in the pipe cross-section, i.e. either for small accelerations or for low frequencies(if the flow is pulsating). Theformulaisalsocorrectforthewaterhammereffectforitsfirstwavecycle. Thismodeldoesnottakeintoaccountthegradientofspeedchangingintime, whichisdirectedintotheradialdirection,andso,asaresult,thechanging energy dissipation is not taken into account either. Models which represent unsteady friction losses can be divided into two groups.thefirstarethoseinwhichtheshearstressconnectedwiththeunsteady friction term is proportional to the instantaneous local acceleration(daily et al., 1956; Carrtens and Roller, 1959; Sawfat and Polder, 1973). This group

3 Improved method for simulating transients contains a popular model developed by Brunone et al.(1994, 1995) in which theunsteadyfrictiontermisasumoftwoterms:thefirstofwhichisproportional to the instantaneous local acceleration and the other is proportional to the instantaneous convective acceleration. Vitkovsky et al.(2000) improved Brunone s model by introducing a sign to the convective acceleration. Inthesecondgroupofmodels,theunsteadywallshearstressdependson the past flow accelerations. These models are based on a two-dimensional(2d) equationofmotionandtheytakeintoaccountthevelocityfieldwhichcanbe changeable in time in the cross-section of the pipe. Zielke(1968) proposed forthefirsttimealaminarflowmodelinwhichtheinstantaneousshearstress depends on the instantaneous pipe flow acceleration and the weighting function ofthepastvelocitychanges.inthecaseofunsteadyturbulentflow,modelsof friction losses are mainly based on the eddy viscosity distribution in the crosssection of the pipe determined for a steady flow. The following models should be listed: two and three region models(vardy, 1980; Vardy and Brown, 1995, 1996, 2003, 2004, 2007; Vardy et al. 1993) and as well as Zarzycki s four-layer model(zarzycki, 1993, 1994, 2000). Lately, Vardy and Brown(2004) used an idealised viscosity distribution model for a rough pipe flow. Unsteady friction models are used for simulation of transients in pipes. The traditional numerical method of unsteady friction calculation proposed byzielke(1968),requiresalargeamountofcomputermemoryandistime consuming. Therefore, Trikha(1975) and then Suzuki(1991) and Schohl(1993) improved Zielke s method making it more effective. In the case of unsteady turbulent flow, Rahl and Barlamond(1996) and then Ghidaoui and Mansour(2002) used Vardy s model to simulate the waterhammer effect. These methods provide only approximated results. They are not very effective and cannot be considered to be satisfactory. Theaimofthepresentpaperistodevelopaneffectivemethodofsimulating shear stress for unsteady turbulent pipe flow, a method that would be similar to that proposed by Trikha and Schoohl for laminar flow. That also involves developing an approximated model of the weighting function, which can be useful for effective simulation of transients. 2. Equations of unsteady turbulent flow Unsteady, axisymmetric turbulent flow of a Newtonian fluid in a long pipe with a constant internal radius and rigid walls is considered. In addition, the following assumptions are made:

4 138 Z. Zarzycki et al. constant distribution of pressure in the pipe cross-section, body forces and thermal effects are negligible, mean velocity in the pipe cross-section is considerably smaller than the speedofsoundinthefluid. The following approximate equation, presented in the previous papers by Ohmi et al.( , 1985), Zarzycki(1993), which omits small terms in the fundamental equation for unsteady flow and in which the Reynolds stress termisdescribedbyusingeddyviscosityν t,isused v z t = 1 p ρ 0 z +ν 2 v ( z Σ r 2 + r ν ) Σ r +ν Σ vz r r (2.1) wherev z,p averagedintime,respectively:velocitycomponentintheaxial directionandpressure, ρ 0 densityoftheliquid(constant), t time, z distancealongthepipeaxis,r radialdistancefromthepipeaxis. Themodifiededdyviscositycoefficient ν Σ isthesumofthekinematic viscositycoefficientνandtheeddyviscositycoefficientν t,thatis ν Σ =ν+ν t (2.2) Itisassumedthatchangesofthecoefficientν t resultingfromtheflowchange intimearenegligible,whichmeansthat ν t isonlyafunctionoftheradial distance r. In practice, this limits the analysis to relatively short periods of time Turbulent kinematics viscosity distributions Inordertodescribethedistributionoftheturbulentviscositycoefficientν t throughout the pipe cross-section, the flow region is divided into several layers and,foreachofthem,thefunctionν t (r)hastobedetermined.byanalogy to steady pipe flow, the following regions of flow can be distinguished: VS (Viscous Sublayer), BL(Buffer Layer), DTL(Developed Turbulent Layer) and TC(Turbulent Core)(Hussain and Reynolds(1975)). This is shown in Fig.1.ThedistributionofeddyviscositypresentedinFig.1wascreatedon thebasisofexperimentaldataofthecoefficient ν t providedbylaufer(for Re= )andnunner(forre= )andpublishedbyhinze(1953)as wellasdataaboutaregionclosetothewall,whichwasprovidedbyschubauer and published by Hussain and Reynolds(1975). That was presented in depth by Zarzycki(1993, 1994).

5 Improved method for simulating transients Fig.1.Schematicrepresentationofthefour-regionmodelofν t Theradialdistancesr 1,r 2 andr 3 fromthepipecentrelineareasfollows r j =R y(y j + ) j=1,2,3 y 1 + =0.2R+ y 2 + =35 y+ 3 =5 (2.3) where: y + =yv /νisthedimensionlessdistance y, y distancefromthe pipewall,v = τ ws /ρ 0 dynamicvelocity,τ ws wallshearstressforsteady flow,r + =Rv /ν dimensionlessradiusrofthepipe. Thecoefficientofturbulentviscosity ν t isexpressedforparticularlayers (except the buffer layer) as follows ν t =α i r+β i i=1,3,4 α 1 =0 α 3 = ν t1 ν t2 r 2 r 1 α 4 =0 (2.4) β 1 =0 β 2 =ν t2 α 3 r 2 β 4 =ν t1 Forthebufferlayer(r 2 r<r 3 ),ν t isexpressedasfollows ν t =0.01(y + ) 2 ν (2.5) Expressions,whichdefinethequantitiesν t1,ν t2,r 1,r 2 andr 3 havethefollowing forms ν t1 =0.016 v 2 ν ν t2 =12.25ν (2.6) and r 1 =0.8 r 2 = ( ) v R r 3 = (1 20 2) v R (2.7)

6 140 Z. Zarzycki et al. Thequantitiesν t1,r 2 andr 3,whichdefinethedistributionofthecoefficientν t, dependonadimensionlessdynamicvelocity v,whichisdeterminedinthe following way v = 4 2R v = λ s Re s (2.8) ν where:λ s isthefrictioncoefficientforsteadyflow,re s =2Rv s /ν Reynolds numberforsteadyflow,v s meanfluidvelocityinthepipecross-section. Sincewehave λ s =λ s (Re s )then,forsmoothpipes,theprofileofthe coefficientν t inthepipecross-sectiondependsonlyonthere s number. However,if insteadofthere s weassumetheinstantaneousreynolds number Re = 2Rv/ν (v instantaneous, averaged in the pipe cross-section fluidvelocity)and insteadofλ s weassumeaquasi-steadyfrictioncoefficientλ q =λ q (Re),thenthepresenteddistributionofthecoefficientν t will becomeaquasi-steadyone.inthispaperλ q isdeterminedfromtheprandtl formula 1 =0.869ln(Re λ q ) 0.8 (2.9) λq 2.2. Momentum equations for particular layers For the four-layer model of the flow region, equation(2.1) breaks up into four equations. Introducing the differential operator D = / t into equation (2.1), we obtain: for the viscous sublayer Dv z1 = 1 ρ 0 p z +ν ( 2 v z1 r r v ) z1 r (2.10) fortheremaininglayersoftheflowregion Dv zi = 1 p ρ 0 z +ν 2 v ( zi Σ r 2 + νσ ) r +ν Σ vzi r r (2.11) where:i=2,3,4 (i=2forthebl, i=3forthedtland i=4forthe TC),v zi istheaxialcomponentofthevelocityforparticularlayersoftheflow region,ν Σ =ν+ν t effectivecoefficientofturbulentviscosity. Equations(2.10)and(2.11)(fori=3,4)canberesolvedusingrelationship (2.4) into the modified Bessel equations. Equation(2.11)(for i = 2), taking into account the fact that

7 Improved method for simulating transients r R r 1 2 for r 2 r<r 3 (2.12) assumes the form of a differential equation of Euler type. The solutions to the momentum equations for particular layers are shown in papers(zarzycki, 1993, 1994, 2000). 3. Wall shear stress and weighting function Integratingequation(2.1)overthepipecross-section(fromr=0tor=R) andconsideringthat / t=d,weobtain ρ 0 Dv+ p z +2 R τ w=0 (3.1) Bydeterminingthewallshearstressatthepipewallτ w asfollows τ w = ρ 0 ν v z1 r we obtain a relationship of the following type (3.2) r=r τ w =f(d,re) p z (3.3) Equations(3.1)and(3.3)enableonetodeterminetransferfunctionĜτvthat describes hydraulic resistance, relating the pipe wall shear stress and the mean velocity Ĝ τv ( D,Re)= τ w v (3.4) where v=(r/ν)v, τ w =[R 2 /(ρ 0 ν 2 )]τ w, p=[r 2 /(ρ 0 ν 2 )]pdenotedimensionless velocity, wall shear stress, and pressure, respectively. AprecisemathematicalformofthetransferfunctionĜτvisverycomplex and was presented by Zarzycki(1994). Thequantity D=(R 2 /ν) / tpresentsthedimensionlessdifferentialoperator. Takingintoaccounttransferfunction(3.4)for D=ŝ(whereŝ=sR 2 /ν isthedimensionlesslaplaceoperator)onecanexpressthestress τ w asa sumofquasi-steadywallshearstressτ wq andintegralconvolutionofthefluid acceleration v/ t and the weighting function w(t), i.e. as a convolution of

8 142 Z. Zarzycki et al. the fluid acceleration v/ t and the step response g(t)(zielke, 1968; Zarzycki, 1993, 2000), i.e. τ w (t)=τ wq + 2µ R whereτ wq isdescribedbythefollowingexpression t 0 v (u)w(t u)du (3.5) t τ wq = 1 8 λ qρ 0 v v (3.6) The graph of weighting function w(t) for different Reynolds numbers and for thelaminarflowispresentedinfig.2. Fig. 2. The weighting functions for turbulent and laminar flow The weighting function approaches zero when time tends to infinity. This tendency becomes stronger for higher Reynolds numbers. 4. Approximated weighting function model Theweightingfunctionhasacomplexmathematicalformanditisnotvery useful to calculate and simulate unsteady turbulent flow(zarzycki, 1994, 2000). Zarzycki(1994) approximated it to the following form

9 Improved method for simulating transients w apr =C 1 t Ren (4.1) wherec= ,n= However, numerical calculations that include this function lead to some complications(dividing by zero) as time and the Reynolds number are to be found in the denominator. Hence, in order to improve the effectiveness of calculations, the function will be approximated with a simpler form. Additionally, it is suggested that the approximated function should meet the following assumptions: 1) its form should be similar to Trikha s(trikha, 1975) or Schohl s(schohl, 1993) models(methods of simulating shear stress based on these models are very effective), 2) its mathematical form should allow an easy way of carrying out Laplace transformation. This is important for simulating oscillating or pulsating flow by the matrix method(wylie and Streeter, 1993). In order to meet the above presented criteria, a number of possible forms of the function were investigated. The form which was eventually selected can begivenby n w N ( t)=(c 1 Re c2 +c 3 ) A i e b i t (4.2) wherei=1,2,...,n. Determining the coefficients of the weighting function was carried out in two stages in the following way: a)thefirststage.intherangeofthereynoldsnumbersre ,10 7, a several equally distributed points were chosen, and for each of them weighting functions were estimated using Statistica programme. Estimationwasconductedfortherangeofdimensionaltime t 10 6,10. b) The second stage. Two-dimensional weighting function w( t, Re) was estimated using Matlab s module for optimization. For the optimization procedure, the following assumption was formulated: todeterminethedecisionvariablesvector x=[x 1,x 2,...,x 19 ], where: x 1 =c 1,x 2 =c 2,x 3 =c 3,x 4 =A 1,x 5 =b 1,x 6 =A 2, x 7 =b 2,...,x 18 =A 8,x 19 =b 8 (arecoefficientsof(4.2)) i=1 which minimizes the vector objective function minf(x)=[f(x)] (4.3)

10 144 Z. Zarzycki et al. where r ( w N(i) ( t,re) w i ( t,re) ) 2 f(x)= (4.4) i=1 w i ( t,re) and satisfies the following limitation g(x)= 10 7 [ ] w N ( t,re)d t dre [ ] w( t,re)d t dre= (4.5) Inrelation(4.4)thearguments tandrewereselectedsothatthedetermined points(pairs of numbers) on the plane t Re would uniformly cover the interval t 10 5,10 1 andre= ,10 7,andthattheywouldbedifferentfrom thepointsselectedatthefirststage.atotalofr=1000pointswereusedin the calculations. The values of coefficients in Eq.(4.2), determined at the first stage, were used as the starting points(the values of elements of the decision variables vector) for the optimization. Once the optimization problems were formulated in the way described above, calculations were conducted using Matlab and its function fgoalattain. Details of the whole process of a new weighting function estimation were described by Zarzycki and Kudźma(2004). On the basis of the above assumptions and calculations that were conducted later, the final form of the weighting function was established 8 w N ( t)=(c 1 Re c 2 +c 3 ) A i e b i t i=1 (4.6) c 1 = ;c 2 = ;c 3 = ;A 1 =0.224,A 2 =1.644, A 3 =2.934,A 4 =5.794,A 5 =11.28,A 6 =19.909,A 7 =34.869,A 8 =63.668; b 1 = ,b 2 =8.44,b 3 =88.02,b 4 =480.5,b 5 =2162,b 6 =8425, b 7 =29250,b 8 = The present form of the weighting function contrary to the one put forward in(zarzycki and Kudźma, 2004) contains eight terms. As it turned out, the effective method of calculating wall shear stress presented later in this work is more sensitive to inaccurate fit between the proposed function and the original. Therefore, in order to ensure correct mapping, the number of elements of the new weighting function was increased from six to eight. In addition, a comparison was made of new expression(4.6) course and Zarzycki s model with the weighting function of Vardy and Brown(2003)

11 Improved method for simulating transients w( t)= 1 2 π t exp ( t C ) (4.7) where:c =12.86/Re κ ;κ=log 10 (15.29/Re ). The accuracy of Zarzycki s mapping of the weighting function by the new function is as follow: ForarangeofReynoldsnumbersbetween Re 10 7 and dimensionlesstimebetween10 5 t 10 1,therelativeerrorsatisfies condition w N( t) w( t) 0.05 w( t) Graphical comparison of the newly estimated function and models of weighing function by Zarzycki and Vardy-Brown are presented in Fig. 3. The relative errorofthenewfunctionandzarzycki smodelispresentedinfig.4.asitis shown,theerrorinsomeareasisupto5%butithastobementionedthatthe run of the new function is between the models of Vardy-Brown and Zarzycki weighting functions. There is no clear evidence of better consistency with the experimentforawiderangeofreynoldsnumbersuptonow,soitisambiguous which models should be mapped more precisely by the new function. The authors did not want to complicate the form of weighting expression through an increase of the number of exponential components thus left it in form(4.6). But,itisworthtomentionthatitispossibletoincreaseaccuracyofmapping the original weight in a wider range of Reynolds numbers or dimensionless time in the case of new more precise and experimentally tested models. The lowest limit of usage of the new weighting function for dimensionless timeis t=10 5.Forthepresentedmethodoftransientssimulationsitisa satisfactory value from the point of engineering view. It permit simulations of low viscosity fluids in quite large pipe radius(e.g. for fluid which viscosity ν=1mm 2 /sacceptablediameter=0.3m).ithastobealsomentionedthat suchabigradiusofthepipelinehasusuallylonglength,whatmeans,in consequence, low frequency of transients pressure oscillations. It allows one to take a quite big time step in numerical calculations, which is in the acceptable range of dimensionless time. In order to quantitatively assess a mapping of Zarzycki s model by the new expression for selected Reynolds numbers, a relative error is calculated according to the expression relative error = w N( t) w( t) (4.8) w( t)

12 146 Z. Zarzycki et al. Fig. 3. Comparison of Vardy-Brown s, Zarzycki s and new weighting function runs fordifferentreynoldsnumbers:(a)re=10 4,(b)Re=10 6 Fig. 4. The relative error between the new function and Zarzycki s weighting functionmodelforre=10 4 ResultsofitsusageareshownforthecaseofReynoldsnumberRe=10 4 in Fig. 4. In the case of harmonically pulsating flow, a transfer matrix method is usually used(wylie and Streeter, 1993). For this method, an adequate(laminar or turbulent) weighting function transformed into Laplace domain is needed.

13 Improved method for simulating transients Next,theLaplacevariableissubstitutetbyŝ=jΩ. Conducting the above mentioned transformations, the new weighting function takes the following form w N (jω)=(c 1 Re c 2 +c 3 ) 8 i=1 A i jω+b i (4.9) where:ω=ωr 2 /νisthedimensionlessangularfrequency. InFig.5,acomparisonofrealandimaginarypartsofnewweightingfunction(4.9) with Zarzycki and Vardy-Brown models is presented. Fig. 5. Comparison of the new weighting function with models by Zarzycki and Vardy-BrownforRe=10 4 To sum up, it should be pointed out that new approximating function(5.3) well reflects the weight of the unsteady friction model for turbulent flow for t 10 5 and 2000 Re 10 7.However,asfarasfrequencyisconcerned, thepresentedrelationisrightforadimensionlessfrequencyω 10.These particular ranges are most important as far as engineering applications and precision of numerical simulations are concerned. 5. Improvement of the approximation method for simulations of wall shear stress Numerical calculations of the unsteady wall shear stress(convolution of the local liquid acceleration and the weighting function) in the traditional approach is both time-consuming and takes a lot of computer memory space(suzuki et al., 1991). In papers by Trikha(1975) and Schohl(1993) another, more efficient method of calculating unsteady shear stress for laminar flow was presented.

14 148 Z. Zarzycki et al. This section presents the implementation of Trikha s method into calculationsofwallshearstressforturbulentflowusingthedevelopedhereformof weighting function(4.6). Weighting function(4.6) can be given by 8 w N (t)= w i (5.1) i=1 wherew i =(c 1 Re c 2 +c 3 )A i e b iνt/r 2. Using the above form of the weighting function, the unsteady term of pipe wallshearstressτ wn canbewrittenas τ wu = 2µ R 8 y i (t) (5.2) i=1 where t y i (t)=(c 1 Re c 2 +c 3 )A i e b i ν R 2t 0 e b i ν R 2u v (u)du (5.3) u TheReynoldsnumberwasusedintheaboveexpressionsasavariabletobe updated at every iterative step. This approach was also suggested by Vardy etal.(1993). Because in the characteristics method calculations are carried out for some fixed time intervals, then y i (t+ t)= t+ t 0 w i (t+ t u) v u (u)du= t =e b i ν R 2 t (c 1 Re c 2 +c 3 )A i e b i ν R 2t e b i ν R 2u v } 0 {{ } y i (t) +(c 1 Re c 2 +c 3 )A i e b i ν t+ t R 2(t+ t) e b i ν R 2u v u (u)du } {{ t } y i (t) While comparing relations(5.4) and(5.3), we obtain u (u)du + (5.4) y i (t+ t)=y i (t)e b i ν R 2 t + y i (t) (5.5)

15 Improved method for simulating transients where y i (t)=(c 1 Re c 2 +c 3 )A i e b i ν t+ t R 2(t+ t) e b i ν R 2u v t (u)du (5.6) u Ifintheabovegivenexpressiondescribing y i (t),weassumethatv(u)is alinearfunction [v(u) =au+b]intheintervalfrom tto t+ t,then its derivative calculated after time given by v(u)/ u can be treated as a constant whose value can be determined from the following expression: [v(t+ t) v(t)]/ t.onthestrengthofthisassumption,wecanwrite y i (t) (c 1 Re c 2 +c 3 )A i e b i ν R 2(t+ t) [v(t+ t) v(t)] t =(c 1 Re c 2 +c 3 )A i e b i ν R 2(t+ t) [v(t+ t) v(t)] t b i ν =(c 1 Re c 2 +c 3 ) A ir 2 tb i ν y i (t+ t) y i (t)e b i ν R 2 t + R 2 t+ t e b i ν R 2u du= t (e b i ν R 2(t+ t) e b i ν R 2t) = (1 e b i ν R 2 t) [v(t+ t) v(t)] (5.7) (5.8) +(c 1 Re c 2 +c 3 ) A ir 2 (1 e b i ν R tb i ν 2 t) [v(t+ t) v(t)] τ wu (t+ t)= 2µ 8 y i (t+ t) (5.9) R τ wu (t+ t) 2µ R i=1 8 i=1 +(c 1 Re c 2 +c 3 ) A ir 2 tb i ν y i (t)e b i ν R 2 t + (1 e b i ν R 2 t) [v(t+ t) v(t)] (5.10) Atthebeginningofsimulations(i.e.atthefirstiterativestep),thevalueofall termsofy i (t)equalszero.ateverysubsequenttimestep,thesevalueschange according to Eq.(5.5).

16 150 Z. Zarzycki et al. 6. Results of waterhammer simulations and efficiency of the method 6.1. Governingequations The unsteady flow, accompanying the water hammer effect, may be described by a set of the following partial differential equations(wylie and Streeter, 1993): equation of continuity p v t +c2 0ρ 0 =0 (6.1) x equation of motion v t +1 p ρ 0 x + 2τ =0 (6.2) ρ 0 R wherev=v(x,t)istheaveragevelocityofliquidinthepipecross-section, p=p(x,t) averagepressureinthepipecross-section, R innerradiusof thetube,τ wallshearsterss,ρ 0 densityoffluid,c 0 velocityofpressure wavepropagation,t time,x axiallocationalongthepipe. A waterhammer simulation is carried out by the method of characteristics (MOC). This method(for small Mach number flow) transform equations(6.1), (6.2) into the following systems of equations(wylie and Streeter, 1993) if ±dp±ρ 0 c 0 dv+ 2τ wa dt=0 (6.3) R dz=±c 0 dt (6.4) Details of the further procedure of calculation may be found in papers by Zarzycki and Kudźma(2004) or Zarzycki et al.(2007) Numericalsimulation The investigated system(tank-pipeline-valve) is presented in Fig. 6. For calculations, the following data were assumed(wichowski, 1984): lengthofhydrauliclinel=3600m innerdiameteroftubed=0.62m thicknessoftubewallg=0.016m modulusofelasticityoftubewallmaterial(castiron)e= Pa bulkmodulusofliquide L = Pa

17 Improved method for simulating transients Fig.6.Schemeofthepipelinesystem;1 hydraulicpipeline,2 cut-offvalve, 3 tank,v 0 directionoffluidflow(initialcondition) velocityofpressurewavepropagationc 0 =1072m/s initialvelocityoffluidflowv 0 =1.355m/s densityofwaterρ 0 =1000kg/m 3 kinematicviscosityoffluidν= m 2 /s The critical Reynolds number is calculated according to the following equation(ohmi et al., 1985) Re c =800 Ω (6.5) whereω=ωr 2 /νisthedimensionlessangularfrequency;ω=2π/t angularfrequency; T =4L/c 0 periodofpressurepulsation, L lengthof pipe. ThevalueofReynoldsnumberattheinitialconditionisRe=2Rv 0 /ν= ,thecriticalReynoldsnumberaccordingtoEq.(6.5)Re c = , so(re>re c )andtheflowisregardedasturbulent. Theunsteadystateofthesystemwasachievedbyacompleteclosureof thevalveforatimelongerthanahalfofthewave speriodinthepipe,i.e. t z =90s>2L/c 0 =6.72s,consequentlyitcanberegardedasanexample of a complex waterhammer(wylie and Streeter, 1993). Closure of the valve proceeded according to the characteristics presented in Fig. 7(Wichowski, 1984).ThepresentedcharacteristicsillustratethevariableliquidflowrateQ z through the valve due to its slow shutdown. Two simulation cases were investigated: inthefirstone,theunsteadystressτ wu wascalculatedbymeansofeq. (5.10) by making use of new weighting function(4.6), inthesecondone,theunsteadystress τ wu wascalculatedusingthe traditional method(zielke, 1968). Theresultsofnumericalsimulationatthevalvecarriedoutforagiven numberoftimestepsispresentedinfig.8.asonecansee,afterthevalve

18 152 Z. Zarzycki et al. Fig. 7. Flow characteristics of closing of the water supply valve closure which lasts 90s, there are still evident significant pressure pulsations. Thiseffectiscausedbyverylargeinertiaoftheliquid(highvalueofthe Reynolds number and a substantial length of the liquid line). Therefore, despite the long time of valve closure, disappearing pressure pulsations are still present intheline. Fig. 8. Pressure fluctuation at the valve after its closure The comparison of two simulations, using the old and new method of calculations of unsteady frictional losses presented in Fig. 8 shows a good agreement of the results obtained, and thus confirms that the model of efficient computation satisfactorily replaces the traditional method. However, an important difference that can be observed in the simulations is the time of numerical calculations. Figure 9 presents the dependence of timenecessarytocarryoutcalculationsonthenumberoftimestepsusedfor the simulations. As it can be clearly seen, the time of numerical calculations carried out by means of the traditional method using Zarzycki s weighting function(4.1) is much longer than that used to calculate it using the presented

19 Improved method for simulating transients Fig. 9. Comparison of numerical computation times method. Moreover, the time necessary to carry out the calculations conducted for the traditional method increases exponentially, along with the increase of the number of time steps. However, for the effective method the time increases slowlyinalinearway. Onthebasisoftheabovepresentedinvestigations,itcanbestatedthatthe presently developed method of simulating pressure changes and flow velocity, while taking into account the unsteady friction loss expressed by(5.10), is an effective method which can replace the tradition method and which offers satisfactory accuracy. 7. Conclusions The paper presented the transfer function relating the pipe wall shear stress and the mean velocity. It is based on a four-region distribution of eddy viscosityatthecross-sectionofthepipe.thismodelwasusedtodeterminethe unsteady wall shear stress as integral convolution of acceleration and weighting function similarly as it was done for laminar flow(see e.g. Zielke, 1968). However, the weighting function has a complex mathematical form and it is not very convenient to use it for simulating transient flows. Therefore, it was approximated to a simpler form, which was a sum of eight exponential summands. For this form of the weighting function and approximated in this way, an effective method of simulating wall shear stress was developed. The most important conclusions which can be drawn from this study are as follows: Theweightingfunctiondependsonthedimensionlesstime t=νt/r 2 (asinthecaseforlaminarflow)andadditionallyonthereynoldsnumber Re.

20 154 Z. Zarzycki et al. The weighting function approaches zero as the time increases. For a given valueofdimensionlesstimeitisgreaterinthecaseoflaminarflowandit decreasesalongwiththeincreaseofreynoldsnumberreinthecaseof turbulent flow. It means that the hydraulic resistance with an increase inthereynoldsnumberregoesfastertoaquasi-steadyvalue,whichis associated with increase of damping. Approximated weighting function(4.6) proves to be a precise expression intherange 10 5 t 10 1 and Re 10 7 (relativeerror smallerthan5%). The present approximated method of calculating wall shear stress(which incidentally is similar to Trikha s method developed for laminar flow) makes it possible to significantly reduce the time necessary to carry out calculations as compared with the traditional method. Theweightingfunctiondevelopedinthisstudyshowsagoodfitwith Vardy s model for short times(high frequencies). However, the discrepancy between the values of weighting function obtained in both methods increase together with the increase of Reynolds number. It should bepointedoutthatbothfunctionswereobtainedonthebasisofdetermined distribution of eddy viscosity. This is justified for high frequencies (Brownetal.,1969).Itseemsthatforthemeanbandoffrequenciesanother model would be more appropriate. A model in which eddy viscosity, except for viscous sublayer, would be determined using turbulent kinetic energymodels(e.g.k ε,k l). Theweightingfunctionhasaformwhichcaneasilyundergothefirst Laplace transformation and then Fourier transform. This is useful for determination a frequency characteristics of a long hydraulic pipeline systems. References 1. Abreu J.W., Almeida A.B., 2000, Pressure transients dissipative effects: a contribution for their computational prediction, 8th International Conference on Pressure Surges, BHR Group, The Hague, Netherlands, Bergant A., Simpson A.R., 1994, Estimating unsteady friction in transient cavitating pipe flow, Proc., 2nd Int. Conf. On Water Pipeline Systems, BHRA Group Conf. Series Publ., 10, UK, Edinburgh, May, 2-15

UNIVERSAL WEIGHTING FUNCTION IN MODELING TRANSIENT CAVITATING PIPE FLOW

UNIVERSAL WEIGHTING FUNCTION IN MODELING TRANSIENT CAVITATING PIPE FLOW JOURNAL OF THEORETICAL AND APPLIED MECHANICS 50, 4, pp. 889-902, Warsaw 2012 50th Anniversary of JTAM UNIVERSAL WEIGHTING FUNCTION IN MODELING TRANSIENT CAVITATING PIPE FLOW Kamil Urbanowicz, Zbigniew

More information

NEW EFFICIENT APPROXIMATION OF WEIGHTING FUNCTIONS FOR SIMULATIONS OF UNSTEADY FRICTION LOSSES IN LIQUID PIPE FLOW

NEW EFFICIENT APPROXIMATION OF WEIGHTING FUNCTIONS FOR SIMULATIONS OF UNSTEADY FRICTION LOSSES IN LIQUID PIPE FLOW JOURNAL OF THEORETICAL AND APPLIED MECHANICS 50, 2, pp. 487-508, Warsaw 2012 50th Anniversary of JTAM NEW EFFICIENT APPROXIMATION OF WEIGHTING FUNCTIONS FOR SIMULATIONS OF UNSTEADY FRICTION LOSSES IN LIQUID

More information

Hydraulic Transients used for Leakage Detection in Water Distribution Systems

Hydraulic Transients used for Leakage Detection in Water Distribution Systems Hydraulic Transients used for Leakage Detection in Water Distribution Systems Dídia Covas and Helena Ramos Instituto Superior Técnico, Dept. Civil Engineering, Lisbon, Portugal ABSTRACT The current paper

More information

SIMULATION OF TRANSIENT FLOWS IN A HYDRAULIC SYSTEMWITHALONGLIQUIDLINE

SIMULATION OF TRANSIENT FLOWS IN A HYDRAULIC SYSTEMWITHALONGLIQUIDLINE JOURNAL OF THEORETICAL AND APPLIED MECHANICS 45, 4, pp. 853-871, Warsaw 2007 SIMULATION OF TRANSIENT FLOWS IN A HYDRAULIC SYSTEMWITHALONGLIQUIDLINE Zbigniew Zarzycki Sylwester Kudźma Szczecin University

More information

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES

NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: jozef.simicek@stuba.sk Research field: Statics and Dynamics Fluids mechanics

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.

4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re. CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large

More information

Open channel flow Basic principle

Open channel flow Basic principle Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure

More information

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

20 years of FSI experiments in Dundee

20 years of FSI experiments in Dundee 20 years of FSI experiments in Dundee Arris S Tijsseling a, Alan E Vardy b a Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

More information

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations

Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.

More information

CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt

CHEMICAL ENGINEERING AND CHEMICAL PROCESS TECHNOLOGY - Vol. I - Interphase Mass Transfer - A. Burghardt INTERPHASE MASS TRANSFER A. Burghardt Institute of Chemical Engineering, Polish Academy of Sciences, Poland Keywords: Turbulent flow, turbulent mass flux, eddy viscosity, eddy diffusivity, Prandtl mixing

More information

INTRODUCTION TO FLUID MECHANICS

INTRODUCTION TO FLUID MECHANICS INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION

More information

Unsteady Pressure Measurements

Unsteady Pressure Measurements Quite often the measurements of pressures has to be conducted in unsteady conditions. Typical cases are those of -the measurement of time-varying pressure (with periodic oscillations or step changes) -the

More information

Abaqus/CFD Sample Problems. Abaqus 6.10

Abaqus/CFD Sample Problems. Abaqus 6.10 Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel

More information

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology

Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: msiavashi@iust.ac.ir Landline: +98 21 77240391 Fall 2013 Introduction

More information

du u U 0 U dy y b 0 b

du u U 0 U dy y b 0 b BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:

More information

L r = L m /L p. L r = L p /L m

L r = L m /L p. L r = L p /L m NOTE: In the set of lectures 19/20 I defined the length ratio as L r = L m /L p The textbook by Finnermore & Franzini defines it as L r = L p /L m To avoid confusion let's keep the textbook definition,

More information

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis

Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis Tamkang Journal of Science and Engineering, Vol. 12, No. 1, pp. 99 107 (2009) 99 Laminar Flow and Heat Transfer of Herschel-Bulkley Fluids in a Rectangular Duct; Finite-Element Analysis M. E. Sayed-Ahmed

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity

Lecture 5 Hemodynamics. Description of fluid flow. The equation of continuity 1 Lecture 5 Hemodynamics Description of fluid flow Hydrodynamics is the part of physics, which studies the motion of fluids. It is based on the laws of mechanics. Hemodynamics studies the motion of blood

More information

Pressure drop in pipes...

Pressure drop in pipes... Pressure drop in pipes... PRESSURE DROP CALCULATIONS Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence caused by abrupt changes in direction, and friction

More information

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS

OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS Unit 41: Fluid Mechanics Unit code: T/601/1445 QCF Level: 4 Credit value: 15 OUTCOME 3 TUTORIAL 5 DIMENSIONAL ANALYSIS 3 Be able to determine the behavioural characteristics and parameters of real fluid

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation

Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Basic Principles in Microfluidics

Basic Principles in Microfluidics Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids

1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids 1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.

More information

Appendix 4-C. Open Channel Theory

Appendix 4-C. Open Channel Theory 4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient

More information

Fluid flow in circular and noncircular pipes is commonly encountered in

Fluid flow in circular and noncircular pipes is commonly encountered in cen72367_ch08.qxd 11/4/04 7:13 PM Page 321 FLOW IN PIPES CHAPTER 8 Fluid flow in circular and noncircular pipes is commonly encountered in practice. The hot and cold water that we use in our homes is pumped

More information

Viscous flow in pipe

Viscous flow in pipe Viscous flow in pipe Henryk Kudela Contents 1 Laminar or turbulent flow 1 2 Balance of Momentum - Navier-Stokes Equation 2 3 Laminar flow in pipe 2 3.1 Friction factor for laminar flow...........................

More information

Distinguished Professor George Washington University. Graw Hill

Distinguished Professor George Washington University. Graw Hill Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok

More information

APPLIED MATHEMATICS ADVANCED LEVEL

APPLIED MATHEMATICS ADVANCED LEVEL APPLIED MATHEMATICS ADVANCED LEVEL INTRODUCTION This syllabus serves to examine candidates knowledge and skills in introductory mathematical and statistical methods, and their applications. For applications

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines

Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED

More information

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER

FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER VISUAL PHYSICS School of Physics University of Sydney Australia FLUID FLOW STREAMLINE LAMINAR FLOW TURBULENT FLOW REYNOLDS NUMBER? What type of fluid flow is observed? The above pictures show how the effect

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

Fundamentals of Fluid Mechanics

Fundamentals of Fluid Mechanics Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department

More information

Chapter 13 OPEN-CHANNEL FLOW

Chapter 13 OPEN-CHANNEL FLOW Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

More information

Adaptation of General Purpose CFD Code for Fusion MHD Applications*

Adaptation of General Purpose CFD Code for Fusion MHD Applications* Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA akhodak@pppl.gov Abstract Analysis of many fusion

More information

pressure inside the valve just before the final release of air. in pipeline systems resulting from 2p 1 p a m C D A o

pressure inside the valve just before the final release of air. in pipeline systems resulting from 2p 1 p a m C D A o BY SRINIVASA LINGIREDDY, DON J. WOOD, AND NAFTALI ZLOZOWER It is a common practice to locate air valves at high elevations along water transmission mains. Improper sizing of an air valve could lead to

More information

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical

Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru

More information

Calculating resistance to flow in open channels

Calculating resistance to flow in open channels Alternative Hydraulics Paper 2, 5 April 2010 Calculating resistance to flow in open channels http://johndfenton.com/alternative-hydraulics.html johndfenton@gmail.com Abstract The Darcy-Weisbach formulation

More information

OPEN-CHANNEL FLOW. Free surface. P atm

OPEN-CHANNEL FLOW. Free surface. P atm OPEN-CHANNEL FLOW Open-channel flow is a flow of liquid (basically water) in a conduit with a free surface. That is a surface on which pressure is equal to local atmospheric pressure. P atm Free surface

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface is therefore constant and

More information

Optimization of electronic devices placement on printed circuit board

Optimization of electronic devices placement on printed circuit board Optimization of electronic devices placement on printed circuit board Abstract by M. Felczak, T.Wajman and B. Więcek Technical University of Łódź, Wólczańska 211/215, 90-924 Łódź, Poland Power densities

More information

Urban Hydraulics. 2.1 Basic Fluid Mechanics

Urban Hydraulics. 2.1 Basic Fluid Mechanics Urban Hydraulics Learning objectives: After completing this section, the student should understand basic concepts of fluid flow and how to analyze conduit flows and free surface flows. They should be able

More information

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden

AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden AgoraLink Agora for Life Science Technologies Linköpings Universitet Kurs i Fysiologisk mätteknik Biofluidflöden Fysiologisk mätteknik Anatomy of the heart The complex myocardium structure right ventricle

More information

measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi,

measurement, but almost any pipe elbow can be calibrated Elbow meters are not as potentially accurate as venturi, Lecture 14 Flow Measurement in Pipes I. Elbow Meters An elbow in a pipe can be used as a flow measuring device much in the same way as a venturi or orifice plate The head differential across the elbow

More information

ME6130 An introduction to CFD 1-1

ME6130 An introduction to CFD 1-1 ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically

More information

Chapter 28 Fluid Dynamics

Chapter 28 Fluid Dynamics Chapter 28 Fluid Dynamics 28.1 Ideal Fluids... 1 28.2 Velocity Vector Field... 1 28.3 Mass Continuity Equation... 3 28.4 Bernoulli s Principle... 4 28.5 Worked Examples: Bernoulli s Equation... 7 Example

More information

ANALYSIS OF OPEN-CHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER

ANALYSIS OF OPEN-CHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER Reprint from RIVERTECH 96 Proceedings from the1st International Conference On New/Emerging Concepts for Rivers Organized by the International Water Resources Association Held September 22-26, 1996, Chicago,

More information

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS

NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS TASK QUARTERLY 15 No 3 4, 317 328 NUMERICAL ANALYSIS OF OPEN CHANNEL STEADY GRADUALLY VARIED FLOW USING THE SIMPLIFIED SAINT-VENANT EQUATIONS WOJCIECH ARTICHOWICZ Department of Hydraulic Engineering, Faculty

More information

Dimensional Analysis

Dimensional Analysis Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous

More information

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions

FLUID DYNAMICS. Intrinsic properties of fluids. Fluids behavior under various conditions FLUID DYNAMICS Intrinsic properties of fluids Fluids behavior under various conditions Methods by which we can manipulate and utilize the fluids to produce desired results TYPES OF FLUID FLOW Laminar or

More information

Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids

Exact solution of friction factor and diameter problems involving laminar flow of Bingham plastic fluids Journal of etroleum and Gas Exploration Research (ISSN 76-6510) Vol. () pp. 07-03, February, 01 Available online http://www.interesjournals.org/jger Copyright 01 International Research Journals Review

More information

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL

AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski

More information

Water hammering in fire fighting installation

Water hammering in fire fighting installation Water hammering in fire fighting installation Forward One of major problems raised in the fire fighting network installed at Pioneer company for pharmaceutical industry /Sulaymania was the high water hammering

More information

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics

Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.

More information

CHAPTER 4 FLOW IN CHANNELS

CHAPTER 4 FLOW IN CHANNELS CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely

More information

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow

CEE 370 Fall 2015. Laboratory #3 Open Channel Flow CEE 70 Fall 015 Laboratory # Open Channel Flow Objective: The objective of this experiment is to measure the flow of fluid through open channels using a V-notch weir and a hydraulic jump. Introduction:

More information

For Water to Move a driving force is needed

For Water to Move a driving force is needed RECALL FIRST CLASS: Q K Head Difference Area Distance between Heads Q 0.01 cm 0.19 m 6cm 0.75cm 1 liter 86400sec 1.17 liter ~ 1 liter sec 0.63 m 1000cm 3 day day day constant head 0.4 m 0.1 m FINE SAND

More information

Hydraulic losses in pipes

Hydraulic losses in pipes Hydraulic losses in pipes Henryk Kudela Contents 1 Viscous flows in pipes 1 1.1 Moody Chart.................................... 2 1.2 Types of Fluid Flow Problems........................... 5 1.3 Minor

More information

Numerical simulations of heat transfer in plane channel

Numerical simulations of heat transfer in plane channel Numerical simulations of heat transfer in plane channel flow Najla El Gharbi, Rafik Absi, Ahmed Benzaoui To cite this version: Najla El Gharbi, Rafik Absi, Ahmed Benzaoui. Numerical simulations of heat

More information

CFD Analysis of a butterfly valve in a compressible fluid

CFD Analysis of a butterfly valve in a compressible fluid CFD Analysis of a butterfly valve in a compressible fluid 1 G.TAMIZHARASI, 2 S.KATHIRESAN 1 Assistant Professor,Professor,Departmentment of Electronics and Instrumentation,Bharath university, chennai.

More information

Fluids and Solids: Fundamentals

Fluids and Solids: Fundamentals Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.

More information

1 The basic equations of fluid dynamics

1 The basic equations of fluid dynamics 1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which

More information

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING

MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING MATLAB AS A PROTOTYPING TOOL FOR HYDRONIC NETWORKS BALANCING J. Pekař, P. Trnka, V. Havlena* Abstract The objective of this note is to describe the prototyping stage of development of a system that is

More information

BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW

BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW ABSTRACT by Anthony J.Grass* and Ragaet N.M.Ayoub** An experimental study is described in which the rate of transport of fine sand over a flat

More information

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS

Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 5 MASS, BERNOULLI AND ENERGY EQUATIONS Lecture slides by Hasan Hacışevki Copyright

More information

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as:

The ratio of inertial to viscous forces is commonly used to scale fluid flow, and is called the Reynolds number, given as: 12.001 LAB 3C: STOKES FLOW DUE: WEDNESDAY, MARCH 9 Lab Overview and Background The viscosity of a fluid describes its resistance to deformation. Water has a very low viscosity; the force of gravity causes

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India Experimental Thermal and Fluid Science 32 (2007) 92 97 www.elsevier.com/locate/etfs Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right

More information

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry.

COMPETENCY GOAL 1: The learner will develop abilities necessary to do and understand scientific inquiry. North Carolina Standard Course of Study and Grade Level Competencies, Physics I Revised 2004 139 Physics PHYSICS - Grades 9-12 Strands: The strands are: Nature of Science, Science as Inquiry, Science and

More information

EXAMPLES OF PIPELINE MONITORING WITH NONLINEAR OBSERVERS AND REAL-DATA VALIDATION

EXAMPLES OF PIPELINE MONITORING WITH NONLINEAR OBSERVERS AND REAL-DATA VALIDATION 8th International Multi-Conference on Systems, Signals & Devices EXAMPLES OF PIPELINE MONITORING WITH NONLINEAR OBSERVERS AND REAL-DATA VALIDATION L. Torres, G. Besançon Control Systems Dep. Gipsa-lab,

More information

Aids needed for demonstrations: viscous fluid (water), tubes (pipes), injections, paper, stopwatches, vessels,, weights

Aids needed for demonstrations: viscous fluid (water), tubes (pipes), injections, paper, stopwatches, vessels,, weights 1 Viscous and turbulent flow Level: high school (16-17 years) hours (2 hours class teaching, 2 hours practical excercises) Content: 1. Viscous flow 2. Poiseuille s law 3. Passing from laminar to turbulent

More information

Mathematical Modeling and Engineering Problem Solving

Mathematical Modeling and Engineering Problem Solving Mathematical Modeling and Engineering Problem Solving Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University Reference: 1. Applied Numerical Methods with

More information

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL

STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL STUDY OF DAM-RESERVOIR DYNAMIC INTERACTION USING VIBRATION TESTS ON A PHYSICAL MODEL Paulo Mendes, Instituto Superior de Engenharia de Lisboa, Portugal Sérgio Oliveira, Laboratório Nacional de Engenharia

More information

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk

Lecturer, Department of Engineering, ar45@le.ac.uk, Lecturer, Department of Mathematics, sjg50@le.ac.uk 39 th AIAA Fluid Dynamics Conference, San Antonio, Texas. A selective review of CFD transition models D. Di Pasquale, A. Rona *, S. J. Garrett Marie Curie EST Fellow, Engineering, ddp2@le.ac.uk * Lecturer,

More information

HEAT TRANSFER CODES FOR STUDENTS IN JAVA

HEAT TRANSFER CODES FOR STUDENTS IN JAVA Proceedings of the 5th ASME/JSME Thermal Engineering Joint Conference March 15-19, 1999, San Diego, California AJTE99-6229 HEAT TRANSFER CODES FOR STUDENTS IN JAVA W.J. Devenport,* J.A. Schetz** and Yu.

More information

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)

What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure

More information

11 Navier-Stokes equations and turbulence

11 Navier-Stokes equations and turbulence 11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal

More information

MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL

MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL Engineering MECHANICS, Vol. 16, 2009, No. 6, p. 447 455 447 MODELING OF CAVITATION FLOW ON NACA 0015 HYDROFOIL Jaroslav Štigler*, Jan Svozil* This paper is concerning with simulations of cavitation flow

More information

The Viscosity of Fluids

The Viscosity of Fluids Experiment #11 The Viscosity of Fluids References: 1. Your first year physics textbook. 2. D. Tabor, Gases, Liquids and Solids: and Other States of Matter (Cambridge Press, 1991). 3. J.R. Van Wazer et

More information

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1

Contents. Microfluidics - Jens Ducrée Physics: Fluid Dynamics 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

A fundamental study of the flow past a circular cylinder using Abaqus/CFD

A fundamental study of the flow past a circular cylinder using Abaqus/CFD A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10

More information

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22

Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22 BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =

More information

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions

A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions A Comparison of Analytical and Finite Element Solutions for Laminar Flow Conditions Near Gaussian Constrictions by Laura Noelle Race An Engineering Project Submitted to the Graduate Faculty of Rensselaer

More information

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic

A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Brno, Czech Republic AiMT Advances in Military Technology Vol. 8, No. 1, June 2013 Aerodynamic Characteristics of Multi-Element Iced Airfoil CFD Simulation A. Hyll and V. Horák * Department of Mechanical Engineering, Faculty

More information

How To Understand Fluid Mechanics

How To Understand Fluid Mechanics Module : Review of Fluid Mechanics Basic Principles for Water Resources Engineering Robert Pitt University of Alabama and Shirley Clark Penn State - Harrisburg Mass quantity of matter that a substance

More information

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma

Numerical Model for the Study of the Velocity Dependence Of the Ionisation Growth in Gas Discharge Plasma Journal of Basrah Researches ((Sciences)) Volume 37.Number 5.A ((2011)) Available online at: www.basra-science -journal.org ISSN 1817 2695 Numerical Model for the Study of the Velocity Dependence Of the

More information

DEVELOPMENT OF A SOFTWARE TO DETERMINE THE EMITTER CHARACTERISTICS AND THE OPTIMUM LENGTH OF NEW DESIGNED DRIP IRRIGATION LATERALS

DEVELOPMENT OF A SOFTWARE TO DETERMINE THE EMITTER CHARACTERISTICS AND THE OPTIMUM LENGTH OF NEW DESIGNED DRIP IRRIGATION LATERALS Mathematical and Computational Applications, Vol. 16, No. 3, pp. 728-737, 2011. Association for Scientific Research DEVELOPMENT OF A SOFTWARE TO DETERMINE THE EMITTER CHARACTERISTICS AND THE OPTIMUM LENGTH

More information

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics

Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer

More information

FLOW RATE MEASUREMENTS BY FLUMES

FLOW RATE MEASUREMENTS BY FLUMES Fourteenth International Water Technology Conference, IWTC 14 010, Cairo, Egypt 1 FLOW RATE MEASUREMENTS BY FLUMES W. Dbrowski 1 and U. Polak 1 Department of Environmental Engineering, Cracow University

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine

Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine HEFAT2012 9 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 16 18 July 2012 Malta Turbulence Modeling in CFD Simulation of Intake Manifold for a 4 Cylinder Engine Dr MK

More information