Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following?"

Transcription

1 MCAT Question Covalent bonds are the strongest chemical bonds contributing to the protein structure A peptide bond is formed between with of the following? A. Carboxylic group and amino group B. Two carboxylic groups C. Two amino groups D. Ester group and ammonium group 1

2 But some amino acids have multiple properties Y K OH? Hydrogen bond donor or acceptor 2

3 Quiz 3

4 The Peptide Bond is usually found in the trans conformation has partial (40%) double bond character is about nm long - shorter than a typical single bond but longer than a double bond Due to the double bond character, the six atoms of the peptide bond group are always planar! 4

5 Characteristics of the Peptide Bond 5

6 Proteins - Large and Small Insulin - A chain of 21 residues, B chain of 30 residues -total mol. wt. of 5,733 Glutamine synthetase - 12 subunits of 468 residues each - total mol. wt. of 600,000 Connectin proteins - alpha - MW 2.8 million! beta connectin - MW of 2.1 million, with a length of 1000 nm -it can stretch to 3000 nm! 6

7 The sequence of ribonuclease A 7

8 The Sequence of Amino Acids in a Protein is a unique characteristic of every protein is encoded by the nucleotide sequence of DNA is read from the amino terminus to the carboxyl terminus 8

9 Architecture of Proteins Shape - globular or fibrous The levels of protein structure - Primary - sequence - Secondary - local structures - H-bonds - Tertiary - overall 3-dimensional shape - Quaternary - subunit organization 9

10 Protein One or more polypeptide chains One polypeptide chain - a monomeric protein More than one - multimeric protein Homomultimer - one kind of chain Heteromultimer - two or more different chains Hemoglobin, for example, is a heterotetramer It has two alpha chains and two beta chains 10

11 What forces determine the structure? Primary structure - determined by covalent bonds Secondary, Tertiary, Quaternary structures - determined by weak forces and disulfide bonds Weak forces - H-bonds, ionic interactions, van der Waals interactions, hydrophobic interactions 11

12 Other Chemical Groups in Proteins Proteins may be "conjugated" with other chemical groups If the non-amino acid part of the protein is important to its function, it is called a prosthetic group. glycoprotein, lipoprotein, nucleoprotein, phosphoprotein, metalloprotein, hemoprotein, flavoprotein. 12

13 Prosthetic Groups Heme Metal centers 13

14 Sequence Determination Frederick Sanger was the first - in 1953, he sequenced the two chains of insulin. Sanger's results established that all of the molecules of a given protein have the same sequence. Proteins can be sequenced in two ways: - amino acid sequencing - sequencing the corresponding DNA in the gene The sequence shown is that of bovine insulin. 14

15 Determining the Sequence An Eight Step Strategy 1. Cleave (reduce) disulfide bridges 2. If more than one polypeptide chain, separate. 3. Determine composition of each chain 4. Determine N- and C-terminal residues 5. Cleave each chain into smaller fragments and determine the sequence of each chain 6. Repeat step 5, using a different cleavage procedure to generate a different set of fragments. 7. Reconstruct the sequence of the protein from the sequences of overlapping fragments 8. Determine the positions of the disulfide crosslinks 15

16 Performic acid oxidation Sulfhydryl reducing agents Step 1: Cleavage of Disulfide bridges - mercaptoethanol - dithiothreitol or dithioerythritol - to prevent recombination, follow with an alkylating agent like iodoacetate 16

17 Step 2: Separation of chains Subunit interactions depend on weak forces Separation is achieved with: - extreme ph - 8M urea - 6M guanidine HCl - high salt concentration (usually ammonium sulfate) 17

18 Step 3: Determine Amino Acid Composition The complex amino acid mixture in the hydrolysate obtained after digestion of a protein in 6 N HCl can be separated into the component amino acids by either ion exchange chromatography (separation by charge) or reverse-phase chromatography (separation by polarity) Both of these methods of separation and analysis are fully automated in instruments called amino acid analyzers. Analysis of the amino acid composition of a 30-kD protein by these methods requires less than 1 hour and only 6 mg (0.2 nmol) of the protein. results often yield ideas for fragmentation of the polypeptide chains (Step 5, 6) 18

19 Problems with Acid hydrolysis aa composition quantification S and T degrade, but the data from different time points can be extrapolated to determine the composition (Fig. 5.12) Asn and Gln are converted to Asp and Glu, respectively, because the amide linkages are acid labile results are usually reported for Asx and Glx 19

20 Step 4: Identify N- and C-terminal residues N-terminal analysis: Edman's reagent phenylisothiocyanate derivatives are phenylthiohydantions or PTH derivatives Efficiency of reaction cycles between (an amino acid each cycle) depending on protein properties (e.g molecular weight) 20

21 Step 4: Identify N- and C-terminal residues C-terminal analysis Enzymatic analysis (carboxypeptidase) Carboxypeptidase A cleaves any residue except Pro, Arg, and Lys Carboxypeptidase B (hog pancreas) only works on Arg and Lys Carboxypeptidase C and Y cleave any residue Exopeptidases cleave from the termini 21

22 Steps 5 and 6: Fragmentation of the chains Enzymatic fragmentation Trypsin - cleavage on the C-terminal side of Lys, Arg Chymotrypsin - C-terminal side of Phe, Tyr, Trp Clostripain - like trypsin, but attacks Arg more than Lys Staphylococcal protease C-terminal side of Glu, Asp in phosphate buffer specific for Glu in acetate or bicarbonate buffer Endopeptidases cleave within the protein sequence some are non-specific such as pepsin and papain Chemical fragmentation - cyanogen bromide (CNBr) acts only on methionine residues is useful because proteins usually have only a few Met residues 22

23 Enzymatic Cleavage e.g. Trypsin 23

24 Mechanism of CNBr 24

25 25

26 Step 7: Reconstructing the Sequence Use two or more fragmentation agents in separate fragmentation experiments Sequence all the peptides produced (usually by Edman degradation) Compare and align overlapping peptide sequences to learn the sequence of the original polypeptide chain 26

27 Reconstructing the Sequence Compare cleavage by trypsin and staphylococcal protease on a hypothetical peptide: Trypsin cleavage: A-E-F-S-G-I-T-P-K L-V-G-K Staphylococcal protease: F-S-G-I-T-P-K L-V-G-K-A-E 27

28 Reconstructing the Sequence The correct overlap of fragments: L-V-G-K A-E-F-S-G-I-T-P-K L-V-G-K-A-E F-S-G-I-T-P-K Correct sequence: L-V-G-K-A-E-F-S-G-I-T-P-K 28

29 Sequence analysis of catrocollastatin-c, a 23.6 kd protein from the venom of Crotalus atrox 29

30 MCAT Question Pepsin, trypsin, and chymotrypsin cleave polypeptides into fragments at a specific point in the middle of the chain. These enzymes are properly characterized as: A. endopeptidases B. zymogens C. ligases D. exopeptidases 30

31 Nature of Protein Sequences Sequences and composition reflect the function of the protein Membrane proteins have more hydrophobic residues, whereas fibrous proteins may have atypical sequences 31

32 Frequencies of amino acids in proteins Legend: gray = aliphatic, red = acidic, green = small hydroxy, blue = basic, black = aromatic, white = amide, yellow = sulfur 32

33 Number of aa differences among cytochrome c sequences Homologous proteins from different organisms have similar sequences 33

34 Phylogeny of Cytochrome c The number of amino acid differences between two cytochrome c sequences is proportional to the phylogenetic difference between the species from which they are derived This observation can be used to build phylogenetic trees of proteins This is the basis for studies of molecular evolution 34

35 The Role of the Sequence in Protein Structure All of the information necessary for folding the peptide chain into its "native structure is contained in the primary amino acid structure of the peptide. Interactions between amino acids and backbone atoms stabilize protein structure 35

36 The Weak Forces What are they? What are the relevant numbers? van der Waals: kj/mol hydrogen bonds: kj/mol ionic bonds: 20 kj/mol hydrophobic interactions: <40 kj/mol 36

37 How do proteins recognize and interpret the folding information? Certain loci along the chain may act as nucleation points Protein chain must avoid local energy minima Chaperones may help 37

38 Consequences of the Amide Plane Two degrees of freedom per residue for the peptide chain Angle about the C(alpha)-N bond is denoted phi Φ Angle about the C(alpha)-C bond is denoted psi Ψ The entire path of the peptide backbone is known if all phi and psi angles are specified Some values of phi and psi are more likely than others. 38

39 Steric Constraints on phi & psi Unfavorable orbital overlap precludes some combinations of phi and psi phi = 0, psi = 180 is unfavorable phi = 180, psi = 0 is unfavorable phi = 0, psi = 0 is unfavorable 39

40 Steric Constraints on phi & psi G. N. Ramachandran was the first to demonstrate the convenience of plotting phi,psi combinations from known protein structures The sterically favorable combinations are the basis for preferred secondary structures 40

41 Classes of Secondary Structure All these are local structures that are stabilized by hydrogen bonds Alpha helix Other helices Beta sheet (composed of "beta strands") Tight turns (aka beta turns or beta bends) Beta bulge 41

42 The Alpha Helix First proposed by Linus Pauling and Robert Corey in 1951 Identified in keratin by Max Perutz A ubiquitous component of proteins Stabilized by H-bonds 42

43 The Alpha Helix Residues per turn: 3.6 Rise per residue: 1.5 Angstroms Rise per turn (pitch): 3.6 x 1.5A = 5.4 Angstroms phi = -60 degrees psi = -45 degrees 43

44 The Beta-Pleated Sheet Composed of beta strands Also first postulated by Pauling and Corey, 1951 Strands may be parallel or antiparallel Rise per residue: 3.47 Angstroms for antiparallel strands 3.25 Angstroms for parallel strands Periodicity of two residues 44

45 The Beta Turn (aka beta bend, tight turn) allows the peptide chain to reverse direction carbonyl C of one residue is H-bonded to the amide proton of a residue three residues away proline and glycine are prevalent in beta turns 45

46 The β-bulge 46

47 Amino acids have secondary structure propensities Chou Fasman Helix and Sheet Propensities (P α and P β ) of the Amino Acids Amino Acid P α P β A Ala C Cys D Asp E Glu F Phe G Gly H His I Ile K Lys L Leu M Met N Asn P Pro Q Gln R Arg S Ser T Thr V Val W Trp Y Tyr Source: Chou, P. Y., and Fasman, G. D., Annual Review of Biochemistry 47:

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys

A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Questions- Proteins & Enzymes A. A peptide with 12 amino acids has the following amino acid composition: 2 Met, 1 Tyr, 1 Trp, 2 Glu, 1 Lys, 1 Arg, 1 Thr, 1 Asn, 1 Ile, 1 Cys Reaction of the intact peptide

More information

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5

Peptide bonds: resonance structure. Properties of proteins: Peptide bonds and side chains. Dihedral angles. Peptide bond. Protein physics, Lecture 5 Protein physics, Lecture 5 Peptide bonds: resonance structure Properties of proteins: Peptide bonds and side chains Proteins are linear polymers However, the peptide binds and side chains restrict conformational

More information

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton?

(c) How would your answers to problem (a) change if the molecular weight of the protein was 100,000 Dalton? Problem 1. (12 points total, 4 points each) The molecular weight of an unspecified protein, at physiological conditions, is 70,000 Dalton, as determined by sedimentation equilibrium measurements and by

More information

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins

IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon. V. Polypeptides and Proteins IV. -Amino Acids: carboxyl and amino groups bonded to -Carbon A. Acid/Base properties 1. carboxyl group is proton donor! weak acid 2. amino group is proton acceptor! weak base 3. At physiological ph: H

More information

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell

Recap. Lecture 2. Protein conformation. Proteins. 8 types of protein function 10/21/10. Proteins.. > 50% dry weight of a cell Lecture 2 Protein conformation ecap Proteins.. > 50% dry weight of a cell ell s building blocks and molecular tools. More important than genes A large variety of functions http://www.tcd.ie/biochemistry/courses/jf_lectures.php

More information

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK

Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Advanced Medicinal & Pharmaceutical Chemistry CHEM 5412 Dept. of Chemistry, TAMUK Dai Lu, Ph.D. dlu@tamhsc.edu Tel: 361-221-0745 Office: RCOP, Room 307 Drug Discovery and Development Drug Molecules Medicinal

More information

PROTEIN SEQUENCING. First Sequence

PROTEIN SEQUENCING. First Sequence PROTEIN SEQUENCING First Sequence The first protein sequencing was achieved by Frederic Sanger in 1953. He determined the amino acid sequence of bovine insulin Sanger was awarded the Nobel Prize in 1958

More information

The peptide bond is rigid and planar

The peptide bond is rigid and planar Level Description Bonds Primary Sequence of amino acids in proteins Covalent (peptide bonds) Secondary Structural motifs in proteins: α- helix and β-sheet Hydrogen bonds (between NH and CO groups in backbone)

More information

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein

MBLG1001_lecture 4 Page 1. University of Sydney Library Electronic Item COURSE: MBLG1001. Lecturer: Dale Hancock Forming the Protein MBLG1001_lecture 4 Page 1 University of Sydney Library Electronic Item URSE: MBLG1001 Lecturer: Dale ancock Forming the Protein MMWEALT F AUSTRALIA opyright Regulation WARIG This material has been reproduced

More information

The Organic Chemistry of Amino Acids, Peptides, and Proteins

The Organic Chemistry of Amino Acids, Peptides, and Proteins Essential rganic Chemistry Chapter 16 The rganic Chemistry of Amino Acids, Peptides, and Proteins Amino Acids a-amino carboxylic acids. The building blocks from which proteins are made. H 2 N C 2 H Note:

More information

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1

Protein Physics. A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 Protein Physics A. V. Finkelstein & O. B. Ptitsyn LECTURE 1 PROTEINS Functions in a Cell MOLECULAR MACHINES BUILDING BLOCKS of a CELL ARMS of a CELL ENZYMES - enzymatic catalysis of biochemical reactions

More information

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group.

Amino Acids. Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain. Alpha Carbon. Carboxyl. Group. Protein Structure Amino Acids Amino acids are the building blocks of proteins. All AA s have the same basic structure: Side Chain Alpha Carbon Amino Group Carboxyl Group Amino Acid Properties There are

More information

Lecture 13-14 Conformation of proteins Conformation of a protein three-dimensional structure native state. native condition

Lecture 13-14 Conformation of proteins Conformation of a protein  three-dimensional structure native state. native condition Lecture 13-14 Conformation of proteins Conformation of a protein refers to the three-dimensional structure in its native state. There are many different possible conformations for a molecule as large as

More information

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell?

Pipe Cleaner Proteins. Essential question: How does the structure of proteins relate to their function in the cell? Pipe Cleaner Proteins GPS: SB1 Students will analyze the nature of the relationships between structures and functions in living cells. Essential question: How does the structure of proteins relate to their

More information

--not necessarily a protein! (all proteins are polypeptides, but the converse is not true)

--not necessarily a protein! (all proteins are polypeptides, but the converse is not true) 00Note Set 5b 1 PEPTIDE BONDS AND POLYPEPTIDES OLIGOPEPTIDE: --chain containing only a few amino acids (see tetrapaptide, Fig 5.9) POLYPEPTIDE CHAINS: --many amino acids joined together --not necessarily

More information

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?)

Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) ChemActivity 46 Amino Acids, Polypeptides and Proteins 1 ChemActivity 46 Part A: Amino Acids and Peptides (Is the peptide IAG the same as the peptide GAI?) Model 1: The 20 Amino Acids at Biological p See

More information

GSAK YLDR WGSM. (b) (5 pts) Explain why neither of these steps alone is sufficient to unambiguously determine the sequence of your peptide.

GSAK YLDR WGSM. (b) (5 pts) Explain why neither of these steps alone is sufficient to unambiguously determine the sequence of your peptide. Problem 1. (total 30 points) You have to determine the amino acid sequence of a peptide. You performed the following steps using enzyme cleavage of your peptide (see table on the front page) combined with

More information

Amino Acids, Peptides, Proteins

Amino Acids, Peptides, Proteins Amino Acids, Peptides, Proteins Functions of proteins: Enzymes Transport and Storage Motion, muscle contraction Hormones Mechanical support Immune protection (Antibodies) Generate and transmit nerve impulses

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II

Biochemistry - I. Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II Biochemistry - I Prof. S. Dasgupta Department of Chemistry Indian Institute of Technology, Kharagpur Lecture-11 Enzyme Mechanisms II In the last class we studied the enzyme mechanisms of ribonuclease A

More information

Biochemistry 2000 Sample Question Proteins. (1) Identify the secondary structure described in each of the following statements:

Biochemistry 2000 Sample Question Proteins. (1) Identify the secondary structure described in each of the following statements: (1) Identify the secondary structure described in each of the following statements: a. A coiled peptide chain held in place by hydrogen bonding between peptide bonds in the same chain b. A structure that

More information

http://faculty.sau.edu.sa/h.alshehri

http://faculty.sau.edu.sa/h.alshehri http://faculty.sau.edu.sa/h.alshehri Definition: Proteins are macromolecules with a backbone formed by polymerization of amino acids. Proteins carry out a number of functions in living organisms: - They

More information

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins

Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Introduction to Proteins; Amino Acids, the Building Blocks of Proteins Reading: Berg, Tymoczko & Stryer: Chapter 2, pp. 25-34 Appendix to Chapter 2, pp. 60-61 (visualizing protein structures) Review General

More information

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are

This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are This class deals with the fundamental structural features of proteins, which one can understand from the structure of amino acids, and how they are put together. 1 A more detailed view of a single protein

More information

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush

Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush α-keratins, bundles of α- helices Contain polypeptide chains organized approximately parallel along a single axis: Consist

More information

Amino Acids and Proteins

Amino Acids and Proteins Amino Acids and Proteins Proteins are composed of amino acids. There are 20 amino acids commonly found in proteins. All have: N2 C α R COO Amino acids at neutral p are dipolar ions (zwitterions) because

More information

Disulfide Bonds at the Hair Salon

Disulfide Bonds at the Hair Salon Disulfide Bonds at the Hair Salon Three Alpha Helices Stabilized By Disulfide Bonds! In order for hair to grow 6 inches in one year, 9 1/2 turns of α helix must be produced every second!!! In some proteins,

More information

Structure of proteins

Structure of proteins Structure of proteins Primary structure: is amino acids sequence or the covalent structure (50-2500) amino acids M.Wt. of amino acid=110 Dalton (56 110=5610 Dalton). Single chain or more than one polypeptide

More information

Introduction to Chemical Biology

Introduction to Chemical Biology Professor Stuart Conway Introduction to Chemical Biology University of xford Introduction to Chemical Biology ecommended books: Professor Stuart Conway Department of Chemistry, Chemistry esearch Laboratory,

More information

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0?

Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7. 4. Which of the following weak acids would make the best buffer at ph = 5.0? Paper: 6 Chemistry 2.130 University I Chemistry: Models Page: 2 of 7 4. Which of the following weak acids would make the best buffer at ph = 5.0? A) Acetic acid (Ka = 1.74 x 10-5 ) B) H 2 PO - 4 (Ka =

More information

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein.

Invariant residue-a residue that is always conserved. It is assumed that these residues are essential to the structure or function of the protein. Chapter 6 The amino acid side chains have polar and nonpolar properties, and the relative hydrophobicity of the amino acid side chains is critical for the folding and stability of a protein. The more hydrophobic

More information

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw

Shu-Ping Lin, Ph.D. E-mail: splin@dragon.nchu.edu.tw Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute te of Biomedical Engineering ing E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ edu tw/pweb/users/splin/ Date: 10.13.2010

More information

Structure and properties of proteins. Vladimíra Kvasnicová

Structure and properties of proteins. Vladimíra Kvasnicová Structure and properties of proteins Vladimíra Kvasnicová Chemical nature of proteins biopolymers of amino acids macromolecules (M r > 10 000) Classification of proteins 1) by localization in an organism

More information

Proteins the primary biological macromolecules of living organisms

Proteins the primary biological macromolecules of living organisms Proteins the primary biological macromolecules of living organisms Protein structure and folding Primary Secondary Tertiary Quaternary structure of proteins Structure of Proteins Protein molecules adopt

More information

Combinatorial Biochemistry and Phage Display

Combinatorial Biochemistry and Phage Display Combinatorial Biochemistry and Phage Display Prof. Valery A. Petrenko Director - Valery Petrenko Instructors Galina Kouzmitcheva and I-Hsuan Chen Auburn 2006, Spring semester COMBINATORIAL BIOCHEMISTRY

More information

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d)

Proteins. Proteins. Amino Acids. Most diverse and most important molecule in. Functions: Functions (cont d) Proteins Proteins Most diverse and most important molecule in living i organisms Functions: 1. Structural (keratin in hair, collagen in ligaments) 2. Storage (casein in mother s milk) 3. Transport (HAEMOGLOBIN!)

More information

Polypeptides and Proteins

Polypeptides and Proteins Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of

More information

Lecture 18: Protein Sequencing

Lecture 18: Protein Sequencing Lecture 18: Protein Sequencing Frederic Sanger first time achieved complete sequence of protein (bovine insulin) in 1953. For his work, he was awarded the Nobel Prize of Chemistry in (1958). Protein sequencing

More information

Built from 20 kinds of amino acids

Built from 20 kinds of amino acids Built from 20 kinds of amino acids Each Protein has a three dimensional structure. Majority of proteins are compact. Highly convoluted molecules. Proteins are folded polypeptides. There are four levels

More information

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms

1. 1. Amino acids and proteins. 1: Biochemistry of macromolecules and metabolic pathways. Key terms 1. 1 Amino acids and proteins Key terms Polymer: A large molecule made from repeating units called monomers. Monomer: A molecule that is a basic unit; many monomers join together to make a polymer. Amino

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION B Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100 EXAM I I. / 6 September 25, 2000 Biochemistry I II. / 26 BIH421/621 III. / 8 TOTAL /100 I. MULTIPLE HOIE (6 points) hoose the BEST answer to the question by circling the appropriate letter. 1. An amino

More information

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH)

PROTEINS STRUCTURE AND FUNCTION (DR. TRAISH) Introduction to Proteins - Proteins are abundant and functionally diverse molecules - They participate in cell regulation at all levels - They share a common structural feature: all are linear polymers

More information

Chapter 19 Amino Acids and Proteins

Chapter 19 Amino Acids and Proteins Chapter 19 Amino Acids and Proteins 19.1 Proteins and Amino Acids 19.2 Amino Acids as Acids and Bases Copyright 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings 1 Functions of Proteins Proteins

More information

Peptide Bonds: Structure

Peptide Bonds: Structure Peptide Bonds: Structure Peptide primary structure The amino acid sequence, from - to C-terminus, determines the primary structure of a peptide or protein. The amino acids are linked through amide or peptide

More information

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins.

PROTEINS THE PEPTIDE BOND. The peptide bond, shown above enclosed in the blue curves, generates the basic structural unit for proteins. Ca 2+ The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improvement of Postsecondary Education (FIPSE), United States Department of Education. However, those

More information

Food Proteins. Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt

Food Proteins. Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt Food Proteins Prof. Dr. Mohamed Fawzy Ramadan Hassanien Zagazig University, Egypt -Amino Acid Sequence -Protein Conformation -Levels of Protein Structure -Primary structure -Secondary structure -Tertiary

More information

The amino acids differ in the properties of their side chains. Hydrophobic, non acidic (the H+ ion won t associate with water)

The amino acids differ in the properties of their side chains. Hydrophobic, non acidic (the H+ ion won t associate with water) Amino Acids 101 What is an amino acid? Amino acids, or alpha- amino acids, are the building blocks of peptides and proteins They are composed of amine and carboxylic acid groups, separated by the alpha-carbon

More information

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are

The peptide bond Peptides and proteins are linear polymers of amino acids. The amino acids are Introduction to Protein Structure Proteins are large heteropolymers usually comprised of 50 2500 monomer units, although larger proteins are observed 7. The monomer units of proteins are amino acids. The

More information

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch18_PT MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) All of the following can be classified as biomolecules except A) lipids. B) proteins. C)

More information

INTRODUCTION TO PROTEIN STRUCTURE

INTRODUCTION TO PROTEIN STRUCTURE Name Class: Partner, if any: INTRODUCTION TO PROTEIN STRUCTURE PRIMARY STRUCTURE: 1. Write the complete structural formula of the tripeptide shown (frame 10). Circle and label the three sidechains which

More information

18.2 Protein Structure and Function: An Overview

18.2 Protein Structure and Function: An Overview 18.2 Protein Structure and Function: An Overview Protein: A large biological molecule made of many amino acids linked together through peptide bonds. Alpha-amino acid: Compound with an amino group bonded

More information

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins

Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 26 Biomolecules: Amino Acids, Peptides, and Proteins Proteins Amides from Amino Acids Amino acids contain a basic amino group and an acidic carboxyl

More information

Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid.

Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. A Acidic amino acids: Those whose side chains can carry a negative charge at certain ph values. Typically aspartic acid, glutamic acid. Active site: Usually applied to catalytic site of an enzyme or where

More information

Carbohydrates, proteins and lipids

Carbohydrates, proteins and lipids Carbohydrates, proteins and lipids Chapter 3 MACROMOLECULES Macromolecules: polymers with molecular weights >1,000 Functional groups THE FOUR MACROMOLECULES IN LIFE Molecules in living organisms: proteins,

More information

Structures of Proteins. Primary structure - amino acid sequence

Structures of Proteins. Primary structure - amino acid sequence Structures of Proteins Primary structure - amino acid sequence Secondary structure chain of covalently linked amino acids folds into regularly repeating structures. Secondary structure is the result of

More information

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions

Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Concept 5.4: Proteins include a diversity of structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Some proteins speed up chemical reactions

More information

Conformational Properties of Polypeptide Chains

Conformational Properties of Polypeptide Chains Conformational Properties of Polypeptide Chains Levels of Organization Primary structure Amino acid sequence of the protein Secondary structure H bonds in the peptide chain backbone α helix and β sheets

More information

Solution key Problem Set 1

Solution key Problem Set 1 Solution key-7.016 Problem Set 1 Question 1 The following line-angle drawings represent three chemical structures. On each drawing, the hydrogen atoms that should be bonded to the NON-carbon atoms are

More information

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph

H H N - C - C 2 R. Three possible forms (not counting R group) depending on ph Amino acids - 0 common amino acids there are others found naturally but much less frequently - Common structure for amino acid - C, -N, and functional groups all attached to the alpha carbon N - C - C

More information

Biological Molecules

Biological Molecules Biological Molecules I won t lie. This is probably the most boring topic you have ever done in any science. It s pretty much as simple as this: learn the material deal with it. Enjoy don t say I didn t

More information

Lecture 4: Peptides and Protein Primary Structure [PDF] Key Concepts. Objectives See also posted Peptide/pH/Ionization practice problems.

Lecture 4: Peptides and Protein Primary Structure [PDF] Key Concepts. Objectives See also posted Peptide/pH/Ionization practice problems. Lecture 4: Peptides and Protein Primary Structure [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 2, pp. 34-37 Practice problems (peptide ionization) [PDF]; problems in textbook: chapter 2, pp. 63-64,

More information

Amino Acids as Acids, Bases and Buffers:

Amino Acids as Acids, Bases and Buffers: Amino Acids as Acids, Bases and Buffers: - Amino acids are weak acids - All have at least 2 titratable protons (shown below as fully protonated species) and therefore have 2 pka s o α-carboxyl (-COOH)

More information

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013

Proteins. Amino Acids. Chapter 3. Molecular Diagnostics Fundamentals, Methods and Clinical Applications Second Edition 2/5/2013 Proteins Chapter 3 Amino Acids Nonpolar Alanine, Ala, A Isoleucine, Ile, I Leucine, Leu, L Methionine, Met, M Phenylalanine, Phe, F Tryptophan,Trp, W Valine, Val, V Negatively Charged (Acidic) Aspartic

More information

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage.

A disaccharide is formed when a dehydration reaction joins two monosaccharides. This covalent bond is called a glycosidic linkage. CH 5 Structure & Function of Large Molecules: Macromolecules Molecules of Life All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic

More information

Lecture 15: Enzymes & Kinetics Mechanisms

Lecture 15: Enzymes & Kinetics Mechanisms ROLE OF THE TRANSITION STATE Lecture 15: Enzymes & Kinetics Mechanisms Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products Margaret A. Daugherty Fall 2004

More information

Myoglobin and Hemoglobin

Myoglobin and Hemoglobin Myoglobin and Hemoglobin Myoglobin and hemoglobin are hemeproteins whose physiological importance is principally related to their ability to bind molecular oxygen. Myoglobin (Mb) The oxygen storage protein

More information

The chemistry of insulin

The chemistry of insulin FREDERICK S ANGER The chemistry of insulin Nobel Lecture, December 11, 1958 It is great pleasure and privilege for me to give an account of my work on protein structure and I am deeply sensitive of the

More information

AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM

AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM AMINO ACIDS & PEPTIDE BONDS STRUCTURE, CLASSIFICATION & METABOLISM OBJECTIVES At the end of this session the student should be able to, recognize the structures of the protein amino acid and state their

More information

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1

Student Handout 1 A dual coloring scheme allows students to first 3dmoleculardesigns.com Introduction - Page 1 Proteins are large, linear polymers of amino acids that spontaneously fold into complex 3D shapes. Although protein structure appears to be very complex, the chemical properties that determine protein

More information

Reading Assignment: pp , ,

Reading Assignment: pp , , Chapter 6 "Mechanisms of Enzymes" Reading Assignment: pp. 158-167, 171-176, 182-187. Problem Assignment: 1, 3, and 4. I. Introduction The first objective of this chapter is to obtain a conceptual understanding

More information

Protein Purification and Analysis

Protein Purification and Analysis Protein Purification and Analysis Numbers of genes: Humans ~40,000 genes Yeast ~6000 genes Bacteria ~3000 genes Solubility of proteins important for purification: 60-80% soluble, 20-40% membrane Some proteins

More information

Hydrogen Bonds The electrostatic nature of hydrogen bonds

Hydrogen Bonds The electrostatic nature of hydrogen bonds Hydrogen Bonds Hydrogen bonds have played an incredibly important role in the history of structural biology. Both the structure of DNA and of protein a-helices and b-sheets were predicted based largely

More information

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain.

Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. Peptide Bond Peptide Bond Amino acids are linked together by peptide bonds to form polypepetide chain. + H 2 O 2 Peptide bonds are strong and not broken by conditions that denature proteins, such as heating.

More information

Molecules of Life. Chapter 3 Part 2

Molecules of Life. Chapter 3 Part 2 Molecules of Life Chapter 3 Part 2 3.5 Proteins Diversity in Structure and Function Proteins are the most diverse biological molecule (structural, nutritious, enzyme, transport, communication, and defense

More information

Molecular Biology Basic Concepts

Molecular Biology Basic Concepts Molecular Biology Basic Concepts Prof. Dr. Antônio Augusto Fröhlich Charles Ivan Wust LISHA - UFSC {guto charles}@lisha.ufsc.br http://www.lisha.ufsc.br/~{guto charles} September 2003 September 2003 http://www.lisha.ufsc.br/~guto

More information

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Introduction to General, Organic and Biochemistry Chapter 22 Proteins hemistry 110 Bettelheim, Brown, ampbell & Farrell Ninth Edition Introduction to General, rganic and Biochemistry hapter 22 Proteins Step-growth polyamide (polypeptide) polymers or oligomers of L-α-aminoacids.

More information

Exam 4 Outline CH 105 Spring 2012

Exam 4 Outline CH 105 Spring 2012 Exam 4 Outline CH 105 Spring 2012 You need to bring a pencil and your ACT card. Chapter 24: Lipids 1. Describe the properties and types of lipids a. All are hydrophobic b. Fatty acid-based typically contain

More information

8/20/2012 H C OH H R. Proteins

8/20/2012 H C OH H R. Proteins Proteins Rubisco monomer = amino acids 20 different amino acids polymer = polypeptide protein can be one or more polypeptide chains folded & bonded together large & complex 3-D shape hemoglobin Amino acids

More information

Chapter 12 - Proteins

Chapter 12 - Proteins Roles of Biomolecules Carbohydrates Lipids Proteins 1) Catalytic 2) Transport 3) Regulatory 4) Structural 5) Contractile 6) Protective 7) Storage Nucleic Acids 12.1 -Amino Acids Chapter 12 - Proteins Amino

More information

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms

In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms In addition to being shorter than a single bond, the double bonds in ethylene don t twist the way single bonds do. In other words, the other atoms attached to the carbons (hydrogens in this case) can no

More information

Ramachandran Plots. Amino Acid Configuration in Proteins

Ramachandran Plots. Amino Acid Configuration in Proteins . Amino Acid onfiguration in Proteins Introduction The secondary structures that polypeptides can adopt in proteins are governed by hydrogen bonding interactions between the electronegative carbonyl oxygen

More information

It s the amino acids!

It s the amino acids! Catalytic Mechanisms HOW do enzymes do their job? Reducing activation energy sure, but HOW does an enzyme catalysis reduce the energy barrier ΔG? Remember: The rate of a chemical reaction of substrate

More information

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation

Amino Acids, Proteins, and Enzymes. Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation Amino Acids, Proteins, and Enzymes Primary and Secondary Structure Tertiary and Quaternary Structure Protein Hydrolysis and Denaturation 1 Primary Structure of Proteins H 3 N The particular sequence of

More information

Proteins are polymers of amino acids. Protein-over 50 amino acids, peptide-under 50 amino acids.

Proteins are polymers of amino acids. Protein-over 50 amino acids, peptide-under 50 amino acids. Amino Acids and Proteins: Protein Functions: enzymes, transport (hemoglobin-o 2, tranferrin-fe), protection (MHC molecules, immunoglobulins), hormones (insulin, glucagons), gene transcription regulation

More information

Role of Hydrogen Bonding on Protein Secondary Structure Introduction

Role of Hydrogen Bonding on Protein Secondary Structure Introduction Role of Hydrogen Bonding on Protein Secondary Structure Introduction The function and chemical properties of proteins are determined by its three-dimensional structure. The final architecture of the protein

More information

Helices From Readily in Biological Structures

Helices From Readily in Biological Structures The α Helix and the β Sheet Are Common Folding Patterns Although the overall conformation each protein is unique, there are only two different folding patterns are present in all proteins, which are α

More information

R H important because the backbone atoms of each residue

R H important because the backbone atoms of each residue Protein Folding Proteins are not extended polypeptide chains. Instead, most proteins form compact folded three-dimensional arrangements, with well-defined, specific structures. Several types of non-covalent

More information

Chapter 5. The Structure and Function of Macromolecule s

Chapter 5. The Structure and Function of Macromolecule s Chapter 5 The Structure and Function of Macromolecule s Most Macromolecules are polymers: Polymer: (poly: many; mer: part) Large molecules consisting of many identical or similar subunits connected together.

More information

Chapter 16 Amino Acids, Proteins, and Enzymes

Chapter 16 Amino Acids, Proteins, and Enzymes Chapter 16 Amino Acids, Proteins, and Enzymes 1 Functions of Proteins Proteins in the body are polymers made from 20 different amino acids differ in characteristics and functions that depend on the order

More information

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function

Papers listed: Cell2. This weeks papers. Chapt 4. Protein structure and function Papers listed: Cell2 During the semester I will speak of information from several papers. For many of them you will not be required to read these papers, however, you can do so for the fun of it (and it

More information

Introduction to Protein Folding

Introduction to Protein Folding Introduction to Protein Folding Chapter 4 Proteins: Three Dimensional Structure and Function Conformation - three dimensional shape Native conformation - each protein folds into a single stable shape (physiological

More information

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules

WEEK ONE VOCABULARY. Adhesion- the attraction between water molecules and other molecules WEEK ONE VOCABULARY Acid- hydrogen donors; acids increase the hydrogen ion concentration in solution Adhesion- the attraction between water molecules and other molecules Alpha (α) helix- secondary protein

More information

Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı

Marmara Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü / Biyokimya Anabilim Dalı EXPERIMENT IX Marmara Üniversitesi DETERMINATION OF N-TERMINAL AMINO ACID RESIDUE OF PROTEINS BY THIN LAYER CHROMATOGRAPHY Functions of the proteins depend upon its amino acid sequence. Because amino acid

More information

BOC334 (Proteomics) Practical 1. Calculating the charge of proteins

BOC334 (Proteomics) Practical 1. Calculating the charge of proteins BC334 (Proteomics) Practical 1 Calculating the charge of proteins Aliphatic amino acids (VAGLIP) N H 2 H Glycine, Gly, G no charge Hydrophobicity = 0.67 MW 57Da pk a CH = 2.35 pk a NH 2 = 9.6 pi=5.97 CH

More information

The Behavior of Proteins:

The Behavior of Proteins: Mary K. Campbell Shawn O. Farrell http://academic.cengage.com/chemistry/campbell Chapter 7 The Behavior of Proteins: Enzymes, Mechanisms, and Control Paul D. Adams University of Arkansas The catalytic

More information

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids

Chapter 16 Amino Acids, Proteins, and Enzymes. Functions of Proteins. Examples of Amino Acids. Amino Acids. Nonpolar Amino Acids. Types of Amino Acids Chapter 16 Amino Acids, Proteins, and Enzymes 16.1 Functions of Proteins 16.2 Amino Acids 16.3 Amino Acids as Acids and Bases Functions of Proteins Proteins perform many different functions in the body.

More information

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman

The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman The Structure and Function of Large Biological Molecules by Dr. Ty C.M. Hoffman Slide 1 All of the biological macromolecules are built from smaller subunits. Each subunit features - H and - OH substituents

More information

Microreview. Nucleic acid structure

Microreview. Nucleic acid structure Nucleic acid structure Microreview 1 er : sequence of the nucleotides, each distinguished by its base. 2 ary : antiparallel double helix. 3 ary : folding of sequentially remote secondary structure to form

More information

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10

CSC 2427: Algorithms for Molecular Biology Spring 2006. Lecture 16 March 10 CSC 2427: Algorithms for Molecular Biology Spring 2006 Lecture 16 March 10 Lecturer: Michael Brudno Scribe: Jim Huang 16.1 Overview of proteins Proteins are long chains of amino acids (AA) which are produced

More information