Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli , Tamil Nadu, India

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India"

Transcription

1 Experimental Thermal and Fluid Science 32 (2007) Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right and left helical screw-tape inserts P. Sivashanmugam *, P.K. Nagarajan Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli , Tamil Nadu, India Received 28 February 2007; accepted 7 March 2007 Abstract Experimental investigation on heat transfer and friction factor characteristics of circular tube fitted with right-left helical screw inserts of equal length, and unequal length of different twist ratio have been presented. The experimental data obtained were compared with those obtained from plain tube published data. The heat transfer coefficient enhancement for right-left helical screw inserts is higher than that for straight helical twist for a given twist ratio. The effect of right-left helical twist length on heat transfer and friction factor were presented. The empirical relation for Nusselt number, friction relating Reynolds number, twist ratio and right-left distance were formed and found to fit the experimental data within 0% and 20% for Nusselt number and friction factor, respectively. Performance evaluation analysis has been made and the maximum performance ratio of 2.85 and 2.97, respectively were obtained for 300 R and 300 L, and 400 R and 200 L type inserts. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Augmentation; Laminar flow; Right-left helical screw inserts; Twist ratio; Heat transfer. Introduction The heat transfer augmentation or intensification is the technique of improving the performance of heat transfer system resulting in reducing the size and cost of the heat exchanger. Heat transfer enhancement technology is being very widely adapted in heat exchanger used for various process applications like refrigeration, automotives, process industry, chemical industry etc. Bergles [,2] presented a comprehensive survey on heat transfer enhancement by various techniques. Among many techniques investigated for augmentation of heat transfer rates inside circular tubes, tube fitted with full length twisted tape inserts (also called as swirl flow device) has been shown to be very effective, due to imparting of helical path to the flow. Helical screw-tape swirl flow generators shown in Fig. is a modified form of a twisted tape wound on a single rod gives single way smooth direction of flow like screw motion. In the earlier paper [3] heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with straight helical screw-tape inserts has been reported. The present paper reports the heat transfer and friction factor characteristics of right-left helical screw inserts of equal length, and unequal length of different twist ratio under laminar flow with the water as working fluid. 2. Technical details of helical screw-tape inserts * Corresponding author. Tel.: ; fax: address: (P. Sivashanmugam). The geometrical configuration of helical screw-tape inserts is shown in Fig.. The helical screw-tape inserts /$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:0.06/j.expthermflusci

2 P. Sivashanmugam, P.K. Nagarajan / Experimental Thermal and Fluid Science 32 (2007) Nomenclature A i inside surface area of test section area, m 2 A o outside surface area of test section area, m 2 C p specific heat at constant pressure, KJ/kg K D i inside diameter of test section, mm D o outside diameter of test section, mm f friction factor, dimensionless f plain friction factor for plain tube, dimensionless f twist friction factor for twist, dimensionless h i average convective heat transfer coefficient, W/m 2 K k thermal conductivity of fluid, W/m K k w thermal conductivity of the tube wall, W/m K L length of the test section, m L t left twist length, m Nu Nusselt number, dimensionless Nu = h i D i /k Nu plain Nusselt number for plain tube, dimensionless Nu twist Nusselt number for twist, dimensionless Q heat transfer rate, W Pr Prandtl number dimensionless Pr = C p l/k R resistance of the heating element, X () R t Re T f T in T out T wo u m U o V Y right twist length, m Reynolds number based on internal diameter of the tube, dimensionless average of fluid temperature in the test section, K inlet bulk temperature of fluid, K outlet bulk temperature of fluid, K average wall surface temperature outside test section, K bulk average fluid velocity, m/s over all heat transfer coefficient, W/m 2 K voltage output from the Auto-transformer, V twist ratio (length of one full twist (360 ) diameter of the twist), dimensionless Greek symbols q density of fluid, kg/m 3 l viscosity of fluid, N s/m 2 DP pressure drop of fluid, N/m 2 of different twist ratio was made by winding uniformly a strip of 8.5 mm width over a 8 mm rod, and coated with chromium by electroplating to prevent corrosion. The twist ratio Y defined as the ratio of length of one full twist (360 ) to diameter of the twist is varied from 2.93 to The right-left helical inserts were formed by joining 300 mm length of right twist and 300 mm length of left twist alternatively, and joining 400 mm length of right twist and 200 mm length of left twist alternatively as shown in Fig.. 3. Experimental set-up and procedure The experimental set-up and procedure for the conduct of experiment is same as that described in earlier paper [3] except that after plain tube run right-left helical twist of equal and unequal length cited above were inserted and experiments were performed. 4. Pressure drop calculation The pressure drop was determined from the differences in the level of manometer fluid. The fully developed friction factor was calculated from the following equation: f ¼ðD i =LÞðDP=2qu 2 m Þ ðþ where DP is the pressure drop over length L. 5. Heat transfer calculation The heat transfer rate in the test section was calculated using [4] Q ¼ V 2 =R ¼ mc p ðt out T in Þ¼U o A o ðt wo T f Þ where =ðu o A o Þ¼=ðh i A i ÞþlnðD o =D i Þ=ð2pk w LÞ ð3þ The internal convective heat transfer coefficient, h i was determined by combining Eqs. (2) and (3). The thermal equilibrium test showed that the heat supplied by electrical winding in the test section was 8 0% larger than the heat absorbed by the fluid. This was caused by thermal loss from the test section. The average value of heat transfer rate obtained by heat supplied by electrical winding, and heat absorbed by the fluid was taken for internal convective heat transfer coefficient calculation. The Nusselt number was calculated using equation Nu ¼ h i D i =k All the fluid thermophysical properties were determined at the average of the inlet and outlet bulk temperatures, T f. Experimental uncertainty was calculated following Coleman and Steele method [5] and ANSI/ASME standard [6]. The uncertainties associated with the experimental data are calculated on the basis 95% confidence level. The measurement uncertainties used in the method are as follows: bulk fluid temperature and wall temperatures ±0. C, fluid flow rate ±2%, and fluid properties ±2% The uncertainty calculation showed that maximum of ±6%, ±5%, and ±8% for Reynolds number, friction factor and Nusselt number, respectively. ð2þ ð4þ

3 94 P. Sivashanmugam, P.K. Nagarajan / Experimental Thermal and Fluid Science 32 (2007) Fig.. Diagram of right-left helical screw inserts of different twist ratio and equal and unequal length. 6. Results and discussion 6.. Plain tube data The data obtained by the experiment for plain tube were compared [3] with Seider and Tate data [7] and the discrepancy was found to be ±% Effect of twist ratio on heat transfer augmentation Fig. 2 presents variation of Nusselt number with Reynolds number for right-left helical twist with 300 R and 300 L of different twist ratio. Nusselt number for the tube fitted with right-left helical twist is higher than that for plain tube for a given Reynolds number attributing to heat transfer enhancement due to swirl flow. As Reynolds number increases the Nusselt number increases due to increased convection. Also as the twist ratio decreases the Nusselt number increases for a given Reynolds number and reaching a maximum for the twist ratio of 2.89 due to fact that as the twist ratio decrease, the intensity of swirl generated increases with the maximum intensity for the twist ratio It is also observed that the Nusselt number for Friction factor (f) Plain tube Y=2.93 RL Y=2.93 St.helical Y=3.9 RL Y=3.9 St.helical Y= 4.89 RL Y=4.89 St.helical 0.00 Fig. 2. Friction factor vs Reynolds number for right-left helical insert with 300 R and 300 L and straight helical insert under laminarflow. right-left twist is more than that for straight helical twist for a given twist ratio. This may be due to reason that

4 P. Sivashanmugam, P.K. Nagarajan / Experimental Thermal and Fluid Science 32 (2007) repeated left-right movement of fluid during course of flow through tube attached with left-right twist will enhance the heat transfer by virtue of efficient mixing in the radial direction Effect of twist ratio on friction factor Fig. 3. shows the variation of friction factor vs Reynolds number for the tube fitted with right-left helical twist with 300 R and 300 L. The friction factor for the tube fitted with right-left helical inserts 300 R and 300 L is higher than that for plain tube and decreases with Reynolds number for a given twist ratio. However the friction factor increases with twist ratio for a given Reynolds number and reaching maximum for the twist ratio It is also observed from Fig. 3 that the friction factor for right-left twist is more than that for straight twist for a given twist ratio resulting from repeated right-left movement of fluid during course of flow through tube attached with right-left twist Effect of right-left helical twist length on heat transfer augmentation Fig. 4 presents the variation of Nusselt number with Reynolds number for right-left helical twist with 400 R and 200 L of different twist ratio. Nusselt number for tube fitted with right-left helical twist 400 R and 200 L is higher than that for plain tube for a given Reynolds number but lower than that for right-left helical twist with 300 R and 300 L. This is due to fact that the intensity of swirl generated for 300 R and 300 L twist set due to clockwise and anti-clockwise rotation is more than that for 400 R and 200 L twist set. The similar trend was observed for other twist ratio. Fig. 4 also indicate that the Nusselt number for right-left twist is more than that for straight twist for Nusselt number (Nu) 00 0 plain tube Y=2.93 RL Y= 2.93 St.helical Y= 3.9 RL Y=3.9 St.helical Y=4.89 RL Y= 4.89 St.helical Fig. 4. Nusselt number vs Reynolds number for right-left helical insert with 400 R and 200 L and straight helical insert under laminar flow. a given twist ratio indicating left-right movement induced by this insert improve the heat transfer rate Effect of right-left helical twist length on friction factor The variation of friction factor vs Reynolds number for the tube fitted with right-left helical twist with 400 R and 200 L is presented in Fig. 5. The friction factor for the tube fitted with right-left helical inserts with 400 R and 200 L is higher than that for the plain tube but lower than that for right-left helical twist with 300 R and 300 L. This is due to fact that the intensity of swirl generated for 300 R and 300 L twist set due to clockwise and anti-clockwise rotation is more than that for 400 R and 200 L twist set. The similar trend was observed for other twist ratio. For this type of twist insert, the friction factor for right-left twist is more than that for straight twist for a given twist ratio resulting from repeated right-left movement of fluid during course of Friction factor (f) Plain tube Y=2.93 RL Y=2.93 St.helical Y=3.9 RL Y=3.9 St.helical Y= 4.89 RL Y=4.89 St. helical Friction factor (f) Plain tube Y=2.9 RL Y=2.9 St.helical Y=3.9 RL Y=3.9 St.helical Y=4.89 RL Y=4.89 St. helical 0.00 Fig. 3. Friction factor vs Reynolds number for right-left helical insert with 300 R and 300 L and straight helical insert under laminar flow Fig. 5. Frictionfactor vs Reynolds number for right-left helical insert with 400 R and 200 L and straight helical insert under laminar flow.

5 96 P. Sivashanmugam, P.K. Nagarajan / Experimental Thermal and Fluid Science 32 (2007) flow through tube attached with left-right twist as observed from Fig. 5. The experimental data were fitted by the following empirical equations Nu ¼ 0:96ðReÞ 0:608 ðprþðy Þ 0:386 ðr t =L t Þ 0:8 ð5þ f ¼ 739:2ðReÞ :03 ðy Þ 0:634 ðr t =L t Þ 0:234 ð6þ The Eqs. (5) and (6) are fitting the experimental data within 0% and 20% for Nusselt number and friction factor, respectively Performance evaluation analysis Performance ratio Twist ratio 4.89 Twist ratio 3.9 Twist ratio 2.93 Performance ratio for constant pumping is defined [8] as Performance ratio ¼ ðnu twist=nu plain Þ ð7þ ðf twist =f plain Þ 0:666 where Nu twist is the Nusselt number for flow in a tube fitted with helical twist insert, Nu plain is plain tube Nusselt number, f twist is the friction factor for flow in a tube fitted with helical twist insert and f plain is the friction factor for flow in plain tube. Performance evaluation analysis has bee made based on the Eq. (7) to asses the benefits of using left-right inserts. Figs. 6 and 7 presents performance evaluation analysis results for 300 R and 300 L, 400 R and 200 L type inserts, respectively. From Fig. 6 one can observe that for a given Reynolds number the performance ratio is increases with decreasing twist ratio attributing swirl flow generated by helical twist primarily responsible for enhanced performance ratio with the maximum of 2.85 for the twist ratio As Reynolds number increases the performance ratio decreases similar to the trend followed in friction factor vs Reynolds number. Fig. 7 indicates that the performance ratio has the maximum value of 2.97 for the twist ratio Performance ratio Twist ratio 2.93 Twist ratio 3.9 Twist ratio Fig. 6. Performance analysis for right-left helical insert with 300 R and 300 L under laminar flow. 0 Fig. 7. Performance analysis for right-left helical insert with 400 R and 200 L under laminar flow. 2.93, whereas it has almost similar values for the twist ratio 3.9 and 4.89 for the range of Reynolds number studied indicating the performance of twist of the right-left with twist ratio 3.9 is quite comparable with that of 4.89 for all values of Reynolds number. 7. Conclusions (i) Experimental investigation of heat transfer and friction factor characteristics of circular tube fitted with right-left helical screw inserts of equal length, and unequal length of different twist ratio have been presented. (ii) The heat transfer coefficient enhancement for rightleft helical screw inserts is higher than that for straight helical twist for a given twist ratio. (iii) The effect of right-left length on heat transfer and friction factor were presented and found that heat transfer enhancement for 300 R and 300 L twist set is higher than that for 400 R and 200 L for all twist ratio. (iv) The empirical correlation for Nusselt number, and friction factor relating Reynolds number, twist ratio and right-left twist distance were formed and found to fit the experimental data within 0% and 20% for Nusselt number and friction factor, respectively. (v) Performance evaluation analysis has been made and the maximum performance ratio of 2.85 and 2.97, respectively were obtained for 300 R and 300 L, and 400 R and 200 L type inserts. References [] A.E. Bergles, Techniques to augment heat transfer, in: W.M. Rohsenow, J.P. Hartnett, E. Ganie (Eds.), Handbook of Heat Transfer Application, McGraw-Hill, New York, 985.

6 P. Sivashanmugam, P.K. Nagarajan / Experimental Thermal and Fluid Science 32 (2007) [2] A.E. Bergles, Some perspectives on enhanced heat transfer, secondgeneration heat transfer technology, ASME Journal of Heat Transfer 0 () (988) [3] P. Sivashanmugam, S. Suresh, Experimental studies on heat transfer and friction factor characteristics in laminar flow through a circular tube fitted with helical screw-tape inserts, Journal of Applied Thermal Engineering 26 (2006) [4] Q. Liau, M.D. Xin, Augmentation of convective heat transfer inside tubes with three-dimensional internal extended surfaces and twisted tape inserts, Chemical Engineering Journal 78 (2000) [5] H.W. Coleman, W.G. Steele, Experimental and Uncertainty Analysis for Engineers, Wiley, New York, 989. [6] ANSI/ASME, Measurement uncertainty, PTC 9, 985, 986. [7] E.N. Sieder, G.E. Tate, Industrial and Engineering Chemistry 28 (936) 429. [8] H. Usui, Y. Sano, K. Iwashita, A. Isozaki, Enhancement of heat transfer by a combination of internally grooved rough tube and twisted tape, International Chemical Engineering 26 () (996)

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Heat Transfer Enhancement in a Heat Exchanger using Punched and V-cut Twisted Tape Inserts Imran Quazi#1, Prof. V.R.Mohite#2 #1DPCOE-Mechanical Department, SPP University Pune, India imranqu azi198 7@gmail.com

More information

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS

EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT TWIST RATIO OF TWISTED TAPE INSERTS INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY Vol.33 (2015), No.3, pp.158-162 http://dx.doi.org/10.18280/ijht.330324 EXPERIMENTAL ANALYSIS OF HEAT TRANSFER ENHANCEMENT IN A CIRCULAR TUBE WITH DIFFERENT

More information

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT

HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT HEAT TRANSFER ENHANCEMENT AND FRICTION FACTOR ANALYSIS IN TUBE USING CONICAL SPRING INSERT Rahul M. Gupta 1, Bhushan C. Bissa 2 1 Research Scholar, Department of Mechanical Engineering, Shri Ramdeobaba

More information

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert

Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Experimental Study On Heat Transfer Enhancement In A Circular Tube Fitted With U -Cut And V -Cut Twisted Tape Insert Premkumar M Abstract Experimental investigation of heat transfer and Reynolds number

More information

Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements

Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements Smith Eiamsa-ard a, Chinaruk Thianpong b, Pongjet Promvonge b, a Department

More information

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS

HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS HEAT TRANSFER ENHANCEMENT ON DOUBLE PIPE HEAT EXCHANGER BY WIRE COILED AND TAPER WIRE COILED TURBULATOR INSERTS J.Kalil basha 1,G.Karthikeyan 2, S.Karuppusamy 3 1,2 Assistant Professor, Dhanalakshmi Srinivasan

More information

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015

International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 International Journal of Latest Research in Science and Technology Volume 4, Issue 2: Page No.161-166, March-April 2015 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 EXPERIMENTAL STUDY

More information

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer.

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online http://www.ijoer. REVIEW ARTICLE ISSN: 2321-7758 REVIEW OF HEAT TRANSFER AUGMENTATION TECHNIQUES MANOJ HAJARE, CHETAN DEORE, KAVITA KHARDE, PUSHKAR RAWALE, VIVEK DALVI Department of Mechanical Engineering, SITRC, NASHIK

More information

Experimental Investigation on Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Pipe using internal threads of varying depth

Experimental Investigation on Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Pipe using internal threads of varying depth IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684 Volume 5, Issue 3 (Jan. - Feb. 2013), PP 23-28 Experimental Investigation on Turbulent Flow Heat Transfer Enhancement in a

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.6, pp 2580-2587, 2014-2015 Performance Analysis of Heat Transfer and Effectiveness on Laminar Flow with Effect of

More information

ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS

ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS ENHANCEMENT OF HEAT TRANSFER USING WIRE COIL INSERTS WITH CHORD RIBS 1 P.S.Desale, 2 N.C.Ghuge 1 PG Student, Heat Power, MCERC, Nasik (India) 2 Asst. Prof., Mech. Dept., MCERC,Nasik(India) ABSTRACT From

More information

Augmentation of Heat Transfer in Laminar Flow Using Full Length Aluminum Twisted Tape

Augmentation of Heat Transfer in Laminar Flow Using Full Length Aluminum Twisted Tape ISSN: 39 6378, Volume-, Issue-, October 03 Augmentation of Heat Transfer in Laminar Flow Using Full Length Aluminum Twisted Tape Abhijit A. Patil, Uday C.Kapale, P.B.Gangawati Abstract Low fluid velocity

More information

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS

HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS HEAT TRANSFER AUGMENTATION THROUGH DIFFERENT PASSIVE INTENSIFIER METHODS P.R.Hatwar 1, Bhojraj N. Kale 2 1, 2 Department of Mechanical Engineering Dr. Babasaheb Ambedkar College of Engineering & Research,

More information

EFFECT OF USE OF SWIRL FLOW DEVICES TO IMPROVE HEAT TRANSFER RATE IN HEAT EXCHANGERS

EFFECT OF USE OF SWIRL FLOW DEVICES TO IMPROVE HEAT TRANSFER RATE IN HEAT EXCHANGERS EFFECT OF USE OF SWIRL FLOW DEVICES TO IMPROVE HEAT TRANSFER RATE IN HEAT EXCHANGERS P.S.Desale 1, Prof. N.C.Ghuge 2 1 PG Student, ME (Heat Power), MCERC, Nasik, (India) 2 Associate Prof., Department of

More information

FLUID FLOW Introduction General Description

FLUID FLOW Introduction General Description FLUID FLOW Introduction Fluid flow is an important part of many processes, including transporting materials from one point to another, mixing of materials, and chemical reactions. In this experiment, you

More information

Dependency of heat transfer rate on the Brinkman number in microchannels

Dependency of heat transfer rate on the Brinkman number in microchannels Dependency of heat transfer rate on the Brinkman number in microchannels Hee Sung Park Stokes Institute, University of Limerick, Limerick, Ireland Abstract Heat generation from electronics increases with

More information

Experiment 3 Pipe Friction

Experiment 3 Pipe Friction EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional

More information

Turbulent Heat Transfer in a Horizontal Helically Coiled Tube

Turbulent Heat Transfer in a Horizontal Helically Coiled Tube Heat Transfer Asian Research, 28 (5), 1999 Turbulent Heat Transfer in a Horizontal Helically Coiled Tube Bofeng Bai, Liejin Guo, Ziping Feng, and Xuejun Chen State Key Laboratory of Multiphase Flow in

More information

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations

Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations Experimental Study of Free Convection Heat Transfer From Array Of Vertical Tubes At Different Inclinations A.Satyanarayana.Reddy 1, Suresh Akella 2, AMK. Prasad 3 1 Associate professor, Mechanical Engineering

More information

Natural Convection. Buoyancy force

Natural Convection. Buoyancy force Natural Convection In natural convection, the fluid motion occurs by natural means such as buoyancy. Since the fluid velocity associated with natural convection is relatively low, the heat transfer coefficient

More information

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati

Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Heat Transfer Prof. Dr. Ale Kumar Ghosal Department of Chemical Engineering Indian Institute of Technology, Guwahati Module No. # 04 Convective Heat Transfer Lecture No. # 03 Heat Transfer Correlation

More information

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING

INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING ISSN (ONLINE): 2321-3051 INTERNATIONAL JOURNAL OF RESEARCH IN AERONAUTICAL AND MECHANICAL ENGINEERING Study of forced convection heat transfer With DAQ & ANSYS First Authors Moopanar karthikeyan 1, Raote

More information

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER

AN EXPERIMENTAL STUDY OF EXERGY IN A CORRUGATED PLATE HEAT EXCHANGER International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 11, Nov 2015, pp. 16-22, Article ID: IJMET_06_11_002 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=11

More information

Understanding Plastics Engineering Calculations

Understanding Plastics Engineering Calculations Natti S. Rao Nick R. Schott Understanding Plastics Engineering Calculations Hands-on Examples and Case Studies Sample Pages from Chapters 4 and 6 ISBNs 978--56990-509-8-56990-509-6 HANSER Hanser Publishers,

More information

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi

HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)

More information

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink

Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Theoretical and Experimental Investigation of Heat Transfer Characteristics through a Rectangular Microchannel Heat Sink Dr. B. S. Gawali 1, V. B. Swami 2, S. D. Thakre 3 Professor Dr., Department of Mechanical

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System

Theoretical and Numerical Analysis of Heat Transfer in Pipeline System APCOM & ISCM -4 th December, 20, Singapore Theoretical and Numerical Analysis of Heat Transfer in Pipeline System Xiaowei Zhu, Hui Tang, *Hua Li, Jiahua Hong, Songyuan Yang School of Mechanical & Aerospace

More information

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids

Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Head Loss in Pipe Flow ME 123: Mechanical Engineering Laboratory II: Fluids Dr. J. M. Meyers Dr. D. G. Fletcher Dr. Y. Dubief 1. Introduction Last lab you investigated flow loss in a pipe due to the roughness

More information

International Journal of Heat and Mass Transfer

International Journal of Heat and Mass Transfer International Journal of Heat and Mass Transfer 57 (2013) 190 201 Contents lists available at SciVerse ScienceDirect International Journal of Heat and Mass Transfer journal homepage: www.elsevier.com/locate/ijhmt

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 6340 (Print) ISSN 0976 6359 (Online) Volume

More information

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES

FREESTUDY HEAT TRANSFER TUTORIAL 3 ADVANCED STUDIES FREESTUDY HEAT TRANSFER TUTORIAL ADVANCED STUDIES This is the third tutorial in the series on heat transfer and covers some of the advanced theory of convection. The tutorials are designed to bring the

More information

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS

Numerical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS merical Investigation of Heat Transfer Characteristics in A Square Duct with Internal RIBS Abhilash Kumar 1, R. SaravanaSathiyaPrabhahar 2 Mepco Schlenk Engineering College, Sivakasi, Tamilnadu India 1,

More information

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS

A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS A MTR FUEL ELEMENT FLOW DISTRIBUTION MEASUREMENT PRELIMINARY RESULTS W. M. Torres, P. E. Umbehaun, D. A. Andrade and J. A. B. Souza Centro de Engenharia Nuclear Instituto de Pesquisas Energéticas e Nucleares

More information

2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT

2. CHRONOLOGICAL REVIEW ABOUT THE CONVECTIVE HEAT TRANSFER COEFFICIENT ANALYSIS OF PCM SLURRIES AND PCM EMULSIONS AS HEAT TRANSFER FLUIDS M. Delgado, J. Mazo, C. Peñalosa, J.M. Marín, B. Zalba Thermal Engineering Division. Department of Mechanical Engineering University of

More information

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger

Comparison of Heat Transfer between a Helical and Straight Tube Heat Exchanger International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 1 (2013), pp. 33-40 International Research Publication House http://www.irphouse.com Comparison of Heat Transfer

More information

Sizing of triple concentric pipe heat exchanger

Sizing of triple concentric pipe heat exchanger Sizing of triple concentric pipe heat exchanger 1 Tejas M. Ghiwala, 2 Dr. V.K. Matawala 1 Post Graduate Student, 2 Head of Department 1 Thermal Engineering, SVMIT, Bharuch-392001, Gujarat, INDIA, 2 Department

More information

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE

EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE EXPERIMENTAL STUDIES ON PRESSURE DROP IN A SINUSOIDAL PLATE HEAT EXCHANGER: EFFECT OF CORRUGATION ANGLE B. Sreedhara Rao 1, Varun S 2, MVS Murali Krishna 3, R C Sastry 4 1 Asst professor, 2 PG Student,

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement

Heat Transfer Analysis of Cylindrical Perforated Fins in Staggered Arrangement International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-5, April 203 Heat Transfer Analysis of Cylindrical Fins in Staggered Arrangement Amol

More information

Duct and Twisted Tape Design Optimization using FEM and CFD

Duct and Twisted Tape Design Optimization using FEM and CFD Clarkson University Honors Program Thesis Proposal Duct and Twisted Tape Design Optimization using FEM and CFD Advisor: Brian Helenbrook Mathew Wolcott Mechanical Engineering 6/20/06 A variety of duct

More information

Basic Equations, Boundary Conditions and Dimensionless Parameters

Basic Equations, Boundary Conditions and Dimensionless Parameters Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were

More information

PRESSURE DROP STUDIES IN WAVY CORRUGATED PLATE HEAT EXCHANGERS

PRESSURE DROP STUDIES IN WAVY CORRUGATED PLATE HEAT EXCHANGERS International Journal of Mechanical Engineering and Technology (IJMET) Volume 6, Issue 12, Dec 2015, pp. 60-65, Article ID: IJMET_06_12_006 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=6&itype=12

More information

Numerical study of heat transfer in a finned double pipe heat exchanger

Numerical study of heat transfer in a finned double pipe heat exchanger ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 11 (2015) No. 1, pp. 43-54 Numerical study of heat transfer in a finned double pipe heat exchanger Shiva Kumar, K. Vasudev Karanth,

More information

Heat transfer in Flow Through Conduits

Heat transfer in Flow Through Conduits Heat transfer in Flow Through Conduits R. Shankar Suramanian Department of Chemical and Biomolecular Engineering Clarkson University A common situation encountered y the chemical engineer is heat transfer

More information

Numerical investigation of tub side heat transfer and pressure drop in helically corrugated tubes

Numerical investigation of tub side heat transfer and pressure drop in helically corrugated tubes International Journal of Energy and Environmental Engineering ISSN: 2008-9163 Vol.2 / No.2 (pp.65-75) / Spring 2011 Numerical investigation of tub side heat transfer and pressure drop in helically corrugated

More information

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note

A Guide to Calculate Convection Coefficients for Thermal Problems Application Note A Guide to Calculate Convection Coefficients for Thermal Problems Application Note Keywords: Thermal analysis, convection coefficients, computational fluid dynamics, free convection, forced convection.

More information

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems

Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture No. # 36 Pipe Flow Systems Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 36 Pipe Flow Systems Welcome back to the video course on Fluid Mechanics. In today

More information

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra***

Ravi Kumar Singh*, K. B. Sahu**, Thakur Debasis Mishra*** Ravi Kumar Singh, K. B. Sahu, Thakur Debasis Mishra / International Journal of Engineering Research and Applications (IJERA) ISSN: 48-96 www.ijera.com Vol. 3, Issue 3, May-Jun 3, pp.766-77 Analysis of

More information

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER

A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER A COMPUTATIONAL FLUID DYNAMICS STUDY ON THE ACCURACY OF HEAT TRANSFER FROM A HORIZONTAL CYLINDER INTO QUIESCENT WATER William Logie and Elimar Frank Institut für Solartechnik SPF, 8640 Rapperswil (Switzerland)

More information

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger

The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Research Journal of Engineering Sciences ISSN 2278 9472 The Effect of Mass Flow Rate on the Enhanced Heat Transfer Charactristics in A Corrugated Plate Type Heat Exchanger Abstract Murugesan M.P. and Balasubramanian

More information

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting

A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW. 1998 ASME Fluids Engineering Division Summer Meeting TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A LAMINAR FLOW ELEMENT WITH A LINEAR PRESSURE DROP VERSUS VOLUMETRIC FLOW Proceedings of FEDSM 98: June -5, 998, Washington, DC FEDSM98 49 ABSTRACT The pressure

More information

NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS

NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS NUMERICAL ANALYSIS FOR TWO PHASE FLOW DISTRIBUTION HEADERS IN HEAT EXCHANGERS B.Babu 1, Florence.T 2, M.Punithavalli 3, B.R.Rohit 4 1 Assistant professor, Department of mechanical engineering, Rathinam

More information

Convective Heat Transfer Analysis in a Circular Tube with Different Types of Internal Threads of Constant Pitch

Convective Heat Transfer Analysis in a Circular Tube with Different Types of Internal Threads of Constant Pitch International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-2, Issue-3, February 2013 Convective Heat Transfer Analysis in a Circular Tube with Different Types of Internal

More information

Enhancement of heat transfer using varying width twisted tape inserts

Enhancement of heat transfer using varying width twisted tape inserts MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 6, 2010, pp. 107-118 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

More information

Effect of design parameters on temperature rise of windings of dry type electrical transformer

Effect of design parameters on temperature rise of windings of dry type electrical transformer Effect of design parameters on temperature rise of windings of dry type electrical transformer Vikas Kumar a, *, T. Vijay Kumar b, K.B. Dora c a Centre for Development of Advanced Computing, Pune University

More information

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT

EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT EXPERIMENTAL AND CFD ANALYSIS OF A SOLAR BASED COOKING UNIT I N T R O D U C T I O N Among the different energy end uses, energy for cooking is one of the basic and dominant end uses in developing countries.

More information

Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles

Design,Development and Comparison of Double Pipe Heat Exchanger with Conventional and Annular Baffles Design,Development and Comparison of Double Pipe Heat Exchanger with and Annular Baffles Mukund B Pandya Asst. Professor, Department of Mechanical Engineering, Babaria Institute of Technology, Varnama-

More information

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2

ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 ANALYSIS OF FULLY DEVELOPED TURBULENT FLOW IN A PIPE USING COMPUTATIONAL FLUID DYNAMICS D. Bhandari 1, Dr. S. Singh 2 1 M. Tech Scholar, 2 Associate Professor Department of Mechanical Engineering, Bipin

More information

Battery Thermal Management System Design Modeling

Battery Thermal Management System Design Modeling Battery Thermal Management System Design Modeling Gi-Heon Kim, Ph.D Ahmad Pesaran, Ph.D (ahmad_pesaran@nrel.gov) National Renewable Energy Laboratory, Golden, Colorado, U.S.A. EVS October -8, 8, 006 Yokohama,

More information

Journal bearings/sliding bearings

Journal bearings/sliding bearings Journal bearings/sliding bearings Operating conditions: Advantages: - Vibration damping, impact damping, noise damping - not sensitive for vibrations, low operating noise level - dust tight (if lubricated

More information

Corrugated Tubular Heat Exchangers

Corrugated Tubular Heat Exchangers Corrugated Tubular Heat Exchangers HEAT EXCHANGERS for the 21st CENTURY Corrugated Tubular Heat Exchangers (CTHE) Corrugated Tube Heat Exchangers are shell and tube heat exchangers which use corrugated

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

Nanofluid Heat Transfer-A Review

Nanofluid Heat Transfer-A Review International Journal of Engineering and Technology Volume 3 No. 2, February, 2013 Nanofluid Heat Transfer-A Review Chidanand K Mangrulkar,Vilayatrai M Kriplani Mechanical Engineering Department, G.H.Raisoni

More information

Correlations for Convective Heat Transfer

Correlations for Convective Heat Transfer In many cases it's convenient to have simple equations for estimation of heat transfer coefficients. Below is a collection of recommended correlations for single-phase convective flow in different geometries

More information

Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow

Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow International Journal of Heat and Mass Transfer 47 (2004) 4215 4231 www.elsevier.com/locate/ijhmt Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow J. Li a, G.P. Peterson

More information

Heat-transfer film coefficients of falling film horizontal tube evaporators

Heat-transfer film coefficients of falling film horizontal tube evaporators Desalination 166 (2004) 223 230 Heat-transfer film coefficients of falling film horizontal tube evaporators Li Xu*, Murong Ge, Shichang Wang, Yuxin Wang School of Chemical Engineering and Technology, Tianjin

More information

Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review

Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review Heat Transfer Analysis of Corrugated Plate Heat Exchanger of Different Plate Geometry: A Review Jogi Nikhil G. 1, Assist. Prof. Lawankar Shailendra M. 2 1 M.Tech student, 2 Assistant Professor, Government

More information

Enhancement of heat transfer of solar air heater roughened with circular transverse RIB

Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Enhancement of heat transfer of solar air heater roughened with circular transverse RIB Gurpreet Singh 1, Dr. G. S. Sidhu 2 Lala Lajpat Rai Institute of Engineering and Technology, Moga Punjab, India 1,2

More information

Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati

Flow Loss in Screens: A Fresh Look at Old Correlation. Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Journal of Mechanics Engineering and Automation 3 (013) 9-34 D DAVID PUBLISHING Ramakumar Venkata Naga Bommisetty, Dhanvantri Shankarananda Joshi and Vighneswara Rao Kollati Engineering Aerospace, MCOE,

More information

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts

ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts ME 305 Fluid Mechanics I Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Mechanical Engineering Department Middle East Technical University Ankara, Turkey csert@metu.edu.tr

More information

FREE CONVECTION FROM OPTIMUM SINUSOIDAL SURFACE EXPOSED TO VERTICAL VIBRATIONS

FREE CONVECTION FROM OPTIMUM SINUSOIDAL SURFACE EXPOSED TO VERTICAL VIBRATIONS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 214-224, Article ID: IJMET_07_01_022 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING

DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING DEVELOPMENT OF HIGH SPEED RESPONSE LAMINAR FLOW METER FOR AIR CONDITIONING Toshiharu Kagawa 1, Yukako Saisu 2, Riki Nishimura 3 and Chongho Youn 4 ABSTRACT In this paper, we developed a new laminar flow

More information

Effect of Nozzle Exit to Surface Spacing on the Cooling of Electrically Heated Surface with Jet Impingement

Effect of Nozzle Exit to Surface Spacing on the Cooling of Electrically Heated Surface with Jet Impingement ISSN 2278-8875 Effect of Nozzle Exit to Surface Spacing on the Cooling of Electrically Heated Surface with Jet Impingement Chitranjan Agarwal 1, J. K. Maherchandani 2,, Mukesh Sahi 3 College of Tech. &

More information

DSRQ - DSRSQ - DSRSQ-THERM

DSRQ - DSRSQ - DSRSQ-THERM DSRQ - DSRSQ - DSRSQ-THERM Specification item: Variable geometry diffuser on 597x597 mm panel developed for rooms with high ceilings where a long throw and a high induction ratio are required. Made up

More information

Experimental Measurement of Single-Phase Liquid Heat Transfer in a Curved Microtube Using Thermochromic Liquid Crystal

Experimental Measurement of Single-Phase Liquid Heat Transfer in a Curved Microtube Using Thermochromic Liquid Crystal roceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass ransfer Ottawa, Ontario, Canada, April 30 May 1, 2015 aper No. 131 Experimental Measurement of Single-hase Liquid Heat ransfer

More information

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction

Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department

More information

STUDY OF HEAT TRANSFER ON BROKEN ARC ROUGHNESS ELEMENTS ON THE ABSORBER PLATE FOR SOLAR ENERGY BASED HEATER: A REVIEW

STUDY OF HEAT TRANSFER ON BROKEN ARC ROUGHNESS ELEMENTS ON THE ABSORBER PLATE FOR SOLAR ENERGY BASED HEATER: A REVIEW International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 216, pp. 99-19, Article ID: IJMET_7_1_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information

Experiment # 3: Pipe Flow

Experiment # 3: Pipe Flow ME 05 Mechanical Engineering Lab Page ME 05 Mechanical Engineering Laboratory Spring Quarter 00 Experiment # 3: Pipe Flow Objectives: a) Calibrate a pressure transducer and two different flowmeters (paddlewheel

More information

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials.

Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Learning Module 4 - Thermal Fluid Analysis Note: LM4 is still in progress. This version contains only 3 tutorials. Attachment C1. SolidWorks-Specific FEM Tutorial 1... 2 Attachment C2. SolidWorks-Specific

More information

Integration of a fin experiment into the undergraduate heat transfer laboratory

Integration of a fin experiment into the undergraduate heat transfer laboratory Integration of a fin experiment into the undergraduate heat transfer laboratory H. I. Abu-Mulaweh Mechanical Engineering Department, Purdue University at Fort Wayne, Fort Wayne, IN 46805, USA E-mail: mulaweh@engr.ipfw.edu

More information

Exergy Analysis of a Water Heat Storage Tank

Exergy Analysis of a Water Heat Storage Tank Exergy Analysis of a Water Heat Storage Tank F. Dammel *1, J. Winterling 1, K.-J. Langeheinecke 3, and P. Stephan 1,2 1 Institute of Technical Thermodynamics, Technische Universität Darmstadt, 2 Center

More information

EXPERIMENTAL ANALYSIS OF PARTIAL AND FULLY CHARGED THERMAL STRATIFIED HOT WATER STORAGE TANKS

EXPERIMENTAL ANALYSIS OF PARTIAL AND FULLY CHARGED THERMAL STRATIFIED HOT WATER STORAGE TANKS INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger

Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Review on Experimental Analysis and Performance Characteristic of Heat Transfer In Shell and Twisted Tube Heat Exchanger Nitesh B. Dahare Student, M.Tech (Heat power Engg.) Ballarpur Institute of Technology,

More information

Convection Heat Transfer and Flow Calculations Suitable for Analytical Modelling of Electric Machines

Convection Heat Transfer and Flow Calculations Suitable for Analytical Modelling of Electric Machines Convection Heat Transfer and Flow Calculations Suitable for Analytical Modelling of Electric Machines D.A. Staton A. Cavagnino Motor Design Ltd Politecnico di Torino 1 Eaton Court, Tetchill, Ellesmere

More information

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme

Grant Agreement No. 228296 SFERA. Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME. Capacities Specific Programme Grant Agreement No. 228296 SFERA Solar Facilities for the European Research Area SEVENTH FRAMEWORK PROGRAMME Capacities Specific Programme Research Infrastructures Integrating Activity - Combination of

More information

Pipe Flow-Friction Factor Calculations with Excel

Pipe Flow-Friction Factor Calculations with Excel Pipe Flow-Friction Factor Calculations with Excel Course No: C03-022 Credit: 3 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980

More information

TANKJKT. Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS. Copyright 2015. By chemengsoftware.com

TANKJKT. Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS. Copyright 2015. By chemengsoftware.com TANKJKT Heat Transfer Calculations for Jacketed Tanks SCREEN SHOTS Copyright 2015 By chemengsoftware.com Visit http://www.pipesizingsoftware.com/ for further information and ordering The following page

More information

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to:

Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: I. OBJECTIVE OF THE EXPERIMENT. Swissmetro travels at high speeds through a tunnel at low pressure. It will therefore undergo friction that can be due to: 1) Viscosity of gas (cf. "Viscosity of gas" experiment)

More information

Internal cooling augmentation in rectangular channel using two inclined baffles

Internal cooling augmentation in rectangular channel using two inclined baffles International Journal of Heat and Fluid Flow () www.elsevier.com/locate/ijhff Internal cooling augmentation in rectangular channel using two inclined baffles Prashanta Dutta a, *, Akram Hossain b a Mechanical

More information

Iterative calculation of the heat transfer coefficient

Iterative calculation of the heat transfer coefficient Iterative calculation of the heat transfer coefficient D.Roncati Progettazione Ottica Roncati, via Panfilio, 17 44121 Ferrara Aim The plate temperature of a cooling heat sink is an important parameter

More information

An experimental study of convective heat transfer in silicon microchannels with different surface conditions

An experimental study of convective heat transfer in silicon microchannels with different surface conditions International Journal of Heat and Mass Transfer 46 (2003) 2547 2556 www.elsevier.com/locate/ijhmt An experimental study of convective heat transfer in silicon microchannels with different surface conditions

More information

Convection heat transfer from tube banks in crossflow: Analytical approach

Convection heat transfer from tube banks in crossflow: Analytical approach International Journal of Heat and Mass Transfer 49 (2006) 4831 4838 www.elsevier.com/locate/ijhmt Convection heat transfer from tube banks in crossflow: Analytical approach W.A. Khan a, *, J.R. Culham

More information

Natural convection in a room with two opposite heated vertical walls

Natural convection in a room with two opposite heated vertical walls INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 6, Issue 1, 2015 pp.81-86 Journal homepage: www.ijee.ieefoundation.org Natural convection in a room with two opposite heated vertical walls Ameer

More information

Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach

Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach AIAA 2005-0958 Convection Heat Transfer From Tube Banks in Crossflow: Analytical Approach M. M. Yovanovich, Fellow AIAA W. A. Khan J. R. Culham Microelectronics Heat Transfer Laboratory Department of Mechanical

More information

HEAT AND MASS TRANSFER IN AN INDIRECT CONTACT COOLING TOWER: CFD SIMULATION AND EXPERIMENT

HEAT AND MASS TRANSFER IN AN INDIRECT CONTACT COOLING TOWER: CFD SIMULATION AND EXPERIMENT Numerical Heat Transfer, Part A, 54: 933 944, 2008 Copyright # Taylor & Francis Group, LLC ISSN: 1040-7782 print=1521-0634 online DOI: 10.1080/10407780802359104 HEAT AND MASS TRANSFER IN AN INDIRECT CONTACT

More information

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc.

Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. ASGMT / Averaging Pitot Tube Flow Measurement Michael Montgomery Marketing Product Manager Rosemount Inc. Russ Evans Manager of Engineering and Design Rosemount Inc. Averaging Pitot Tube Meters Introduction

More information

Chapter 11. Objectives

Chapter 11. Objectives Chapter 11 Heat Exchangers Islamic Azad University Karaj Branch Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of heat exchangers, and classify them,

More information

HEAVY OIL FLOW MEASUREMENT CHALLENGES

HEAVY OIL FLOW MEASUREMENT CHALLENGES HEAVY OIL FLOW MEASUREMENT CHALLENGES 1 INTRODUCTION The vast majority of the world s remaining oil reserves are categorised as heavy / unconventional oils (high viscosity). Due to diminishing conventional

More information

THE PSEUDO SINGLE ROW RADIATOR DESIGN

THE PSEUDO SINGLE ROW RADIATOR DESIGN International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 1, Jan-Feb 2016, pp. 146-153, Article ID: IJMET_07_01_015 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=1

More information