Proteins the primary biological macromolecules of living organisms

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Proteins the primary biological macromolecules of living organisms"

Transcription

1 Proteins the primary biological macromolecules of living organisms

2 Protein structure and folding

3 Primary Secondary Tertiary Quaternary structure of proteins

4 Structure of Proteins Protein molecules adopt a specific 3-dimensional conformation in the aqueous solution This structure is able to fulfill a specific biological function This structure is called the native fold The native fold has a large number of interactions within the protein There is a cost in conformational entropy during folding of the protein into one specific native fold

5 A simulated folding pathway

6 Interactions in Proteins Hydrophobic effect Hydrogen bonds London dispersion Electrostatic interactions

7 Structure of the Peptide Bond Structure of the protein is partially dictated by the properties of the peptide bond

8 The planar peptide bond Each peptide bond has some (~ 40%) double-bond character due to resonance and cannot rotate. The peptide bond is a resonance hybrid of two canonical structures

9 Structure of the Peptide Bond The resonance causes the peptide bonds be less reactive compared to e.g. esters be quite rigid and nearly planar exhibit large dipole moment

10 The Rigid Peptide Plane and the Partially Free Rotations Rotation around the peptide bond is not permitted Rotation around bonds connected to the alpha carbon is permitted

11 The Rigid Peptide Plane and the Partially Free Rotations Φ (phi): angle around the - carbon amide nitrogen bond (C-C α -N-C) y (psi): angle around the - carbon carbonyl carbon bond (N-C-C α -N) In fully extended polypeptide, both y and f are 180

12 Distribution of f and y Dihedral Angles Some f and y combinations are very unfavorable because of steric crowding of backbone atoms with other atoms in the backbone or side-chains Some f and y combinations are more favorable because of chance to form favorable H-bonding interactions along the backbone Ramachandran plot shows the distribution of f and y dihedral angles that are found in a protein shows the common secondary structure elements reveals regions with unusual backbone structure

13 Ramachandran Plot

14 Ramachandran Plot

15

16 Secondary Structures Secondary structure refers to a local spatial arrangement of the polypeptide chain Two regular arrangements are most common: The helix stabilized by hydrogen bonds between nearby residues The sheet stabilized by hydrogen bonds between adjacent segments that may not be nearby Irregular arrangement of the polypeptide chain is called the random coil

17 The helix

18 The helix Right-handed helix with 3.6 residues (5.4 Å) per turn Helical backbone is held together by hydrogen bonds between the nearby backbone amides Side chains point out and are roughly perpendicular with the helical axis

19 The helix: Top View The inner diameter of the helix (no side-chains) is about 4 5 Å Too small for anything to fit inside The outer diameter of the helix (with side chains) is Å Happens to fit well into the major groove of dsdna

20 Sequence Affects Helix Stability Not all polypeptide sequences adopt -helical structures Small hydrophobic residues such as Ala and Leu are strong helix formers Pro acts as a helix breaker because the rotation around the N-C a bond is impossible Gly acts as a helix breaker because the tiny R- group (hydrogen) allows other conformations

21 Sheets

22 Sheets The backbone is more extended with dihedral angles in the range of ( 90 < y < 180 )

23 Sheets The planarity of the peptide bond and tetrahedral geometry of the -carbon create a pleated sheet-like structure Sheet-like arrangement of backbone is held together by hydrogen bonds between the more distal backbone amides Side chains protrude from the sheet alternating in up and down direction

24 Parallel and Antiparallel Sheets In parallel sheets the H-bonded strands run in the same direction

25

26 Parallel and Antiparallel Sheets In antiparallel sheets the H-bonded strands run in opposite directions

27

28

29 Turns -turns occur frequently whenever strands in sheets change the direction The 180 turn is accomplished over four amino acids The turn is stabilized by a hydrogen bond from a carbonyl oxygen to amide proton three residues down the sequence Proline in position 2 or glycine in position 3 are common in -turns

30 Structures of β turns

31

32 Protein Tertiary Structure Tertiary structure refers to the overall spatial arrangement of atoms in a polypeptide chain or in a protein One can distinguish two major classes fibrous proteins typically insoluble; made from a single secondary structure globular proteins water-soluble globular proteins lipid-soluble membraneous proteins

33 Structure of collagen fibrous protein

34 Structure of whale myoglobin globular protein

35 An ABC transporter of E. coli globular membrane protein

36 Motifs (folds) - Protein Folding Patterns Common arrangements of several secondary structure elements

37 How many folds? The number of unique folds in nature is fairly small (possibly a few thousands) 90% of new structures submitted to PDB in the past decade have similar structural folds in PDB, practically no new folds in the last three years

38 Quaternary Structure Quaternary structure is formed by spontaneous assembly of individual polypeptide subunits into a larger functional cluster

39 Dimer Cro protein of bacteriophage lambda two identical subunits Tetramer Human hemoglobin two alpha(red) two beta(yellow) subunits 4 heme groups

40 Primary Secondary Tertiary Quaternary structure Summary (a) Linear Sequence of amino acids. (b) Local folding into specific peptide backbone conformations. Stabilized by h- bonding and other non-covalent interactions between atoms in peptide backbone. (c) Final folded 3-dimensional structure of a single polypeptide chain. Stabilized by noncovalent interactions between amino acid side chain residues. (d) Specific aggregation of two or more polypeptide chains. Often characterized by its symmetry.

41

42 Protein Stability and Folding A protein s function depends on its threedimensional structure. Loss of structural integrity with accompanying loss of activity is called denaturation Proteins can be denatured by heat or cold ph extremes organic solvents chaotropic agents: urea and guanidinium hydrochloride reduction of disulfide bonds by Mercaptoethanol

43 Renaturation of unfolded, denatured protein ribonuclease

44 Ribonuclease Refolding Experiment Ribonuclease is a small protein that contains 8 cysteins linked via four disulfide bonds Urea in the presence of 2-mercaptoethanol fully denatures ribonuclease When urea and 2-mercaptoethanol are removed, the protein spontaneously refolds, and the correct disulfide bonds are reformed The sequence alone determines the native conformation Quite simple experiment, but so important it earned Chris Anfinsen the 1972 Chemistry Nobel Prize

45 How Can Proteins Fold So Fast? Proteins fold to the lowest-energy fold in the microsecond to second time scales. How can they find the right fold so fast? It is mathematically impossible for protein folding to occur by randomly trying every conformation until the lowest energy one is found (Levinthal s paradox)

46 Levinthal s paradox: There are approximately possible conformations for a typical protein (~125 amino acids). Even if it took only sec to try out each conformation, it would take years to try a significant fraction of them. Obviously folding does not happen randomly direction toward the native structure is thermodynamically most favorable

47 The thermodynamics of protein folding depicted as a free-energy funnel

48 Chaperonins Special class of molecular chaperones that facilitate protein folding About 10 to 15% of proteins in E. coli require chaperonins to right folding Require ATP

49

50 Other examples of assisted molecular processes in folding and posttranslational modification of proteins Disulfide crosslinking bonding disulfide isomerase cis trans isomerization of proline prolyl cistrans isomerase Hydroxylation of Proline in collagen prolyl 4- hydroxylase (ascorbate demand)

51

52 Protein function

53 Functions of Globular Proteins Storage of ions and molecules myoglobin, ferritin Transport of ions and molecules hemoglobin, serotonin transporter Defense against pathogens antibodies, cytokines Muscle contraction actin, myosin Biological catalysis - enzymes chymotrypsin, lysozyme

54 Example of Protein Function and Ligand Binding Myoglobin single polypeptide oxygen storage in tissues, muscle Hemoglobin tetramer of two alpha and two beta subunits transports oxygen from lungs to tissues

55 Ligand Binding Binding - reversible, transient process of chemical equilibrium: A + B AB A molecule that binds is called a ligand (typically a small molecule) A region in the protein where the ligand binds is called the binding site Ligand binds via non-covalent forces, which enables the interactions to be transient

56 Function of Myoglobin Organisms need to store oxygen for metabolism Generaly - protein side-chains lack affinity for O 2 Heme - Fe 2+ in free heme could be oxidized to Fe 3+ Heme is bound to protein, Fe 3+ is protected by a His residue In mammals, myoglobin is the main oxygen storage protein

57 Structures of Porphyrin and Heme

58 Structure of Myoglobin

59 Binding of Carbon Monoxide CO has similar size and shape to O 2 ; it can fit to the same binding site CO binds to heme over 20,000 times better than O 2 because the carbon in CO can be donated a lone electron pair to vacant d-orbitals on the Fe 2+ Protein pocket decreases affinity for CO, but is still binds about 250 times better than oxygen CO is highly toxic as it competes with oxygen. It blocks the function of myoglobin, hemoglobin, and mitochondrial cytochromes that are involved in oxidative phosphorylation

60 Example of a Binding Pocket O 2 and CO in hemoglobin and myoglobin

61

62 Could Myoglobin Work as Good O 2 Transporter? po 2 in lungs is about 13 kpa: it sure binds oxygen well po 2 in tissues is about 4 kpa: it will not release it!

63 Simple change in the affinity would help but is not the ideal solution Cooperation of two binding (affinity) states is indeed better solution

64 For Effective Transport Affinity Must Vary with po 2 po 2 in lungs is about 13 kpa: it sure binds oxygen well po 2 in tissues is about 4 kpa: it releases about half of it at ph 7.6

65 How Can Affinity to Oxygen Change Like This? Must be a protein with multiple binding sites Binding sites must be able to interact with each other This phenomenon is called cooperativity Positive cooperativity can be recognized by sigmoidal binding curves

66

67 Hemoglobin Hemoglobin is a tetramer of two different subunits ( 2 2) Each subunit is similar to myoglobin

68 Hemoglobin Binding sites must be able to interact with each other

69 Subunit Interactions: Details Binding sites must be able to interact with each other Example of some interactions Interactions can be between subunits and also within one subunit

70 Conformational Change is Triggered by Oxygen Binding

71 Hemoglobin is an allosteric protein allosteric proteins change their activity due to induced conformational changes Hemoglobin - two affinity states induced by ligand binding

72 Molecular disease of Hemoglobin

73 Sickle-Cell anemia Mutation of single amino acid Val instead of Glu at position 6 in beta chain Replacement of charged Glu for Val makes hydrophobic contact on the surface Hemoglobin aggregates

74

75

76 Another examples of proteins

77 Fibrous Proteins: From Structure to Function Function Structure Example Tough, rigid, Cross-linked -helixes -keratin hard (nails, horns) Rigid linker (S S) Tensile strength, Cross-linked triple-helixes Collagen non-stretching Flexible linker (Lys-HyLys) (tendons, cartilage) Soft, flexible Non-covalently held -sheets non-stretchy van der Waals interaction Silk fibroin (egg sac, nest, web)

78 Structure of -Keratin in Hair

79

80 Chemistry of Permanent Waving

81 Structure of Collagen Collagen is an important constituent of connective tissue: tendons, cartilage, bones, cornea of the eye Each collagen chain is a long Gly- and Pro-rich left-handed helix Three collagen chains intertwine into a righthanded superhelical triple helix The triple helix has higher tensile strength than a steel wire of equal cross section Many triple-helixes assemble into a collagen fibril

82

83 4-Hydroxyproline in Collagen Forces the proline ring into a favorable folding Offer more hydrogen bonds between the three strands of collagen The post-translational processing is catalyzed by prolyl hydroxylase and requires -ketoglutarate, molecular oxygen, and ascorbate (vitamin C)

84 Silk Fibroin Fibroin is the main protein in silk from silk moths and spiders Antiparallel sheet structure Small side chains (Ala and Gly) allow the close packing of sheets Structure is stabilized by hydrogen bonding within sheets London dispersion interactions between sheets

85

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

Introduction to Protein Folding

Introduction to Protein Folding Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological

More information

The peptide bond is rigid and planar

The peptide bond is rigid and planar Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information

Peptide Bonds: Structure

Peptide Bonds: Structure Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein. Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic

More information

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

Conformational Properties of Polypeptide Chains

Conformational Properties of Polypeptide Chains Conformational Properties of Polypeptide Chains Levels of Organization Primary structure Amino acid sequence of the protein Secondary structure H bonds in the peptide chain backbone α helix and β sheets

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein MBLG1001_lecture 4 Page 1 University of Sydney Library Electronic Item URSE: MBLG1001 Lecturer: Dale ancock Forming the Protein MMWEALT F AUSTRALIA opyright Regulation WARIG This material has been reproduced

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton? Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

Amino Acids and Proteins

Amino Acids and Proteins Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because

More information

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein

More information

INTRODUCTION TO PROTEIN STRUCTURE

INTRODUCTION TO PROTEIN STRUCTURE Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

R H important because the backbone atoms of each residue

R H important because the backbone atoms of each residue Protein Folding Proteins are not extended polypeptide chains. Instead, most proteins form compact folded three-dimensional arrangements, with well-defined, specific structures. Several types of non-covalent

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Chapter 19 Amino Acids and Proteins

Chapter 19 Amino Acids and Proteins Chapter 19 Amino Acids and Proteins 19.1 Proteins and Amino Acids 19.2 Amino Acids as Acids and Bases Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 1 Functions of Proteins Proteins

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Biochemistry 2000 Sample Question Proteins. (1) Identify the secondary structure described in each of the following statements:

Biochemistry 2000 Sample Question Proteins. (1) Identify the secondary structure described in each of the following statements: (1) Identify the secondary structure described in each of the following statements: a. A coiled peptide chain held in place by hydrogen bonding between peptide bonds in the same chain b. A structure that

More information

Folding of Proteins - Simulation using Monte Carlo Approach

Folding of Proteins - Simulation using Monte Carlo Approach A Report On Folding of Proteins - Simulation using Monte Carlo Approach Prepared By Ramji T. Venkatasubramanian In Partial fulfillment of course Computational Nanomechanics ME 8253 Spring Semester, May

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

GSAK YLDR WGSM. (b) (5 pts) Explain why neither of these steps alone is sufficient to unambiguously determine the sequence of your peptide.

GSAK YLDR WGSM. (b) (5 pts) Explain why neither of these steps alone is sufficient to unambiguously determine the sequence of your peptide. Problem 1. (total 30 points) You have to determine the amino acid sequence of a peptide. You performed the following steps using enzyme cleavage of your peptide (see table on the front page) combined with

More information

Oxygen-Binding Proteins

Oxygen-Binding Proteins Oxygen-Binding Proteins Myoglobin, Hemoglobin, Cytochromes bind O 2. Oxygen is transported from lungs to various tissues via blood in association with hemoglobin In muscle, hemoglobin gives up O 2 to myoglobin

More information

Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Lecture 13-14 Conformation of proteins Conformation of a protein  three-dimensional structure native state. native condition Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Some proteins speed up chemical reactions

More information

Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems

Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems Biochemistry 462a Hemoglobin Structure and Function Reading - Chapter 7 Practice problems - Chapter 7: 1-6; Proteins extra problems Myoglobin and Hemoglobin Oxygen is required for oxidative metabolism

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Ramachandran Plots. Amino Acid Configuration in Proteins

Ramachandran Plots. Amino Acid Configuration in Proteins . Amino Acid onfiguration in Proteins Introduction The secondary structures that polypeptides can adopt in proteins are governed by hydrogen bonding interactions between the electronegative carbonyl oxygen

More information

Molecules of Life. Chapter 3 Part 2

Molecules of Life. Chapter 3 Part 2 Molecules of Life Chapter 3 Part 2 3.5 Proteins Diversity in Structure and Function Proteins are the most diverse biological molecule (structural, nutritious, enzyme, transport, communication, and defense

More information

Chapter 05 The Three-Dimensional Structure of Proteins

Chapter 05 The Three-Dimensional Structure of Proteins Chapter 05 The Three-Dimensional Structure of Proteins The covalent backbone of a typical protein contains hundreds of individual bonds. Because free rotation is possible around many of these bonds, the

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no

More information

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10 CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced

More information

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Reading: Berg, Tymoczko & Stryer: Chapter 2, pp. 25-34 Appendix to Chapter 2, pp. 60-61 (visualizing protein structures) Review General

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH) Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers

More information

Solution key Problem Set 1

Solution key Problem Set 1 Solution key-7.016 Problem Set 1 Question 1 The following line-angle drawings represent three chemical structures. On each drawing, the hydrogen atoms that should be bonded to the NON-carbon atoms are

More information

LECTURE-2. Basics of Amino acids and Proteins HANDOUT. Proteins are the most complex and versatile macromolecules comprised of amino acids

LECTURE-2. Basics of Amino acids and Proteins HANDOUT. Proteins are the most complex and versatile macromolecules comprised of amino acids LECTURE-2 Basics of Amino acids and Proteins HANDOUT PREAMBLE Proteins are the most complex and versatile macromolecules comprised of amino acids as the building blocks. There are 20 standard amino acids

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION B Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information

Polypeptides and Proteins

Polypeptides and Proteins Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of

More information

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1 Proteins are large, linear polymers of amino acids that spontaneously fold into complex 3D shapes. Although protein structure appears to be very complex, the chemical properties that determine protein

More information

Protein Folding. The resulting three-dimensional structure is determined by the amino acid sequence (Anfinsen's dogma).

Protein Folding. The resulting three-dimensional structure is determined by the amino acid sequence (Anfinsen's dogma). Protein Folding Protein folding is the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure from random coil. Each protein exists as an unfolded

More information

The Organic Chemistry of Amino Acids, Peptides, and Proteins

The Organic Chemistry of Amino Acids, Peptides, and Proteins Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins. Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

Amino Acids, Peptides, Proteins

Amino Acids, Peptides, Proteins Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses

More information

Structures of Proteins. Primary structure - amino acid sequence

Structures of Proteins. Primary structure - amino acid sequence Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of

More information

Bioinorganic Chemistry

Bioinorganic Chemistry Bioinorganic Chemistry Syllabus Metal ions in biological system Trace and Bulk metal ions Hemoglobin and myoglobin (elementary idea only) When one considers the chemistry of biological processes, the boundary

More information

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.

More information

Smaller coiled-coil structures are also found at the interaction interface between. Copyright Mark Brandt, Ph.D. 42

Smaller coiled-coil structures are also found at the interaction interface between. Copyright Mark Brandt, Ph.D. 42 Examples of tein Structures tein types teins fall into three general classes, based on their overall three-dimensional structure and on their functional role: fibrous, membrane, and globular. Fibrous proteins

More information

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms 1. 1 Amino acids and proteins Key terms Polymer: A large molecule made from repeating units called monomers. Monomer: A molecule that is a basic unit; many monomers join together to make a polymer. Amino

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Structure and properties of proteins. Vladimíra Kvasnicová

Structure and properties of proteins. Vladimíra Kvasnicová Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism

More information

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules WEEK ONE VOCABULARY Acid- hydrogen donors; acids increase the hydrogen ion concentration in solution Adhesion- the attraction between water molecules and other molecules Alpha (α) helix- secondary protein

More information

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010

More information

Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?

Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? MCAT Question Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? A. Carboxylic group and amino group B. Two carboxylic

More information

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS APTER 29 AMI AIDS, PLYPEPTIDES, AD PRTEIS SLUTIS T REVIEW QUESTIS 1. The designation, α, means that the amine group in common amino acids is connected to the carbon immediately adjacent to the carboxylic

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Lecture 15: Enzymes & Kinetics Mechanisms

Lecture 15: Enzymes & Kinetics Mechanisms ROLE OF THE TRANSITION STATE Lecture 15: Enzymes & Kinetics Mechanisms Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products Margaret A. Daugherty Fall 2004

More information

ENZYME MECHANISM C H A P T E R 7

ENZYME MECHANISM C H A P T E R 7 C H A P T E R 7 ENZYME MECHANISM Active Site Transition State Catalysis Lock and Key Induced Fit Nonproductive Binding Entropy Strain and Distortion Transition-State Stabilization Transition-State Analogs

More information

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids Chapter 16 Amino Acids, Proteins, and Enzymes 16.1 Functions of Proteins 16.2 Amino Acids 16.3 Amino Acids as Acids and Bases Functions of Proteins Proteins perform many different functions in the body.

More information

HEMOGLOBIN AND MYOGLOBIN

HEMOGLOBIN AND MYOGLOBIN HEMOGLOBIN AND MYOGLOBIN I. OXYGEN CARRIERS A. Why do we need oxygen carriers? i. Cannot carry enough in blood to meet metabolic demand ii. Oxygen is very reactive oxidizes iii. Oxygen cannot diffuse very

More information

Non-Covalent Bonds (Weak Bond)

Non-Covalent Bonds (Weak Bond) Non-Covalent Bonds (Weak Bond) Weak bonds are those forces of attraction that, in biological situations, do not take a large amount of energy to break. For example, hydrogen bonds are broken by energies

More information

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman Slide 1 All of the biological macromolecules are built from smaller subunits. Each subunit features - H and - OH substituents

More information

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)

More information

Protein Function. After the Folding. Lecture 3

Protein Function. After the Folding. Lecture 3 Protein Function After the Folding Lecture 3 Gene to gene product (protein) Protein folding of nascent polypeptide chain - Immediate folding amplification Proteins mediate virtually all cellular functions

More information

Chemistry Honors Lesson 3 Molecular Biology/Biochemistry

Chemistry Honors Lesson 3 Molecular Biology/Biochemistry Chemistry Honors Lesson 3 Molecular Biology/Biochemistry Noncovalent Interactions In Biology, the way molecules interact are determined by weak interactions that result in unique 3D structures and function.

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

2. Structure and bonding of carbohydrates, proteins and lipids

2. Structure and bonding of carbohydrates, proteins and lipids 2. Structure and bonding of carbohydrates, proteins and lipids 2.1. Polymers, monomers, and bonding Carbohydrates, proteins, and lipids are primary nutritional ingredients for humans. The breakdown of

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it

More information

Basic concepts of molecular biology and proteins I

Basic concepts of molecular biology and proteins I Basic concepts of molecular biology and proteins I PROTEINS A large molecule composed of one or more chains of amino acids in a specific order; the order is determined by the base sequence of nucleotides

More information

Chapter 2 - Chemical Foundations

Chapter 2 - Chemical Foundations Chapter 2 - Chemical Foundations I. Introduction By weight, cells are about 70% water, about 1% ions, about 6% small organic molecules (including amino acids, sugars, nucleotides), and about 23% macromolecules.

More information