Section 53 Binomial Probability Distributions


 Marian Mitchell
 2 years ago
 Views:
Transcription
1 Section 53 Binomial Probability Distributions
2 Key Concept This section presents a basic definition of a binomial distribution along with notation, and methods for finding probability values. Binomial probability distributions allow us to deal with circumstances in which the outcomes belong to two relevant categories such as acceptable/defective or survived/died.
3 Simplify (a + b) 2 a 2 + 2ab + b 2 Simplify (a + b) 3 a 3 + 3a 2 b + 3ab 2 + b 3 Simplify (a + b) 4 a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4
4 An experiment is called a Binomial Experiment (Bernoulli experiment) with n trials if all of the following properties are true: 1. The experiment is repeated n times. 2. Each trial has two outcomes: success or failure. 3. The trials are independent. 4. The probability of a success remains the same in all trials.
5 Ex. 1 Determine whether or not the following are binomial experiments. (c) You roll a die 10 times. What is the probability that you get a six as many times as you get a four? 1. n = 10 (the number of trials) 2. A success is.?????????? 3. p = (the probability of a success) 4. x = (the number of successes) We cannot classify outcomes on the trials as successes and failures. On a single roll of the die, would you consider a six a success, a four a success,....?
6 Determine whether or not the following are binomial experiments. You roll a die 10 times and want to know the probability that a five will come up seven times. 1. n = 10 (the number of trials) 2. A success is. getting a five on a roll of the die 1 / 6 3. p = (the probability of a success) 4. x = (the number of successes) 7
7 Determine whether or not the following are binomial experiments. You draw eight cards from a deck without replacement and want the probability that you draw four spades. 1. n = 8 (the number of trials) 2. A success is. drawing a spade 3. p =??? (the probability of a success) changes on each draw, not the same. 4. x = (the number of successes)
8 Notation for Binomial Probability Distributions S and F (success and failure) denote the two possible categories of all outcomes; p and q will denote the probabilities of S and F, respectively, so P( S) p (p = probability of success) P( F) 1 p q (q = probability of failure)
9 To check if these properties are true on a particular problem, you should be able to fill in the blanks in the following checklist: 1. n = (the number of trials in the experiment) 2. x = of successful outcomes. 3. p = (the probability of a success on any one of the trials) 4. q = (the probability of a failure on any one trial.)
10 There are ten multiple choice questions on a test. Each question has four answers. If you randomly guess at the answers, what is the probability of guessing seven correctly (thus getting a C on the test)? 1. n = 10 (the number of trials in the experiment) 2. x = 7 of successful outcomes. 1 / 4 3. p = (the probability of a success on any one of the trials) 3 / 4 4. q = (the probability of a failure on any one trial.)
11 You roll a die 10 times and want to know the probability that a five will come up seven times. 1. n = 10 (the number of trials in the experiment) 2. x = 7 of successful outcomes. 1/6 3. p = (the probability of a success on any one of the trials) 5/6 4. q = (the probability of a failure on any one trial.)
12 You draw eight cards from a deck with replacement and want the probability that you draw four spades. 1. n = 8 (the number of trials in the experiment) 2. x = 4 of successful outcomes. 3. p = 13/52 (the probability of a success on any one of the trials) 4. q = (the 39/52 probability of a failure on any one trial.)
13 Homework Pg odd
14 Section 53 II Binomial Probability Distributions
15 Important Hints Be sure that x and p both refer to the same category being called a success. When sampling without replacement, consider events to be independent if n 0.05N.
16 Methods for Finding Probabilities We will now discuss three methods for finding the probabilities corresponding to the random variable x in a binomial distribution.
17 Method 1: Using the Binomial Probability Formula n! x P( x) p q ( n x)! x! n x n C x p x q n x for x 0,1,2,..., n where n = number of trials x = number of successes among n trials p = probability of success in any one trial q = probability of failure in any one trial (q = 1 p)
18 Rationale for the Binomial Probability Formula n! P( x) p x q ( n x)! x! n x The number of outcomes with exactly x successes among n trials
19 Binomial Probability Formula n! P( x) p x q ( n x)! x! n x Number of outcomes with exactly x successes among n trials The probability of x successes among n trials for any one particular order
20 You draw eight cards from a deck with replacement and want the probability that you draw four spades. 8 C 4 (13/52) 4 (39/52) 4 = n = 8 (the number of trials in the experiment) 2. x = 4 of successful outcomes. 3. p = 13/52 (the probability of a success on any one of the trials) 4. q = (the 39/52 probability of a failure on any one trial.)
21 There are ten multiple choice questions on a test. Each question has four answers. If you randomly guess at the answers, what is the probability of guessing seven correctly? P(getting 7 correct answers out of 10) 10 C 7 (0.25) 7 (0.75) 3 binompdf(10,.25,7)
22 A coin is weighted so that it lands on heads 70% of the time. This coin is flipped eight times. Find the probability of getting six heads on the eight tosses. P(getting 6 heads in 8 tosses) C(8, 6) (0.70) 6 (0.30) 2 binompdf(8,0.70,6)
23 A stats test consists of multiple choice questions, each having 4 possible answers (a, b, c, d), 1 of which is correct. Assume that you guess the answers to 6 questions. a) use the multiplication rule to find the probability that the first 2 guesses are wrong and the last 4 guesses are correct. That is, find P(W, W, C, C, C, C), where C denotes a correct answer and W denotes a wrong answer
24 A stats test consists of multiple choice questions, each having 4 possible answers (a, b, c, d), 1 of which is correct. Assume that you guess the answers to 6 questions. b) Find the probability of getting exactly 4 correct answers when 6 guesses are made. P(4 out of 6 correct answers) C(6, 4) (0.25) 4 (0.74) 2 binompdf(6,0.25,4)
25 In exercises 1520, you may assume that the problem given yields a binomial distribution with a trial repeated n times. You may either use Table A1 or the Ti84 to find the probability of x successes given the probability p of success on a given trial. n = 5, x = 1, p = 0.95 C(5, 1) (0.95) 1 (0.05) 4 binompdf(5,0.95,1) 0+
26 Find the probability that at least 3 of the 5 donors have Group O blood. If at least 3 Group O donors are needed, is it very likely that at least 3 will be obtained? (p = 0.45) C(5, 3) (0.45) 3 (0.55) 2 + C(5, 4) (0.45) 4 (0.55) 1 + C(5, 5) (0.45) 5 (0.55) 0
27 Method 2: Using Technology STATDISK, Minitab, Excel, SPSS, SAS and the TI83/84 Plus calculator can be used to find binomial probabilities. STATDISK MINITAB
28 Method 2: Using Technology STATDISK, Minitab, Excel and the TI83 Plus calculator can all be used to find binomial probabilities. EXCEL TI83 PLUS Calculator
29 Method 3: Using Table A1 in Appendix A Part of Table A1 is shown below. With n = 12 and p = 0.80 in the binomial distribution, the probabilities of 4, 5, 6, and 7 successes are 0.001, 0.003, 0.016, and respectively.
30 Strategy for Finding Binomial Probabilities Use computer software or a TI83 Plus calculator if available. If neither software nor the TI83 Plus calculator is available, use Table A1, if possible. If neither software nor the TI83 Plus calculator is available and the probabilities can t be found using Table A 1, use the binomial probability formula.
31 Recap In this section we have discussed: The definition of the binomial probability distribution. Notation. Important hints. Three computational methods. Rationale for the formula.
32
MAT 155. Key Concept. September 22, 2010. 155S5.3_3 Binomial Probability Distributions. Chapter 5 Probability Distributions
MAT 155 Dr. Claude Moore Cape Fear Community College Chapter 5 Probability Distributions 5 1 Review and Preview 5 2 Random Variables 5 3 Binomial Probability Distributions 5 4 Mean, Variance, and Standard
More informationComputing Binomial Probabilities
The Binomial Model The binomial probability distribution is a discrete probability distribution function Useful in many situations where you have numerical variables that are counts or whole numbers Classic
More informationAP Statistics 7!3! 6!
Lesson 64 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!
More information Binomial Probability Distributions Definition Distribution. The procedure must have a fied number of trials.. The trials must be independent. (The outcome of any individual trial doesn t affect the probabilities
More informationQuestion: What is the probability that a fivecard poker hand contains a flush, that is, five cards of the same suit?
ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the
More information3.4. The Binomial Probability Distribution. Copyright Cengage Learning. All rights reserved.
3.4 The Binomial Probability Distribution Copyright Cengage Learning. All rights reserved. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately
More informationThe Binomial Probability Distribution
The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability
More informationBasic Probability Theory II
RECAP Basic Probability heory II Dr. om Ilvento FREC 408 We said the approach to establishing probabilities for events is to Define the experiment List the sample points Assign probabilities to the sample
More informationChapter 15. Definitions: experiment: is the act of making an observation or taking a measurement.
MATH 11008: Probability Chapter 15 Definitions: experiment: is the act of making an observation or taking a measurement. outcome: one of the possible things that can occur as a result of an experiment.
More informationStatistics 100 Binomial and Normal Random Variables
Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random
More informationThe study of probability has increased in popularity over the years because of its wide range of practical applications.
6.7. Probability. The study of probability has increased in popularity over the years because of its wide range of practical applications. In probability, each repetition of an experiment is called a trial,
More informationIntroduction to the Practice of Statistics Sixth Edition Moore, McCabe
Introduction to the Practice of Statistics Sixth Edition Moore, McCabe Section 5.1 Homework Answers 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin
More informationContemporary Mathematics MAT 130. Probability. a) What is the probability of obtaining a number less than 4?
Contemporary Mathematics MAT 30 Solve the following problems:. A fair die is tossed. What is the probability of obtaining a number less than 4? What is the probability of obtaining a number less than
More informationYou flip a fair coin four times, what is the probability that you obtain three heads.
Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Ch.  Problems to look at Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) A coin is tossed. Find the probability
More informationJANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability)
JANUARY TERM 2012 FUN and GAMES WITH DISCRETE MATHEMATICS Module #9 (Geometric Series and Probability) Author: Daniel Cooney Reviewer: Rachel Zax Last modified: January 4, 2012 Reading from Meyer, Mathematics
More informationChapter 3. Probability
Chapter 3 Probability Every Day, each us makes decisions based on uncertainty. Should you buy an extended warranty for your new DVD player? It depends on the likelihood that it will fail during the warranty.
More informationAP Statistics Solutions to Packet 8
AP Statistics Solutions to Packet 8 The Binomial and Geometric Distributions The Binomial Distributions The Geometric Distributions 54p HW #1 1 5, 7, 8 8.1 BINOMIAL SETTING? In each situation below, is
More informationHomework 4  KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.
Homework 4  KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 21 Since there can be anywhere from 0 to 4 aces, the
More informationGrade 7/8 Math Circles Fall 2012 Probability
1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Fall 2012 Probability Probability is one of the most prominent uses of mathematics
More informationMath 3C Homework 3 Solutions
Math 3C Homework 3 s Ilhwan Jo and Akemi Kashiwada ilhwanjo@math.ucla.edu, akashiwada@ucla.edu Assignment: Section 2.3 Problems 2, 7, 8, 9,, 3, 5, 8, 2, 22, 29, 3, 32 2. You draw three cards from a standard
More informationRemember to leave your answers as unreduced fractions.
Probability Worksheet 2 NAME: Remember to leave your answers as unreduced fractions. We will work with the example of picking poker cards out of a deck. A poker deck contains four suits: diamonds, hearts,
More informationRandom Variable: A function that assigns numerical values to all the outcomes in the sample space.
STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.
More informationnumber of favorable outcomes total number of outcomes number of times event E occurred number of times the experiment was performed.
12 Probability 12.1 Basic Concepts Start with some Definitions: Experiment: Any observation of measurement of a random phenomenon is an experiment. Outcomes: Any result of an experiment is called an outcome.
More informationExample: If we roll a dice and flip a coin, how many outcomes are possible?
12.5 Tree Diagrams Sample space Sample point Counting principle Example: If we roll a dice and flip a coin, how many outcomes are possible? TREE DIAGRAM EXAMPLE: Use a tree diagram to show all the possible
More informationChapter 5. Section 5.1: Central Tendency. Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data.
Chapter 5 Section 5.1: Central Tendency Mode: the number or numbers that occur most often. Median: the number at the midpoint of a ranked data. Example 1: The test scores for a test were: 78, 81, 82, 76,
More informationKey Concept. Properties
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
More informationChapter. Probability Pearson Education, Inc. All rights reserved. 1 of 20
Chapter 3 Probability 2012 Pearson Education, Inc. All rights reserved. 1 of 20 Chapter Outline 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule 3.3 The Addition
More informationSection 6.1 Discrete Random variables Probability Distribution
Section 6.1 Discrete Random variables Probability Distribution Definitions a) Random variable is a variable whose values are determined by chance. b) Discrete Probability distribution consists of the values
More informationSection 65 Sample Spaces and Probability
492 6 SEQUENCES, SERIES, AND PROBABILITY 52. How many committees of 4 people are possible from a group of 9 people if (A) There are no restrictions? (B) Both Juan and Mary must be on the committee? (C)
More information4.1 4.2 Probability Distribution for Discrete Random Variables
4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.
More informationKey Concept. Density Curve
MAT 155 Statistical Analysis Dr. Claude Moore Cape Fear Community College Chapter 6 Normal Probability Distributions 6 1 Review and Preview 6 2 The Standard Normal Distribution 6 3 Applications of Normal
More informationChapter 7. Estimates and Sample Size
Chapter 7. Estimates and Sample Size Chapter Problem: How do we interpret a poll about global warming? Pew Research Center Poll: From what you ve read and heard, is there a solid evidence that the average
More informationChapter 8 Hypothesis Testing
Chapter 8 Hypothesis Testing Chapter problem: Does the MicroSort method of gender selection increase the likelihood that a baby will be girl? MicroSort: a genderselection method developed by Genetics
More informationChapter 4. Probability Distributions
Chapter 4 Probability Distributions Lesson 41/42 Random Variable Probability Distributions This chapter will deal the construction of probability distribution. By combining the methods of descriptive
More informationBinomial Probability Distribution
Binomial Probability Distribution In a binomial setting, we can compute probabilities of certain outcomes. This used to be done with tables, but with graphing calculator technology, these problems are
More informationDefinition and Calculus of Probability
In experiments with multivariate outcome variable, knowledge of the value of one variable may help predict another. For now, the word prediction will mean update the probabilities of events regarding the
More informationA (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes.
Chapter 7 Probability 7.1 Experiments, Sample Spaces, and Events A (random) experiment is an activity with observable results. The sample space S of an experiment is the set of all outcomes. Each outcome
More informationStat 20: Intro to Probability and Statistics
Stat 20: Intro to Probability and Statistics Lecture 16: More Box Models Tessa L. ChildersDay UC Berkeley 22 July 2014 By the end of this lecture... You will be able to: Determine what we expect the sum
More informationSection 2.1. Tree Diagrams
Section 2.1 Tree Diagrams Example 2.1 Problem For the resistors of Example 1.16, we used A to denote the event that a randomly chosen resistor is within 50 Ω of the nominal value. This could mean acceptable.
More informationMATH 140 Lab 4: Probability and the Standard Normal Distribution
MATH 140 Lab 4: Probability and the Standard Normal Distribution Problem 1. Flipping a Coin Problem In this problem, we want to simualte the process of flipping a fair coin 1000 times. Note that the outcomes
More informationChapter 5. Discrete Probability Distributions
Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable
More informationLesson 3 Chapter 2: Introduction to Probability
Lesson 3 Chapter 2: Introduction to Probability Department of Statistics The Pennsylvania State University 1 2 The Probability Mass Function and Probability Sampling Counting Techniques 3 4 The Law of
More information34 Probability and Counting Techniques
34 Probability and Counting Techniques If you recall that the classical probability of an event E S is given by P (E) = n(e) n(s) where n(e) and n(s) denote the number of elements of E and S respectively.
More informationChapter 10: Introducing Probability
Chapter 10: Introducing Probability Randomness and Probability So far, in the first half of the course, we have learned how to examine and obtain data. Now we turn to another very important aspect of Statistics
More informationFeb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172179)
Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS. Part 3: Discrete Uniform Distribution Binomial Distribution
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 3: Discrete Uniform Distribution Binomial Distribution Sections 35, 36 Special discrete random variable distributions we will cover
More informationChapter 5: Discrete Probability Distributions
Chapter 5: Discrete Probability Distributions Section 5.1: Basics of Probability Distributions As a reminder, a variable or what will be called the random variable from now on, is represented by the letter
More informationSample Questions for Mastery #5
Name: Class: Date: Sample Questions for Mastery #5 Multiple Choice Identify the choice that best completes the statement or answers the question.. For which of the following binomial experiments could
More informationWHERE DOES THE 10% CONDITION COME FROM?
1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay
More informationReview for Test 2. Chapters 4, 5 and 6
Review for Test 2 Chapters 4, 5 and 6 1. You roll a fair sixsided die. Find the probability of each event: a. Event A: rolling a 3 1/6 b. Event B: rolling a 7 0 c. Event C: rolling a number less than
More informationChapter 15 Binomial Distribution Properties
Chapter 15 Binomial Distribution Properties Two possible outcomes (success and failure) A fixed number of experiments (trials) The probability of success, denoted by p, is the same on every trial The trials
More informationChapter 6 Random Variables
Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:
More informationBasic Probability Theory I
A Probability puzzler!! Basic Probability Theory I Dr. Tom Ilvento FREC 408 Our Strategy with Probability Generally, we want to get to an inference from a sample to a population. In this case the population
More informationNumber of events classifiable as A Total number of possible events
PROBABILITY EXERCISE For the following probability practice questions, use the following formulas. NOTE: the formulas are in the basic format and may require slight modification to account for subsequent
More informationSTAT 319 Probability and Statistics For Engineers PROBABILITY. Engineering College, Hail University, Saudi Arabia
STAT 319 robability and Statistics For Engineers LECTURE 03 ROAILITY Engineering College, Hail University, Saudi Arabia Overview robability is the study of random events. The probability, or chance, that
More informationChapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Chapter 3: DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Part 4: Geometric Distribution Negative Binomial Distribution Hypergeometric Distribution Sections 37, 38 The remaining discrete random
More informationLesson 48 Conditional Probability
(A) Opening Example #1: A survey of 500 adults asked about college expenses. The survey asked questions about whether or not the person had a child in college and about the cost of attending college. Results
More informationConditional Probability and General Multiplication Rule
Conditional Probability and General Multiplication Rule Objectives:  Identify Independent and dependent events  Find Probability of independent events  Find Probability of dependent events  Find Conditional
More informationAP STATISTICS 2010 SCORING GUIDELINES
2010 SCORING GUIDELINES Question 4 Intent of Question The primary goals of this question were to (1) assess students ability to calculate an expected value and a standard deviation; (2) recognize the applicability
More informationMAT 1000. Mathematics in Today's World
MAT 1000 Mathematics in Today's World We talked about Cryptography Last Time We will talk about probability. Today There are four rules that govern probabilities. One good way to analyze simple probabilities
More informationChapter 6 Continuous Probability Distributions
Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability
More information4 BASICS OF PROBABILITY. Experiment is a process of observation that leads to a single outcome that cannot be predicted with certainty.
4 BASICS OF PROBABILITY Experiment is a process of observation that leads to a single outcome that cannot be predicted with certainty. Examples: 1. Pull a card from a deck 2. Toss a coin 3. Response time.
More informationStatistical Inference. Prof. Kate Calder. If the coin is fair (chance of heads = chance of tails) then
Probability Statistical Inference Question: How often would this method give the correct answer if I used it many times? Answer: Use laws of probability. 1 Example: Tossing a coin If the coin is fair (chance
More informationStatistics 100A Homework 8 Solutions
Part : Chapter 7 Statistics A Homework 8 Solutions Ryan Rosario. A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, the onehalf
More informationPart I Learning about SPSS
STATS 1000 / STATS 1004 / STATS 1504 Statistical Practice 1 Practical Week 5 2015 Practical Outline In this practical, we will look at how to do binomial calculations in Excel. look at how to do normal
More informationSection 6.2 Definition of Probability
Section 6.2 Definition of Probability Probability is a measure of the likelihood that an event occurs. For example, if there is a 20% chance of rain tomorrow, that means that the probability that it will
More informationChapter 4: Probability and Counting Rules
Chapter 4: Probability and Counting Rules Learning Objectives Upon successful completion of Chapter 4, you will be able to: Determine sample spaces and find the probability of an event using classical
More informationDISCRETE RANDOM VARIABLES
DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced
More informationProblem sets for BUEC 333 Part 1: Probability and Statistics
Problem sets for BUEC 333 Part 1: Probability and Statistics I will indicate the relevant exercises for each week at the end of the Wednesday lecture. Numbered exercises are backofchapter exercises from
More informationREPEATED TRIALS. The probability of winning those k chosen times and losing the other times is then p k q n k.
REPEATED TRIALS Suppose you toss a fair coin one time. Let E be the event that the coin lands heads. We know from basic counting that p(e) = 1 since n(e) = 1 and 2 n(s) = 2. Now suppose we play a game
More informationSection 6.2 ~ Basics of Probability. Introduction to Probability and Statistics SPRING 2016
Section 6.2 ~ Basics of Probability Introduction to Probability and Statistics SPRING 2016 Objective After this section you will know how to find probabilities using theoretical and relative frequency
More informationPlease circle A or B or I in the third column to indicate your chosen option in this table.
The choice of A means that the payoff to you will be 80 rupees if heads lands up from the coin toss and 130 rupees if tails lands up from the coin toss if this table is randomly chosen The choice of B
More informationAP Stats  Probability Review
AP Stats  Probability Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. I toss a penny and observe whether it lands heads up or tails up. Suppose
More informationCh5: Discrete Probability Distributions Section 51: Probability Distribution
Recall: Ch5: Discrete Probability Distributions Section 51: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.
More informationUnit 21: Binomial Distributions
Unit 21: Binomial Distributions Summary of Video In Unit 20, we learned that in the world of random phenomena, probability models provide us with a list of all possible outcomes and probabilities for how
More informationThursday, October 18, 2001 Page: 1 STAT 305. Solutions
Thursday, October 18, 2001 Page: 1 1. Page 226 numbers 2 3. STAT 305 Solutions S has eight states Notice that the first two letters in state n +1 must match the last two letters in state n because they
More information6.3 Conditional Probability and Independence
222 CHAPTER 6. PROBABILITY 6.3 Conditional Probability and Independence Conditional Probability Two cubical dice each have a triangle painted on one side, a circle painted on two sides and a square painted
More informationThe normal approximation to the binomial
The normal approximation to the binomial The binomial probability function is not useful for calculating probabilities when the number of trials n is large, as it involves multiplying a potentially very
More information6. Let X be a binomial random variable with distribution B(10, 0.6). What is the probability that X equals 8? A) (0.6) (0.4) B) 8! C) 45(0.6) (0.
Name: Date:. For each of the following scenarios, determine the appropriate distribution for the random variable X. A) A fair die is rolled seven times. Let X = the number of times we see an even number.
More informationI. WHAT IS PROBABILITY?
C HAPTER 3 PROAILITY Random Experiments I. WHAT IS PROAILITY? The weatherman on 10 o clock news program states that there is a 20% chance that it will snow tomorrow, a 65% chance that it will rain and
More informationLesson 1. Basics of Probability. Principles of Mathematics 12: Explained! www.math12.com 314
Lesson 1 Basics of Probability www.math12.com 314 Sample Spaces: Probability Lesson 1 Part I: Basic Elements of Probability Consider the following situation: A six sided die is rolled The sample space
More informationSection Tree Diagrams. Copyright 2013, 2010, 2007, Pearson, Education, Inc.
Section 12.5 Tree Diagrams What You Will Learn Counting Principle Tree Diagrams 12.52 Counting Principle If a first experiment can be performed in M distinct ways and a second experiment can be performed
More informationWorked examples Basic Concepts of Probability Theory
Worked examples Basic Concepts of Probability Theory Example 1 A regular tetrahedron is a body that has four faces and, if is tossed, the probability that it lands on any face is 1/4. Suppose that one
More informationDETERMINE whether the conditions for a binomial setting are met. COMPUTE and INTERPRET probabilities involving binomial random variables
1 Section 7.B Learning Objectives After this section, you should be able to DETERMINE whether the conditions for a binomial setting are met COMPUTE and INTERPRET probabilities involving binomial random
More informationProbability QUESTIONS Principles of Math 12  Probability Practice Exam 1 www.math12.com
Probability QUESTIONS Principles of Math  Probability Practice Exam www.math.com Principles of Math : Probability Practice Exam Use this sheet to record your answers:... 4... 4... 4.. 6. 4.. 6. 7..
More information4. Joint Distributions
Virtual Laboratories > 2. Distributions > 1 2 3 4 5 6 7 8 4. Joint Distributions Basic Theory As usual, we start with a random experiment with probability measure P on an underlying sample space. Suppose
More informationProbability. A random sample is selected in such a way that every different sample of size n has an equal chance of selection.
1 3.1 Sample Spaces and Tree Diagrams Probability This section introduces terminology and some techniques which will eventually lead us to the basic concept of the probability of an event. The Rare Event
More information33 Probability: Some Basic Terms
33 Probability: Some Basic Terms In this and the coming sections we discuss the fundamental concepts of probability at a level at which no previous exposure to the topic is assumed. Probability has been
More informationReview the following from Chapter 5
Bluman, Chapter 6 1 Review the following from Chapter 5 A surgical procedure has an 85% chance of success and a doctor performs the procedure on 10 patients, find the following: a) The probability that
More information+ Section 6.2 and 6.3
Section 6.2 and 6.3 Learning Objectives After this section, you should be able to DEFINE and APPLY basic rules of probability CONSTRUCT Venn diagrams and DETERMINE probabilities DETERMINE probabilities
More informationSample Space, Events, and PROBABILITY
Sample Space, Events, and PROBABILITY In this chapter, we will study the topic of probability which is used in many different areas including insurance, science, marketing, government and many other areas.
More informationFor 2 coins, it is 2 possible outcomes for the first coin AND 2 possible outcomes for the second coin
Problem Set 1. 1. If you have 10 coins, how many possible combinations of heads and tails are there for all 10 coins? Hint: how many combinations for one coin; two coins; three coins? Here there are 2
More informationTHE MULTINOMIAL DISTRIBUTION. Throwing Dice and the Multinomial Distribution
THE MULTINOMIAL DISTRIBUTION Discrete distribution  The Outcomes Are Discrete. A generalization of the binomial distribution from only 2 outcomes to k outcomes. Typical Multinomial Outcomes: red A area1
More informationChapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.
Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
More informationChapter 4 Probability
The Big Picture of Statistics Chapter 4 Probability Section 42: Fundamentals Section 43: Addition Rule Sections 44, 45: Multiplication Rule Section 47: Counting (next time) 2 What is probability?
More informationChapter 4 Lecture Notes
Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a realvalued function defined on the sample space of some experiment. For instance,
More informationProbability Review. ICPSR Applied Bayesian Modeling
Probability Review ICPSR Applied Bayesian Modeling Random Variables Flip a coin. Will it be heads or tails? The outcome of a single event is random, or unpredictable What if we flip a coin 10 times? How
More informationEvents. Independence. Coin Tossing. Random Phenomena
Random Phenomena Events A random phenomenon is a situation in which we know what outcomes could happen, but we don t know which particular outcome did or will happen For any random phenomenon, each attempt,
More informationPROBABILITY 14.3. section. The Probability of an Event
4.3 Probability (43) 727 4.3 PROBABILITY In this section In the two preceding sections we were concerned with counting the number of different outcomes to an experiment. We now use those counting techniques
More information