Chapter 16: law of averages


 Bonnie Atkinson
 3 years ago
 Views:
Transcription
1 Chapter 16: law of averages Context Law of averages 3 Coin tossing experiment Questions First 50 tosses ,000 tosses Chance error Law of averages Law of averages Box model 11 Drawing with replacement Drawing without replacement Rolling two dice Sum of the draws Setting up a box model 16 Box model Playing roulette Red or black Example Box model Example Summary box model for gambling problems
2 Context We ll look at various chance processes: Tossing coins, rolling dice, playing roulette Sampling voters We ll use box models to analyze these processes. These help to translate real life problems into statistical problems. The questions we ll answer in chapters are of the following type: Suppose we play a game of roulette 10 times. What is our expected net gain? How much variability do we expect? What is the chance that we will come out ahead? How do these answers depend on the number of plays? In chapter 16 we ll start with the law of averages and setting up box models. 2 / 23 Law of averages 3 / 23 Coin tossing experiment John Kerrich, South African mathematician Visited Copenhagen when WWII broke out He spent the war interned at a camp in Jutland To kill the time, he did some probability experiments. He tossed a coin 10,000 times, and counted the number of heads. The results are given in section 16.1 of the book 4 / 23 Questions How many heads do you think he got? We expect heads to come up in about half the number of tosses, so we expect about 5,000 heads. Do you think that he got exactly 5,000 heads? No, that is not very likely. We expect that he got about 5,000 heads. Nr of heads = half the number of tosses + chance error What is the size of the chance error? How does it depend on the number of tosses? To get some insight in this, I repeated the experiment on the computer 5 / 23 2
3 First 50 tosses nr of heads nr of tosses 6 / 23 10,000 tosses nr of heads half the number of tosses number of tosses % of heads 50% nr of tosses 7 / 23 3
4 Chance error Let s look at the chance error: observed chance observed % chance nr tosses nr of heads error of heads error in % % 2.00% % 3.00% % 0.40% % 0.80% % 0.28% % 0.14% 8 / 23 Law of averages The law of averages in terms of counts: The number of heads is around half the number of tosses But it is likely to be off a bit, due to chance error Nr of heads = half the number of tosses + chance error As the number of tosses goes up, the chance error goes up (see third column of the table). Note though that it goes up only slowly. 9 / 23 Law of averages The law of averages in terms of percentages: The percentage of heads is around 50% But it is likely to be off a bit, due to chance error Percentage of heads = 50% + chance error in % As the number of tosses goes up, the chance error in % goes down (see fifth column of the table) Note: The law of averages does not work by changing the chances. After a long run of heads, a head is still as likely as a tail in the next toss. 10 / 23 4
5 Box model 11 / 23 Drawing with replacement Consider a box with tickets We can draw tickets with replacement: Shake the box Draw one ticket at random (equal chance for all tickets) Make a note of the number on the ticket, and put it back in the box Shake the box again and draw another ticket, make a note of it, and put it back in the box. And so on. Note that the box stays the same 12 / 23 Drawing without replacement We can also draw tickets without replacement: Shake the box Draw one ticket at random (equal chance for all tickets) Do not put the ticket back in the box Shake the box again and draw another ticket. Don t put it back in the box. And so on. Note that the box changes. After each draw, there is one less ticket in the box. See example on overhead. 13 / 23 Rolling two dice Consider a box with tickets 1,2,3,4,5,6 Draw two tickets with replacement, and compute the sum of the two draws Examples: Suppose the first draw was a 3, and the second a 4, then the sum is 7 Suppose the first draw was a 2, and the second was also a 2, then the sum is 4 Note that there is variability in the sum What is this a box model for? For the number of squares you move in a game of Monopoly (role a pair of dice, and count the total number of spots). 14 / 23 5
6 Sum of the draws We ll work a lot with the sum of the draws. This is shorthand for: Draw tickets at random with replacement from a box Add up the numbers on the tickets Examples: The number of squares you ll move in a turn at Monopoly is like the sum of two draws from a box with tickets 1,2,3,4,5,6. The number of heads in 10,000 coin tosses is like the sum of 10,000 draws from a box with tickets 0,1. 15 / 23 Setting up a box model 16 / 23 Box model A box model is a model for a chance process Why do we use it? It helps to translate a real life process into a statistical problem. The box model contains only the relevant information, and we strip away all the irrelevant stuff. When setting up a box model, ask yourself: What tickets go in the box? How many of each ticket? How many draws do we make? With or without replacement? (we ll mostly use drawing with replacement) 17 / 23 Playing roulette Nevada roulette: see overhead 38 pockets: 2 green numbers: 0 and red numbers: 1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,36 18 black numbers: 2,4,6,8,10,11,13,15,17,20,22,24,26,28,29,31,33,35 People make various types of bets Croupier spins wheel, and throws ball on wheel The ball is equally likely to land in any of the 38 pockets 18 / 23 6
7 Red or black 1 dollar bet on red: If the ball lands on red, you get your dollar back, plus an additional dollar (so you win 1 dollar) If the ball does not land on red, the croupier rakes in your dollar (so you loose 1 dollar) Suppose we play 10 times, betting a dollar on red each time Can we make a box model for our net gain? 19 / 23 Example Play Amount won in each play Net gain red $1 $1 red $1 $3 black $1 $2 green $1 $1 red $1 $3 black $1 $2 black $1 $1 Net gain after these 10 plays: $2. 20 / 23 Box model What numbers do we put in the box? The amounts you can win (+) or loose (): $1 and $1 How many of each number? We win $1 if the ball lands on red. There are 18 possibilities for that to happen. So we put 18 tickets of $1. We win $1 if the ball does not land on red. There are 20 possibilities for that to happen (18 black numbers and 2 green numbers). So we put 20 tickets of $1. How many draws? We play 10 times, so we make 10 draws 21 / 23 7
8 Example Play Amount won in each play Net gain (one draw from the box) (sum of the draws) red $1 $1 red $1 $3 black $1 $2 green $1 $1 red $1 $3 black $1 $2 black $1 $1 The net gain is like the sum of 10 draws from the following box: 18 tickets $1, and 20 tickets $1. 22 / 23 Summary box model for gambling problems Tickets in the box show the amounts that can be won (+) or lost () The chance of drawing any particular value from the box equals the chance of winning that amount on a single play The number of draws equals the number of plays The net gain is the sum of the draws from the box 23 / 23 8
Chapter 16. Law of averages. Chance. Example 1: rolling two dice Sum of draws. Setting up a. Example 2: American roulette. Summary.
Overview Box Part V Variability The Averages Box We will look at various chance : Tossing coins, rolling, playing Sampling voters We will use something called s to analyze these. Box s help to translate
More informationThe overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES
INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number
More informationAMS 5 CHANCE VARIABILITY
AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and
More informationMA 1125 Lecture 14  Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.
MA 5 Lecture 4  Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the
More informationElementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.
Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers
More informationElementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.
Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of
More informationSection 7C: The Law of Large Numbers
Section 7C: The Law of Large Numbers Example. You flip a coin 00 times. Suppose the coin is fair. How many times would you expect to get heads? tails? One would expect a fair coin to come up heads half
More informationJohn Kerrich s cointossing Experiment. Law of Averages  pg. 294 Moore s Text
Law of Averages  pg. 294 Moore s Text When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So, if the coin is tossed a large number of times, the number of heads and the
More informationThe Normal Approximation to Probability Histograms. Dice: Throw a single die twice. The Probability Histogram: Area = Probability. Where are we going?
The Normal Approximation to Probability Histograms Where are we going? Probability histograms The normal approximation to binomial histograms The normal approximation to probability histograms of sums
More informationProbability and Expected Value
Probability and Expected Value This handout provides an introduction to probability and expected value. Some of you may already be familiar with some of these topics. Probability and expected value are
More informationThe Casino Lab STATION 1: CRAPS
The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will
More information3.2 Roulette and Markov Chains
238 CHAPTER 3. DISCRETE DYNAMICAL SYSTEMS WITH MANY VARIABLES 3.2 Roulette and Markov Chains In this section we will be discussing an application of systems of recursion equations called Markov Chains.
More informationWeek 5: Expected value and Betting systems
Week 5: Expected value and Betting systems Random variable A random variable represents a measurement in a random experiment. We usually denote random variable with capital letter X, Y,. If S is the sample
More information$2 4 40 + ( $1) = 40
THE EXPECTED VALUE FOR THE SUM OF THE DRAWS In the game of Keno there are 80 balls, numbered 1 through 80. On each play, the casino chooses 20 balls at random without replacement. Suppose you bet on the
More informationBetting systems: how not to lose your money gambling
Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple
More informationWe rst consider the game from the player's point of view: Suppose you have picked a number and placed your bet. The probability of winning is
Roulette: On an American roulette wheel here are 38 compartments where the ball can land. They are numbered 136, and there are two compartments labeled 0 and 00. Half of the compartments numbered 136
More informationAutomatic Bet Tracker!
Russell Hunter Street Smart Roulette Automatic Bet Tracker! Russell Hunter Publishing, Inc. Street Smart Roulette Automatic Bet Tracker 2015 Russell Hunter and Russell Hunter Publishing, Inc. All Rights
More informationExpected Value and the Game of Craps
Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the
More information13.0 Central Limit Theorem
13.0 Central Limit Theorem Discuss Midterm/Answer Questions Box Models Expected Value and Standard Error Central Limit Theorem 1 13.1 Box Models A Box Model describes a process in terms of making repeated
More information36 Odds, Expected Value, and Conditional Probability
36 Odds, Expected Value, and Conditional Probability What s the difference between probabilities and odds? To answer this question, let s consider a game that involves rolling a die. If one gets the face
More informationPROBABILITY C A S I N O L A B
A P S T A T S A Fabulous PROBABILITY C A S I N O L A B AP Statistics Casino Lab 1 AP STATISTICS CASINO LAB: INSTRUCTIONS The purpose of this lab is to allow you to explore the rules of probability in the
More informationMrMajik s Money Management Strategy Copyright MrMajik.com 2003 All rights reserved.
You are about to learn the very best method there is to beat an evenmoney bet ever devised. This works on almost any game that pays you an equal amount of your wager every time you win. Casino games are
More informationSolution (Done in class)
MATH 115 CHAPTER 4 HOMEWORK Sections 4.14.2 N. PSOMAS 4.6 Winning at craps. The game of craps starts with a comeout roll where the shooter rolls a pair of dice. If the total is 7 or 11, the shooter wins
More informationMONT 107N Understanding Randomness Solutions For Final Examination May 11, 2010
MONT 07N Understanding Randomness Solutions For Final Examination May, 00 Short Answer (a) (0) How are the EV and SE for the sum of n draws with replacement from a box computed? Solution: The EV is n times
More informationV. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE
V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay $ to play. A penny and a nickel are flipped. You win $ if either
More informationMOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC
MOVIES, GAMBLING, SECRET CODES, JUST MATRIX MAGIC DR. LESZEK GAWARECKI 1. The Cartesian Coordinate System In the Cartesian system points are defined by giving their coordinates. Plot the following points:
More informationInside the pokies  player guide
Inside the pokies  player guide 3nd Edition  May 2009 References 1, 2, 3 Productivity Commission 1999, Australia s Gambling Industries, Report No. 10, AusInfo, Canberra. 4 Victorian Department of Justice,
More informationSlide 1 Math 1520, Lecture 23. This lecture covers mean, median, mode, odds, and expected value.
Slide 1 Math 1520, Lecture 23 This lecture covers mean, median, mode, odds, and expected value. Slide 2 Mean, Median and Mode Mean, Median and mode are 3 concepts used to get a sense of the central tendencies
More informationExpected Value. 24 February 2014. Expected Value 24 February 2014 1/19
Expected Value 24 February 2014 Expected Value 24 February 2014 1/19 This week we discuss the notion of expected value and how it applies to probability situations, including the various New Mexico Lottery
More informationChapter 20: chance error in sampling
Chapter 20: chance error in sampling Context 2 Overview................................................................ 3 Population and parameter..................................................... 4
More informationIntroduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang
Introduction to Discrete Probability 22c:19, section 6.x Hantao Zhang 1 Terminology Experiment A repeatable procedure that yields one of a given set of outcomes Rolling a die, for example Sample space
More informationREWARD System For Even Money Bet in Roulette By Izak Matatya
REWARD System For Even Money Bet in Roulette By Izak Matatya By even money betting we mean betting on Red or Black, High or Low, Even or Odd, because they pay 1 to 1. With the exception of the green zeros,
More informationProbability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2
Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability
More informationStatistics. Head First. A BrainFriendly Guide. Dawn Griffiths
A BrainFriendly Guide Head First Statistics Discover easy cures for chart failure Improve your season average with the standard deviation Make statistical concepts stick to your brain Beat the odds at
More informationLesson 8: The Difference Between Theoretical Probabilities and Estimated Probabilities
The Difference Between Theoretical Probabilities and Estimated Probabilities Student Outcomes Given theoretical probabilities based on a chance experiment, students describe what they expect to see when
More informationStatistics. Head First. A BrainFriendly Guide. Dawn Griffiths
A BrainFriendly Guide Head First Statistics Discover easy cures for chart failure Improve your season average with the standard deviation Make statistical concepts stick to your brain Beat the odds at
More informationWould You Like To Earn $1000 s With The Click Of A Button?
Would You Like To Earn $1000 s With The Click Of A Button? (Follow these easy step by step instructions and you will) This Version of the ebook is for all countries other than the USA. If you need the
More informationCh. 13.3: More about Probability
Ch. 13.3: More about Probability Complementary Probabilities Given any event, E, of some sample space, U, of a random experiment, we can always talk about the complement, E, of that event: this is the
More informationIntroductory Probability. MATH 107: Finite Mathematics University of Louisville. March 5, 2014
Introductory Probability MATH 07: Finite Mathematics University of Louisville March 5, 204 What is probability? Counting and probability 2 / 3 Probability in our daily lives We see chances, odds, and probabilities
More informationChapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.
MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.
More informationStatistics 100A Homework 3 Solutions
Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win $ for each black ball selected and we
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 13. Random Variables: Distribution and Expectation
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 3 Random Variables: Distribution and Expectation Random Variables Question: The homeworks of 20 students are collected
More informationSecond Midterm Exam (MATH1070 Spring 2012)
Second Midterm Exam (MATH1070 Spring 2012) Instructions: This is a one hour exam. You can use a notecard. Calculators are allowed, but other electronics are prohibited. 1. [60pts] Multiple Choice Problems
More informationSolutions: Problems for Chapter 3. Solutions: Problems for Chapter 3
Problem A: You are dealt five cards from a standard deck. Are you more likely to be dealt two pairs or three of a kind? experiment: choose 5 cards at random from a standard deck Ω = {5combinations of
More informationProbability. Sample space: all the possible outcomes of a probability experiment, i.e., the population of outcomes
Probability Basic Concepts: Probability experiment: process that leads to welldefined results, called outcomes Outcome: result of a single trial of a probability experiment (a datum) Sample space: all
More informationLecture 13. Understanding Probability and LongTerm Expectations
Lecture 13 Understanding Probability and LongTerm Expectations Thinking Challenge What s the probability of getting a head on the toss of a single fair coin? Use a scale from 0 (no way) to 1 (sure thing).
More informationDiscrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10
CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 10 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice,
More informationX: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001
Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationBeating Roulette? An analysis with probability and statistics.
The Mathematician s Wastebasket Volume 1, Issue 4 Stephen Devereaux April 28, 2013 Beating Roulette? An analysis with probability and statistics. Every time I watch the film 21, I feel like I ve made the
More informationYou can place bets on the Roulette table until the dealer announces, No more bets.
Roulette Roulette is one of the oldest and most famous casino games. Every Roulette table has its own set of distinctive chips that can only be used at that particular table. These chips are purchased
More informationIn the situations that we will encounter, we may generally calculate the probability of an event
What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead
More information(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING)
(SEE IF YOU KNOW THE TRUTH ABOUT GAMBLING) Casinos loosen the slot machines at the entrance to attract players. FACT: This is an urban myth. All modern slot machines are stateoftheart and controlled
More informationTHE CHAOS THEORY ROULETTE SYSTEM
THE CHAOS THEORY ROULETTE SYSTEM Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller
More informationGaming the Law of Large Numbers
Gaming the Law of Large Numbers Thomas Hoffman and Bart Snapp July 3, 2012 Many of us view mathematics as a rich and wonderfully elaborate game. In turn, games can be used to illustrate mathematical ideas.
More informationSTRIKE FORCE ROULETTE
STRIKE FORCE ROULETTE Cycles, cycles, cycles... You cannot get away from them in the game of Roulette. Red, black, red, black... Red, red, red, red. Black, black, black... Red, red, black, black... 1st
More informationIntroduction to Matrices
Introduction to Matrices Tom Davis tomrdavis@earthlinknet 1 Definitions A matrix (plural: matrices) is simply a rectangular array of things For now, we ll assume the things are numbers, but as you go on
More informationIntroduction to the Practice of Statistics Fifth Edition Moore, McCabe
Introduction to the Practice of Statistics Fifth Edition Moore, McCabe Section 4.2 Homework Answers 4.17 Choose a young adult (age 25 to 34 years) at random. The probability is 0.12 that the person chosen
More informationUnit 19: Probability Models
Unit 19: Probability Models Summary of Video Probability is the language of uncertainty. Using statistics, we can better predict the outcomes of random phenomena over the long term from the very complex,
More informationThe game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors.
LIVE ROULETTE The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors. The ball stops on one of these sectors. The aim of roulette is to predict
More informationMaking $200 a Day is Easy!
Making $200 a Day is Easy! Firstly, I'd just like to say thank you for purchasing this information. I do not charge a huge amount for it so I hope that you will find it useful. Please note that if you
More informationINFO ABOUT YOUR CHANCES
INFO ABOUT YOUR CHANCES BETTING ON CASINO TABLE GAMES? CASINO GAMES OF CHANCE OR SKILL CAN BE ENTERTAINING FOR PEOPLE WHO ENJOY PLACING THEIR BETS ON WHEELS SPUN, CARDS DEALT AND DICE ROLLED. BUT THE CASINO
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationChapter 17: expected value and standard error for the sum of the draws from a box
Chapter 17: expected value and standard error for the sum of the draws from a box Context................................................................... 2 When we do this 10,000 times.....................................................
More informationGrade 6 Math Circles Mar.21st, 2012 Probability of Games
University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 6 Math Circles Mar.21st, 2012 Probability of Games Gambling is the wagering of money or something of
More information6.042/18.062J Mathematics for Computer Science. Expected Value I
6.42/8.62J Mathematics for Computer Science Srini Devadas and Eric Lehman May 3, 25 Lecture otes Expected Value I The expectation or expected value of a random variable is a single number that tells you
More informationBetting on Excel to enliven the teaching of probability
Betting on Excel to enliven the teaching of probability Stephen R. Clarke School of Mathematical Sciences Swinburne University of Technology Abstract The study of probability has its roots in gambling
More informationUniversity of California, Los Angeles Department of Statistics. Random variables
University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables.
More informationRouletteTools PATTERN RECOGNITION TRAINING
RouletteTools PATTERN RECOGNITION TRAINING This program allows you to go through a series of roulette numbers that have shown in an online casino over 31 consecutive days. For each day the first 500 spins
More informationStatistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined
Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large
More informationThursday, November 13: 6.1 Discrete Random Variables
Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.
More informationBasic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
More informationExample. A casino offers the following bets (the fairest bets in the casino!) 1 You get $0 (i.e., you can walk away)
: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest
More informationDiscrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22
CS 70 Discrete Mathematics for CS Fall 2006 Papadimitriou & Vazirani Lecture 22 Introduction to Discrete Probability Probability theory has its origins in gambling analyzing card games, dice, roulette
More informationHow to Play. Player vs. Dealer
How to Play You receive five cards to make your best fourcard poker hand. A fourcard Straight is a Straight, a fourcard Flush is a Flush, etc. Player vs. Dealer Make equal bets on the Ante and Super
More information2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways.
Math 142 September 27, 2011 1. How many ways can 9 people be arranged in order? 9! = 362,880 ways 2. How many ways can the letters in PHOENIX be rearranged? 7! = 5,040 ways. 3. The letters in MATH are
More information6.3 Probabilities with Large Numbers
6.3 Probabilities with Large Numbers In general, we can t perfectly predict any single outcome when there are numerous things that could happen. But, when we repeatedly observe many observations, we expect
More informationGCSE Revision Notes Mathematics Probability
GCSE Revision Notes Mathematics Probability irevise.com 2014. All revision notes have been produced by mockness ltd for irevise.com. Email: info@irevise.com Copyrighted material. All rights reserved; no
More information4.19 What s wrong? Solution 4.25 Distribution of blood types. Solution:
4.19 What s wrong? In each of the following scenarios, there is something wrong. Describe what is wrong and give a reason for your answer. a) If two events are disjoint, we can multiply their probabilities
More informationThis Method will show you exactly how you can profit from this specific online casino and beat them at their own game.
This Method will show you exactly how you can profit from this specific online casino and beat them at their own game. It s NOT complicated, and you DON T need a degree in mathematics or statistics to
More informationAP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More informationTHE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/
THE WINNING ROULETTE SYSTEM by http://www.webgoldminer.com/ Is it possible to earn money from online gambling? Are there any 100% sure winning roulette systems? Are there actually people who make a living
More informationContemporary Mathematics MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
More informationProbability Review. ICPSR Applied Bayesian Modeling
Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How
More informationHey, That s Not Fair! (Or is it?)
Concept Probability and statistics Number sense Activity 9 Hey, That s Not Fair! (Or is it?) Students will use the calculator to simulate dice rolls to play two different games. They will decide if the
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Practice Test Chapter 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the odds. ) Two dice are rolled. What are the odds against a sum
More informationGAMES WITH ONE DIE Games where you only use a single die can be plenty exciting indeed. Here are two good examples of this!
[TACTIC rules for dice games] Here are 21 different dice games, with one, two, three or even more dice. We wish you lots of enjoyment! GAMES WITH ONE DIE Games where you only use a single die can be plenty
More informationBasic Probability. Probability: The part of Mathematics devoted to quantify uncertainty
AMS 5 PROBABILITY Basic Probability Probability: The part of Mathematics devoted to quantify uncertainty Frequency Theory Bayesian Theory Game: Playing Backgammon. The chance of getting (6,6) is 1/36.
More informationcalculating probabilities
4 calculating probabilities Taking Chances What s the probability he s remembered I m allergic to nonprecious metals? Life is full of uncertainty. Sometimes it can be impossible to say what will happen
More informationMONEY MANAGEMENT. Guy Bower delves into a topic every trader should endeavour to master  money management.
MONEY MANAGEMENT Guy Bower delves into a topic every trader should endeavour to master  money management. Many of us have read Jack Schwager s Market Wizards books at least once. As you may recall it
More informationUnit 4 The Bernoulli and Binomial Distributions
PubHlth 540 4. Bernoulli and Binomial Page 1 of 19 Unit 4 The Bernoulli and Binomial Distributions Topic 1. Review What is a Discrete Probability Distribution... 2. Statistical Expectation.. 3. The Population
More informationThe Math. P (x) = 5! = 1 2 3 4 5 = 120.
The Math Suppose there are n experiments, and the probability that someone gets the right answer on any given experiment is p. So in the first example above, n = 5 and p = 0.2. Let X be the number of correct
More informationSolution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.34.4) Homework Solutions. Section 4.
Math 115 N. Psomas Chapter 4 (Sections 4.34.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give
More informationExpectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average
PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV  weighted average Continuous RV  use integral to take the weighted average Variance Variance is the average of (X µ) 2
More informationTHE ROULETTE BIAS SYSTEM
1 THE ROULETTE BIAS SYSTEM Please note that all information is provided as is and no guarantees are given whatsoever as to the amount of profit you will make if you use this system. Neither the seller
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 18: Simple Random Sampling Tessa L. ChildersDay UC Berkeley 24 July 2014 By the end of this lecture... You will be able to: Draw box models for realworld
More informationVISUAL GUIDE to. RX Scripting. for Roulette Xtreme  System Designer 2.0
VISUAL GUIDE to RX Scripting for Roulette Xtreme  System Designer 2.0 UX Software  2009 TABLE OF CONTENTS INTRODUCTION... ii What is this book about?... iii How to use this book... iii Time to start...
More informationMathematical Expectation
Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationLesson 13: Games of Chance and Expected Value
Student Outcomes Students analyze simple games of chance. Students calculate expected payoff for simple games of chance. Students interpret expected payoff in context. esson Notes When students are presented
More informationChapter 6 Random Variables
Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:
More information