Shu-Ping Lin, Ph.D.

Size: px
Start display at page:

Download "Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw"

Transcription

1 Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing Website: edu tw/pweb/users/splin/ Date:

2 Amino Acids Proteins are the basis for the major structural components of animal and human tissue Linear chains of amino acids residues Amino Acids (AA): 1 central carbon atom + 4 subgroups {amino group ( NH 2 ), carboxyl group ( COOH), hydrogen atom, and a distinctive side chain (R)} Organic molecules serve as chemical messengers between cells or function as important intermediates in metabolic processes. Different R groups Different properties and AA Mirror-image forms (stereoisomers) L and D-isomers Only L-amino acids are in proteins, D-amino acids are widely in bacterial cell walls. 300 AA in nature, but only 20 of these in proteins Not every protein contains all of the 20 AA types. All proteins have an AA containing sulfur Make peptides and Proteins

3 Synthesis of Polypeptides & Proteins Amino group join to carboxyl group and lose one water molecule Condensation reaction (amide synthesis reaction) Covalent bond between 2 amino acid residues is called a peptide bond or amide bond Form backbone of the polypeptides and expose side chains R Result in proteins with intricate 3D structures and a remarkable range of functions Polypeptides: linear polymers, a head-to-tail fashion, a sense of direction grow from amino group toward carboxyl group (Amine end (N terminal) is always on the left, while the acid end (C terminal) is on the right. First/Start amino acids in most polypeptides is the sulfur-containing amino acid, methionine (M, genetic code: AUG) Primary sequence of amino acids in polypeptide affects shape and function of proteins. Many proteins are single polypeptides. Other proteins are multiple polypeptides (form a complex), and multiple genes may be involved

4 Special Properties of Amino Acids Physical properties: a "salt-like" like behavior, a variety of structural parts which result in different polarities and solubilities Crystalline solids with relatively high melting points, and most are quite soluble in water and dinsoluble in non-polar solvents. In solution, the amino acid molecule appears to have a charge which changes with ph. Intramolecular neutralization reaction leads to a salt-like ion called a zwitterion. Amino acid has both an amine and acid group neutralized in the zwitterion i Neutral (unless there is an extra acid or base on the side chain) The amino acids in the zwitterion form: Carboxyl group can lose a hydrogen ion to become negatively charged. Amine group can accept a hydrogen ion to become positively charged.

5 Amino Acids with Hydrocarbon Chains Glycine (gly, G): simplest AA with a hydrogen atom as its side chain, fits into tight corners in the interior of a protein molecule Alanine (Ala, A): with a methyl group (CH 3 ) as its side chain 3~4 carbons long: Valine (Val, V), Leucine (Leu, L), and Isoleucine (Ile, I), hydrocarbon side chains pack AA together to form compact structures with few holes exposed to water and often interact with lipidcontaining membranes Proline (Pro, P): the bends of folded protein chains, 3-carbon-atom hydrocarbon side chain bound to both central carbon and nitrogen atom, very rigid, its presence creates a kink in a polypeptide chain

6 Aromatic Amino Acids Phenylalanine (Phe, F), Tryptophan (Trp, W) and Tyrosine (Tyr, Y): side chains of aromatic rings. Tryptophan (Trp, W) also contains a nitrogen atom in its side chain. Phenylalanine (Phe, F) and Tryptophan (Trp, W) are strongly hydrophobic. Tyrosine (Tyr, Y): less hydrophobic due to a hydroxyl group (a potential site of addition of a phosphate p group)

7 Amino Acids Containing Sulfur Cysteine (Cys, C) and Methionine i (Met, M): a sulfur atom in the side chains, hydrophobic Side chain of Cysteine is highly reactive Form a disulfide links play a special role in shaping some proteins Cysteine residues create folds and domains in the geometry of proteins. Methionine is the START codon in protein-coding genes.

8 Water-Loving (Hydrophilic) Amino Acids Serine (Ser, S) and Threonine (Thr, T): hydroxylated version of Alanine and Valine; hydroxyl groups are more reactive, hydrophilic, and potential sites of phosphate addition Lysine (Lys, K), Arginine (Arg, R), and Histidine (His, H): polar side chains containing nitrogen, highly hydrophilic Side chains of Lysine and Arginine are the longest of the 20 amino acids and normally positively charged. Histidine can be uncharged or positively charged and found in active sites of enzymes, where it can readily switch between these states to catalyze the making and breaking bonds

9 Hydrophilic Amino Acids Aspartate (Asp, D) and Glutamate (Glu, E): polar, negatively charged acidic side chains, carboxyl groups, exist at physiological ph Asparagine (Asn, N) and Glutamine (Gln, Q) are uncharged derivatives of Aspartate and Glutamate: amine group in place of carboxylate, polar molecules Amine group of Asn is a potential site of addition of sugar residues

10 20 Amino Acids 20 amino acids vary in size, charge, capacity to form hydrogen bonds with other molecules. Important determinant of the diversity of proteins Side chains which have pure hydrocarbon alkyl groups (alkane branches) or aromatic (benzene rings) are non- polar Hydrophobic, examples include valine, alanine, leucine, isoleucine, phenylalanine.

11 Synthesis of 20 Amino Acids Bacteria: using carbon source and ammonium ions in water to synthesize 20 amino acids Plants: using nitrogen compounds and carbohydrates to make amino acids Animals: using sugars and ammonia to make amino acids Essential amino acids: amino acids that humans cannot synthesize, e 8 amino acids, 6 of them are hdophobi hydrophobic (large hydrocarbon side chains valine, leucine, and isoleucine; aromatic side chains phenylalanine and tryptophan; sulfur- containing methionine), 2 of them are hydrophilic (threonine and lysine) Essential amino acids can be obtained from diet, such as meat, fish, milk, and eggs. (Plant sources only contain a partial set of essential amino acids, such as beans (isoleucine and lysine).)

12 The Genetic Code mrna consists of a linear sequence of such 3-letter words called codons 4 3 =64 distinct codons Protein-coding genes all begin with a START codon and terminate with a STOP codon. START codon is methionine i (M) Arginine (R), leucine (L), and serine (S) are represented by 6 codons. Synonymous y Methionine i (M) and tryptophan (W) are represented by signal codons each. First 2 letters in a codon are primary determinants of AA identity GU- (valine), GG- (glycine) UorCas2 nd nucleotide Hydrophobic GU and GC 3 rd nucleotide is U or C Same amino acid CAU and CAC (Histidine)

13 Protein-Coding Gene DNA sequence representing the beginning segment of a protein-coding gene: The complement mrna sequence: mrna codons: AUG, AAC, GUU, and UAC MNVY

14 Sickle-Cell Mutation in Hemoglobin Sequence Hemoglobin molecules exist as single, isolated units in RBC, whether oxygen bound or not, RBCs maintain basic disc shape, whether transporting oxygen or not Oxy-hemoglobin is isolated, but de-oxyhemoglobin sticks together in polymers, distorting RBC Some cells take on sickle shape

15 Protein Function Proteins are key players in our living systems. Not every protein contains all of the 20 AA types. All proteins have an AA containing sulfur Each protein folds into a unique three-dimensional structure defined by its amino acid sequence. Protein structure t has a hierarchical nature. Protein structure is closely related to its function. Protein structure prediction is a grand challenge of computational biology. Manipulation of protein sequence through changes in amino-acid sequence is a tool in modern drug design. Protein structure usually described in terms of an organizational hierarchy: Primary structure: amino-acid sequence Secondary structure: spatial arrangement of amino acids that are near one another in the linear sequence Tertiary structure: spatial arrangement of amino acids, dividing line between secondary and tertiary structure is not precise Quaternary structure: more than one polypeptide chain exhibit an additional structure

16 Protein Structure Proteins are natural polymer molecules l consisting of amino acid units Primary structure (Amino acid sequence) Secondary structure α-helix, β-sheet Tertiary structure Three-dimensional structure formed by assembly of secondary structures Quaternary structure Structure formed by more than one polypeptide chains

17 Basic Structural Units of Proteins: Secondary Structure u The chemical nature of the carboxyl and amino groups of all amino acids permit hydrogen bond formation (stability) and hence defines secondary structures within the protein. The Rgrouphas an impact on the likelihood of secondary structure formation (Proline is an extreme case) Helices and sheets: regular secondary structures, but irregular secondary structures exist and can be critical for biological function α-helix turn right or left from N to C terminal: only right-handed are observed in nature, can be stretched for breaking and rearranging H- bond Elastic β-plated sheet: hydrogen bonding between elements and peptide linkages when the protein chains extend and lie next to another, forming flat sheets Secondary structures, α-helix and β-sheet, have regular hydrogen-bonding patterns. α-helix β-sheet

18 Three-Dimensional Structure of Proteins Tertiary structure: While backbone interactions define most of the secondary structure interactions, it is the side chains that define the tertiary interactions Disulphide p linkages between cysteines form the strongest covalent bond in tertiary linkages Quaternary structure: More than one polypeptide chain Noncovalent forces hold multiple polypeptide chains together to form protein complex Ionic bonds (i.e. Van der Waals forces: transient, weak electrical attraction of one atom for another), hydrophobic interactions (clustering of nonpolar groups), hydrogen bonds Quaternary structure Tertiary structure

19 3D Molecular Graphics of Scallop Myosin I α-helix: corkscrew-like righthanded, side chains (circular cylinder) extending outward from the peptide backbone of the helix β-plated sheet: aflat arrow pointing toward the carboxyl end of the peptide p C N

20 Gene A human cell contains about 100 million proteins of about 10,000 types These cells all possess the same protein-coding genes (~30,000), 000) but different cell types express different proteins of these genes Complexity of the organism Gene in vertebrate: Short sequences (exons) + long noncoding sequences (introns) Various spatial combinations of these exons correspond to different proteins. A gene can code for multiple proteins in higher forms of life. Complicating proteins: proteins with carbohydrate, lipid, phosphate, p and other types of attachments

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

Amino Acids, Peptides, Proteins

Amino Acids, Peptides, Proteins Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses

More information

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms 1. 1 Amino acids and proteins Key terms Polymer: A large molecule made from repeating units called monomers. Monomer: A molecule that is a basic unit; many monomers join together to make a polymer. Amino

More information

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Some proteins speed up chemical reactions

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

Molecular Biology Basic Concepts

Molecular Biology Basic Concepts Molecular Biology Basic Concepts Prof. Dr. Antônio Augusto Fröhlich Charles Ivan Wust LISHA - UFSC {guto charles}@lisha.ufsc.br http://www.lisha.ufsc.br/~{guto charles} September 2003 September 2003 http://www.lisha.ufsc.br/~guto

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

The amino acids differ in the properties of their side chains. Hydrophobic, non acidic (the H+ ion won t associate with water)

The amino acids differ in the properties of their side chains. Hydrophobic, non acidic (the H+ ion won t associate with water) Amino Acids 101 What is an amino acid? Amino acids, or alpha- amino acids, are the building blocks of peptides and proteins They are composed of amine and carboxylic acid groups, separated by the alpha-carbon

More information

The Organic Chemistry of Amino Acids, Peptides, and Proteins

The Organic Chemistry of Amino Acids, Peptides, and Proteins Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:

More information

BOC334 (Proteomics) Practical 1. Calculating the charge of proteins

BOC334 (Proteomics) Practical 1. Calculating the charge of proteins BC334 (Proteomics) Practical 1 Calculating the charge of proteins Aliphatic amino acids (VAGLIP) N H 2 H Glycine, Gly, G no charge Hydrophobicity = 0.67 MW 57Da pk a CH = 2.35 pk a NH 2 = 9.6 pi=5.97 CH

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

DNA Lecture II Protein Synthesis Notes. Using the Code of Life DNA & RNA. Page #1 (Stratton 2010) Name: 2. : production of proteins

DNA Lecture II Protein Synthesis Notes. Using the Code of Life DNA & RNA. Page #1 (Stratton 2010) Name: 2. : production of proteins Page #1 Using the Code of Life DNA & RNA Slide #2 Two process involve DNA : making an copy of DNA a. purpose: b. occurs: c. uses: DNA : production of proteins a. purpose: & b. occurs: between nucleus &

More information

Proteins are polymers of amino acids. Protein-over 50 amino acids, peptide-under 50 amino acids.

Proteins are polymers of amino acids. Protein-over 50 amino acids, peptide-under 50 amino acids. Amino Acids and Proteins: Protein Functions: enzymes, transport (hemoglobin-o 2, tranferrin-fe), protection (MHC molecules, immunoglobulins), hormones (insulin, glucagons), gene transcription regulation

More information

Molecules of Life. Chapter 3 Part 2

Molecules of Life. Chapter 3 Part 2 Molecules of Life Chapter 3 Part 2 3.5 Proteins Diversity in Structure and Function Proteins are the most diverse biological molecule (structural, nutritious, enzyme, transport, communication, and defense

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl

More information

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Reading: Berg, Tymoczko & Stryer: Chapter 2, pp. 25-34 Appendix to Chapter 2, pp. 60-61 (visualizing protein structures) Review General

More information

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)

More information

Solution key Problem Set 1

Solution key Problem Set 1 Solution key-7.016 Problem Set 1 Question 1 The following line-angle drawings represent three chemical structures. On each drawing, the hydrogen atoms that should be bonded to the NON-carbon atoms are

More information

Structure and properties of proteins. Vladimíra Kvasnicová

Structure and properties of proteins. Vladimíra Kvasnicová Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism

More information

Amino Acids and Proteins

Amino Acids and Proteins Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because

More information

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

2007 7.013 Problem Set 1 KEY

2007 7.013 Problem Set 1 KEY 2007 7.013 Problem Set 1 KEY Due before 5 PM on FRIDAY, February 16, 2007. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Where in a eukaryotic cell do you

More information

Chapter 19 Amino Acids and Proteins

Chapter 19 Amino Acids and Proteins Chapter 19 Amino Acids and Proteins 19.1 Proteins and Amino Acids 19.2 Amino Acids as Acids and Bases Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 1 Functions of Proteins Proteins

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

The peptide bond is rigid and planar

The peptide bond is rigid and planar Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)

More information

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013 Proteins Chapter 3 Amino Acids Nonpolar Alanine, Ala, A Isoleucine, Ile, I Leucine, Leu, L Methionine, Met, M Phenylalanine, Phe, F Tryptophan,Trp, W Valine, Val, V Negatively Charged (Acidic) Aspartic

More information

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose

4. Which carbohydrate would you find as part of a molecule of RNA? a. Galactose b. Deoxyribose c. Ribose d. Glucose 1. How is a polymer formed from multiple monomers? a. From the growth of the chain of carbon atoms b. By the removal of an OH group and a hydrogen atom c. By the addition of an OH group and a hydrogen

More information

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10 CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced

More information

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100 EXAM I I. / 6 September 25, 2000 Biochemistry I II. / 26 BIH421/621 III. / 8 TOTAL /100 I. MULTIPLE HOIE (6 points) hoose the BEST answer to the question by circling the appropriate letter. 1. An amino

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information

Chemical Structures. Part I: Structures on paper and in 3-d

Chemical Structures. Part I: Structures on paper and in 3-d hemical Structures bjectives 1. To practice with the different atoms used in Bio 111: to know the number of bonds made by each kind of atom, the structures that they form, and the charges they have. 2.

More information

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS

CHAPTER 29 AMINO ACIDS, POLYPEPTIDES, AND PROTEINS SOLUTIONS TO REVIEW QUESTIONS APTER 29 AMI AIDS, PLYPEPTIDES, AD PRTEIS SLUTIS T REVIEW QUESTIS 1. The designation, α, means that the amine group in common amino acids is connected to the carbon immediately adjacent to the carboxylic

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids

Chapter 3: Biological Molecules. 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 22 Proteins Step-growth polyamide (polypeptide) polymers or oligomers of L-α-aminoacids.

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES

CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES CHAPTER 3 THE CHEMISTRY OF ORGANIC MOLECULES 3.1 Organic Molecules The chemistry of carbon accounts for the diversity of organic molecules found in living things. Carbon has six electrons, four of which

More information

AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM

AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM OBJECTIVES At the end of this session the student should be able to, recognize the structures of the protein amino acid and state their

More information

Solutions for Biochemistry Unit Exam

Solutions for Biochemistry Unit Exam Solutions for Biochemistry Unit Exam Question 1 a) An example of a structural representation is shown in the adjacent box. Draw a structural representation of the amino acid, Aspartic acid, which has the

More information

The Structure and Function of DNA

The Structure and Function of DNA Chapter 0 The Structure and Function of PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon, Jean L. Dickey,

More information

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1 Proteins are large, linear polymers of amino acids that spontaneously fold into complex 3D shapes. Although protein structure appears to be very complex, the chemical properties that determine protein

More information

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport.

Disaccharides consist of two monosaccharide monomers covalently linked by a glycosidic bond. They function in sugar transport. 1. The fundamental life processes of plants and animals depend on a variety of chemical reactions that occur in specialized areas of the organism s cells. As a basis for understanding this concept: 1.

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

Gene Translation:RNA -> Protein

Gene Translation:RNA -> Protein Gene Translation:RN -> Protein How does a particular sequence of nucleotides specify a particular sequence of amino acids? The answer: by means of transfer RN molecules, each specific for one amino acid

More information

Lesson Overview. Carbon Compounds. Lesson Overview 2.3

Lesson Overview. Carbon Compounds. Lesson Overview 2.3 Lesson Overview 2.3 The Chemistry of Carbon Carbon atoms can form strong covalent bonds with many other elements. Molecules containing carbon are called organic. Living organisms are composed of molecules

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

4 Titration Curve of an Amino Acid

4 Titration Curve of an Amino Acid p H 4 Titration Curve of an Amino Acid Simple amino acid Acidic amino acid Basic amino acid 7 OH - equivalents Objectives: A) To determine the titration curve for an amino acid and B) to use this curve

More information

The Molecules of Cells

The Molecules of Cells The Molecules of Cells I. Introduction A. Most of the world s population cannot digest milk-based foods. 1. These people are lactose intolerant because they lack the enzyme lactase. 2. This illustrates

More information

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein MBLG1001_lecture 4 Page 1 University of Sydney Library Electronic Item URSE: MBLG1001 Lecturer: Dale ancock Forming the Protein MMWEALT F AUSTRALIA opyright Regulation WARIG This material has been reproduced

More information

Concluding lesson. Student manual. What kind of protein are you? (Basic)

Concluding lesson. Student manual. What kind of protein are you? (Basic) Concluding lesson Student manual What kind of protein are you? (Basic) Part 1 The hereditary material of an organism is stored in a coded way on the DNA. This code consists of four different nucleotides:

More information

Ruth Sundeen. Lesson 9 Part 1. Help Your Students Learn. Greetings and felicitations from Mrs. Ruth!

Ruth Sundeen. Lesson 9 Part 1. Help Your Students Learn. Greetings and felicitations from Mrs. Ruth! Ruth Sundeen Lesson 9 Part 1 Help Your Students Learn Ages: Eighth grade to high school senior Topics: Protein Synthesis Enzymes Experiment to demonstrate fragility of enzymes Greetings and felicitations

More information

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules WEEK ONE VOCABULARY Acid- hydrogen donors; acids increase the hydrogen ion concentration in solution Adhesion- the attraction between water molecules and other molecules Alpha (α) helix- secondary protein

More information

AP BIOLOGY 2008 SCORING GUIDELINES

AP BIOLOGY 2008 SCORING GUIDELINES AP BIOLOGY 2008 SCORING GUIDELINES Question 1 1. The physical structure of a protein often reflects and affects its function. (a) Describe THREE types of chemical bonds/interactions found in proteins.

More information

NO CALCULATORS OR CELL PHONES ALLOWED

NO CALCULATORS OR CELL PHONES ALLOWED Biol 205 Exam 1 TEST FORM A Spring 2008 NAME Fill out both sides of the Scantron Sheet. On Side 2 be sure to indicate that you have TEST FORM A The answers to Part I should be placed on the SCANTRON SHEET.

More information

Chapter 3 Molecules of Cells

Chapter 3 Molecules of Cells Bio 100 Molecules of cells 1 Chapter 3 Molecules of Cells Compounds containing carbon are called organic compounds Molecules such as methane that are only composed of carbon and hydrogen are called hydrocarbons

More information

Preliminary MFM Quiz

Preliminary MFM Quiz Preliminary MFM Quiz 1. The major carrier of chemical energy in all cells is: A) adenosine monophosphate B) adenosine diphosphate C) adenosine trisphosphate D) guanosine trisphosphate E) carbamoyl phosphate

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman Slide 1 All of the biological macromolecules are built from smaller subunits. Each subunit features - H and - OH substituents

More information

Elements in Biological Molecules

Elements in Biological Molecules Chapter 3: Biological Molecules 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic Acids Elements in Biological Molecules Biological macromolecules are made almost entirely of just 6 elements: Carbon (C)

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins

MCAT Organic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins MCAT rganic Chemistry - Problem Drill 23: Amino Acids, Peptides and Proteins Question No. 1 of 10 Question 1. Which amino acid does not contain a chiral center? Question #01 (A) Serine (B) Proline (C)

More information

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water

Lecture Overview. Hydrogen Bonds. Special Properties of Water Molecules. Universal Solvent. ph Scale Illustrated. special properties of water Lecture Overview special properties of water > water as a solvent > ph molecules of the cell > properties of carbon > carbohydrates > lipids > proteins > nucleic acids Hydrogen Bonds polarity of water

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

THE CHEMICAL SYNTHESIS OF PEPTIDES

THE CHEMICAL SYNTHESIS OF PEPTIDES TE EMIAL SYTESIS F PEPTIDES Peptides are the long molecular chains that make up proteins. Synthetic peptides are used either as drugs (as they are biologically active) or in the diagnosis of disease. Peptides

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

Ms. Campbell Protein Synthesis Practice Questions Regents L.E.

Ms. Campbell Protein Synthesis Practice Questions Regents L.E. Name Student # Ms. Campbell Protein Synthesis Practice Questions Regents L.E. 1. A sequence of three nitrogenous bases in a messenger-rna molecule is known as a 1) codon 2) gene 3) polypeptide 4) nucleotide

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

Proteins and Nucleic Acids

Proteins and Nucleic Acids Proteins and Nucleic Acids Chapter 5 Macromolecules: Proteins Proteins Most structurally & functionally diverse group of biomolecules. : o Involved in almost everything o Enzymes o Structure (keratin,

More information

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I V E S T I E D Z V J E V Z D Ě L Á V Á Í AMIAIDS PEPTIDES AMIAIDS = substitutional/functional derivatives of carboxylic acids = basic units of proteins (2-aminoacids) General formula of 2-aminoacids (α-aminoacids):

More information

Package acide-amine.sty

Package acide-amine.sty Package acide-amine.sty This package provide commands who draw an amino acid. You will nd below the list of amino acids available. Molecules were initialy drawn by Florian Hollandt, see : http://www.texample.net/tikz/examples/author/florian-hollandt/

More information

Biological molecules:

Biological molecules: Biological molecules: All are organic (based on carbon). Monomers vs. polymers: Monomers refer to the subunits that, when polymerized, make up a larger polymer. Monomers may function on their own in some

More information

Activity 4/5.1 How Can You Identify Organic Macromolecules?

Activity 4/5.1 How Can You Identify Organic Macromolecules? Answers? Activity 4/5.1 ow an You Identify rganic Macromolecules? efer to the figure (Some Simple hemistry) on the next page when doing this activity. Part A. Answer the questions. Then use your answers

More information

DNA Glycosylase Exercise - Levels 1 & 2: Answer Key

DNA Glycosylase Exercise - Levels 1 & 2: Answer Key Name StarBiochem DNA Glycosylase Exercise - Levels 1 & 2: Answer Key Background In this exercise, you will explore the structure of a DNA repair protein found in most species, including bacteria. DNA repair

More information

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Dehydration Synthesis

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Dehydration Synthesis I. Polymers & Macromolecules Figure 1: Polymers Polymer: Macromolecule: Figure 2: Dehydration Synthesis 1 Dehydration Synthesis: Figure 3: Hydrolysis Hydrolysis: II. Organic Macromolecules Class I: Carbohydrates:

More information

Chapter 2: Biochemistry Problems

Chapter 2: Biochemistry Problems hapter 2: Biochemistry Problems Biochemistry Problems If you were a biochemist, you would study chemical substances and vital processes that occur in living organisms. You might study macromolecules such

More information

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids Chapter 16 Amino Acids, Proteins, and Enzymes 16.1 Functions of Proteins 16.2 Amino Acids 16.3 Amino Acids as Acids and Bases Functions of Proteins Proteins perform many different functions in the body.

More information

From DNA to Protein. Chapter 14

From DNA to Protein. Chapter 14 From DNA to Protein Chapter 14 Impacts, Issues: Ricin and your Ribosomes Ricin is toxic because it inactivates ribosomes, the organelles which assemble amino acids into proteins, critical to life processes

More information

Molecular Facts and Figures

Molecular Facts and Figures Nucleic Acids Molecular Facts and Figures DNA/RNA bases: DNA and RNA are composed of four bases each. In DNA the four are Adenine (A), Thymidine (T), Cytosine (C), and Guanine (G). In RNA the four are

More information

Part I: 2-d simulation with the Protein Investigator

Part I: 2-d simulation with the Protein Investigator Protein Structure verview In this lab session, you will explore protein structure using two different approaches: 2-dimensional simulation: you will use the Protein Investigator to construct proteins and

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

INTRODUCTION TO PROTEIN STRUCTURE

INTRODUCTION TO PROTEIN STRUCTURE Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which

More information

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids and their sub-units; the role of lipids in the plasma

More information

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein. Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH) Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers

More information

Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Lecture 13-14 Conformation of proteins Conformation of a protein  three-dimensional structure native state. native condition Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as

More information