# University of California, Los Angeles Department of Statistics. Random variables

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 University of California, Los Angeles Department of Statistics Statistics Instructor: Nicolas Christou Random variables Discrete random variables. Continuous random variables. Discrete random variables. Denote a discrete random variable with X: It is a variable that takes values with some probability. Eamples: a. Roll a die. Let X be the number observed. b. Draw cards with replacement. Let X be the number of aces among the cards. c. Roll dice. Let X be the sum of the numbers observed. d. Toss a coin times. Let X be the number of tails among the tosses. e. Randomly select a US household. Let X be the number of people live in this household. Probability distribution of a discrete random variable X It is the list of all possible values of X with the corresponding probabilities. It can be represented by a table, a graph, or a function. Eamples: a. Roll a die. Let X be the number observed. The probability distribution of X is: X P (X = ) P(X=) X

2 b. Roll two dice. Let X be the sum of the two numbers observed. The probability distribution of X is: X P (X = ) P(X=) X We can also represent this distribution with a function: P (X = ) = 7, for =,,,. This is called probability mass function and returns the probability for each possible value of the random variable X. Epected value (or mean) of a discrete random variable It is denoted with E(X) or µ and it is computed as follows: Definition: µ = E(X) = P (X = ) It is a weighted average. The weights are the probabilities.

3 Eample: Roll a die. Let X be the number observed. Find the epected value of X. The E(X) must be somewhere between, : E(X) = =.. What does this number mean? Eample: Casino roulette. Below you see the standard Nevada roulette table: A player will bet \$ on four joining numbers. This bet pays 8 :. Let X be the player s payoff. Find the player s epected payoff.

4 Epected value of a sum of random variables Let X and Y be random varables. The epected value of the sum of these random variables is: E(X + Y ) = E(X) + E(Y ) Eample: Roll dice. Let X be the number observed on the first die and Y be the number observed on the second die. Let W be the sum of the dice. Find the epected value of W. There are ways to solve this problem: a. E(W ) = E(X + Y ) = E(X) + E(Y ) =. +. = 7 b. Or using the distribution of the sum of the two dice (see page ): E(W ) = w wp (W = w) = = 7. The epected value of the sum can be etended to more than two random variables: E(X + Y + Z + ) = E(X) + E(Y ) + E(Z) +

5 Variance and standard deviation of a discrete random variable Consider the following probability distributions: X P (X) Y P (Y ) 0 - What do you observe? Definition: V ar(x) = σ = E(X µ) = n ( µ) )P (X = ) = P (X = ) µ The standard deviation of a discrete random variable is the square root of the variance: SD(X) = σ = n ( µ) )P (X = ) = P (X = ) µ It follows that: σ = EX µ or EX = σ + µ Eample: Roll a die. Let X be the number observed. Find the variance of X. V ar(x) = =.97. The standard deviation is: SD(X) =.97 =.708. Some properties of epectation and variance Let X, Y random variables and a, b constants. a. E(aX) = ae(x) b. E(aX + b) = ae(x) + b c. V ar(x + a) = V ar(x) d. V ar(ax) = a V ar(x) e. V ar(ax + b) = a V ar(x). f. If X, Y are independent then V ar(x + Y ) = V ar(x) + V ar(y )

6 Eample: An insurance policy costs \$00, and will pay policyholders \$0000 if they suffer a major injury (resulting in hospitalization) or \$000 if they suffer a minor injury (resulting in lost time from work). The company estimates that each year in every 000 policyholders may have a major injury, and in 00 a minor injury. a. Construct the probability distribution for the profit on a policy. b. What is the company s epected profit on this policy? c. Do you think the standard deviation is large or small. Why? d. Compute the standard deviation. e. Suppose that the company writes (a), (b) 0000 of these policies per year. What are the mean and standard deviation of the annual profit for these cases? f. Comment! Solution: a. Let X the profit of the company on one of these insurance policies. The probability distribution of X is: X P () b. Epected value of X: E(X) = 9900(0.000) 900(0.00) + 00(0.997) = 89. c. The standard deviation will be large. d. Variance of X: var(x) = ( 9900) (0.000) + ( 900) (0.00) + (00) (0.997) 89 = Therefore the standard deviation is: sd(x) = 7879 = 0.. e. Here we need to find the epected value and variance of sum of random variables. In part (i) we have a sum of random variables and in part (ii) a sum of 0000 variables. Part(i): E(Y Y ) = (89) = 0. var(y Y ) = (7879). The standard deviation is: sd(y Y ) = (7879) =.. Part(ii): E(Y Y 0000 ) = 0000(89) = var(y Y 0000 ) = 0000(7879). The standard deviation is: sd(y Y 0000 ) = 0000(7879) = 0..

### 4.1 4.2 Probability Distribution for Discrete Random Variables

4.1 4.2 Probability Distribution for Discrete Random Variables Key concepts: discrete random variable, probability distribution, expected value, variance, and standard deviation of a discrete random variable.

### Random variables P(X = 3) = P(X = 3) = 1 8, P(X = 1) = P(X = 1) = 3 8.

Random variables Remark on Notations 1. When X is a number chosen uniformly from a data set, What I call P(X = k) is called Freq[k, X] in the courseware. 2. When X is a random variable, what I call F ()

### Chapter 5. Random variables

Random variables random variable numerical variable whose value is the outcome of some probabilistic experiment; we use uppercase letters, like X, to denote such a variable and lowercase letters, like

### Chapter 4 Lecture Notes

Chapter 4 Lecture Notes Random Variables October 27, 2015 1 Section 4.1 Random Variables A random variable is typically a real-valued function defined on the sample space of some experiment. For instance,

### Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average

PHP 2510 Expectation, variance, covariance, correlation Expectation Discrete RV - weighted average Continuous RV - use integral to take the weighted average Variance Variance is the average of (X µ) 2

### Example. A casino offers the following bets (the fairest bets in the casino!) 1 You get \$0 (i.e., you can walk away)

: Three bets Math 45 Introduction to Probability Lecture 5 Kenneth Harris aharri@umich.edu Department of Mathematics University of Michigan February, 009. A casino offers the following bets (the fairest

### ST 371 (IV): Discrete Random Variables

ST 371 (IV): Discrete Random Variables 1 Random Variables A random variable (rv) is a function that is defined on the sample space of the experiment and that assigns a numerical variable to each possible

### Probability and Statistical Methods. Chapter 4 Mathematical Expectation

Math 3 Chapter 4 Mathematical Epectation Mean of a Random Variable Definition. Let be a random variable with probability distribution f( ). The mean or epected value of is, f( ) µ = µ = E =, if is a discrete

### For a partition B 1,..., B n, where B i B j = for i. A = (A B 1 ) (A B 2 ),..., (A B n ) and thus. P (A) = P (A B i ) = P (A B i )P (B i )

Probability Review 15.075 Cynthia Rudin A probability space, defined by Kolmogorov (1903-1987) consists of: A set of outcomes S, e.g., for the roll of a die, S = {1, 2, 3, 4, 5, 6}, 1 1 2 1 6 for the roll

### MA 1125 Lecture 14 - Expected Values. Friday, February 28, 2014. Objectives: Introduce expected values.

MA 5 Lecture 4 - Expected Values Friday, February 2, 24. Objectives: Introduce expected values.. Means, Variances, and Standard Deviations of Probability Distributions Two classes ago, we computed the

Expectations Expectations. (See also Hays, Appendix B; Harnett, ch. 3). A. The expected value of a random variable is the arithmetic mean of that variable, i.e. E() = µ. As Hays notes, the idea of the

### The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

### RANDOM VARIABLES MATH CIRCLE (ADVANCED) 3/3/2013. 3 k) ( 52 3 )

RANDOM VARIABLES MATH CIRCLE (ADVANCED) //0 0) a) Suppose you flip a fair coin times. i) What is the probability you get 0 heads? ii) head? iii) heads? iv) heads? For = 0,,,, P ( Heads) = ( ) b) Suppose

### Joint Exam 1/P Sample Exam 1

Joint Exam 1/P Sample Exam 1 Take this practice exam under strict exam conditions: Set a timer for 3 hours; Do not stop the timer for restroom breaks; Do not look at your notes. If you believe a question

### AMS 5 CHANCE VARIABILITY

AMS 5 CHANCE VARIABILITY The Law of Averages When tossing a fair coin the chances of tails and heads are the same: 50% and 50%. So if the coin is tossed a large number of times, the number of heads and

### Chapter 3: Discrete Random Variable and Probability Distribution. January 28, 2014

STAT511 Spring 2014 Lecture Notes 1 Chapter 3: Discrete Random Variable and Probability Distribution January 28, 2014 3 Discrete Random Variables Chapter Overview Random Variable (r.v. Definition Discrete

### DISCRETE RANDOM VARIABLES

DISCRETE RANDOM VARIABLES DISCRETE RANDOM VARIABLES Documents prepared for use in course B01.1305, New York University, Stern School of Business Definitions page 3 Discrete random variables are introduced

### Random Variables. Chapter 2. Random Variables 1

Random Variables Chapter 2 Random Variables 1 Roulette and Random Variables A Roulette wheel has 38 pockets. 18 of them are red and 18 are black; these are numbered from 1 to 36. The two remaining pockets

### Solution. Solution. (a) Sum of probabilities = 1 (Verify) (b) (see graph) Chapter 4 (Sections 4.3-4.4) Homework Solutions. Section 4.

Math 115 N. Psomas Chapter 4 (Sections 4.3-4.4) Homework s Section 4.3 4.53 Discrete or continuous. In each of the following situations decide if the random variable is discrete or continuous and give

### P (x) 0. Discrete random variables Expected value. The expected value, mean or average of a random variable x is: xp (x) = v i P (v i )

Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

### Statistics 100A Homework 4 Solutions

Problem 1 For a discrete random variable X, Statistics 100A Homework 4 Solutions Ryan Rosario Note that all of the problems below as you to prove the statement. We are proving the properties of epectation

### An Introduction to Basic Statistics and Probability

An Introduction to Basic Statistics and Probability Shenek Heyward NCSU An Introduction to Basic Statistics and Probability p. 1/4 Outline Basic probability concepts Conditional probability Discrete Random

### Feb 7 Homework Solutions Math 151, Winter 2012. Chapter 4 Problems (pages 172-179)

Feb 7 Homework Solutions Math 151, Winter 2012 Chapter Problems (pages 172-179) Problem 3 Three dice are rolled. By assuming that each of the 6 3 216 possible outcomes is equally likely, find the probabilities

### Chapter 6 Random Variables

Chapter 6 Random Variables Day 1: 6.1 Discrete Random Variables Read 340-344 What is a random variable? Give some examples. A numerical variable that describes the outcomes of a chance process. Examples:

### Lecture 8. Confidence intervals and the central limit theorem

Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of

### Math 151. Rumbos Spring 2014 1. Solutions to Assignment #22

Math 151. Rumbos Spring 2014 1 Solutions to Assignment #22 1. An experiment consists of rolling a die 81 times and computing the average of the numbers on the top face of the die. Estimate the probability

### Math 425 (Fall 08) Solutions Midterm 2 November 6, 2008

Math 425 (Fall 8) Solutions Midterm 2 November 6, 28 (5 pts) Compute E[X] and Var[X] for i) X a random variable that takes the values, 2, 3 with probabilities.2,.5,.3; ii) X a random variable with the

### Expected Value 10/11/2005

Expected Value 10/11/2005 Definition Let X be a numerically-valued discrete random variable with sample space Ω and distribution function m(x). The expected value E(X) is defined by E(X) = x Ω xm(x), provided

### The overall size of these chance errors is measured by their RMS HALF THE NUMBER OF TOSSES NUMBER OF HEADS MINUS 0 400 800 1200 1600 NUMBER OF TOSSES

INTRODUCTION TO CHANCE VARIABILITY WHAT DOES THE LAW OF AVERAGES SAY? 4 coins were tossed 1600 times each, and the chance error number of heads half the number of tosses was plotted against the number

### Discrete and Continuous Random Variables. Summer 2003

Discrete and Continuous Random Variables Summer 003 Random Variables A random variable is a rule that assigns a numerical value to each possible outcome of a probabilistic experiment. We denote a random

### 3 Multiple Discrete Random Variables

3 Multiple Discrete Random Variables 3.1 Joint densities Suppose we have a probability space (Ω, F,P) and now we have two discrete random variables X and Y on it. They have probability mass functions f

### Please circle A or B or I in the third column to indicate your chosen option in this table.

The choice of A means that the payoff to you will be 80 rupees if heads lands up from the coin toss and 130 rupees if tails lands up from the coin toss if this table is randomly chosen The choice of B

### Statistics 100A Homework 3 Solutions

Chapter Statistics 00A Homework Solutions Ryan Rosario. Two balls are chosen randomly from an urn containing 8 white, black, and orange balls. Suppose that we win \$ for each black ball selected and we

### Will Landau. Feb 26, 2013

,, and,, and Iowa State University Feb 26, 213 Iowa State University Feb 26, 213 1 / 27 Outline,, and Iowa State University Feb 26, 213 2 / 27 of continuous distributions The p-quantile of a random variable,

### Math 431 An Introduction to Probability. Final Exam Solutions

Math 43 An Introduction to Probability Final Eam Solutions. A continuous random variable X has cdf a for 0, F () = for 0 <

### Some special discrete probability distributions

University of California, Los Angeles Department of Statistics Statistics 100A Instructor: Nicolas Christou Some special discrete probability distributions Bernoulli random variable: It is a variable that

### Topic 8 The Expected Value

Topic 8 The Expected Value Functions of Random Variables 1 / 12 Outline Names for Eg(X ) Variance and Standard Deviation Independence Covariance and Correlation 2 / 12 Names for Eg(X ) If g(x) = x, then

### Mathematical Expectation

Mathematical Expectation Properties of Mathematical Expectation I The concept of mathematical expectation arose in connection with games of chance. In its simplest form, mathematical expectation is the

### Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution

Lecture 3: Continuous distributions, expected value & mean, variance, the normal distribution 8 October 2007 In this lecture we ll learn the following: 1. how continuous probability distributions differ

### Math 141. Lecture 7: Variance, Covariance, and Sums. Albyn Jones 1. 1 Library 304. jones/courses/141

Math 141 Lecture 7: Variance, Covariance, and Sums Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 Last Time Variance: expected squared deviation from the mean: Standard

### Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

ECS20 Discrete Mathematics Quarter: Spring 2007 Instructor: John Steinberger Assistant: Sophie Engle (prepared by Sophie Engle) Homework 8 Hints Due Wednesday June 6 th 2007 Section 6.1 #16 What is the

### MAS108 Probability I

1 QUEEN MARY UNIVERSITY OF LONDON 2:30 pm, Thursday 3 May, 2007 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators. The paper

### Random Variables, Expectation, Distributions

Random Variables, Expectation, Distributions CS 5960/6960: Nonparametric Methods Tom Fletcher January 21, 2009 Review Random Variables Definition A random variable is a function defined on a probability

### COM2023 Mathematics Methods for Computing II

COM223 Mathematics Methods for Computing II Lecture 11& 12 Gianne Derks Department of Mathematics (36AA4) http://www.maths.surrey.ac.uk/modules/com223 Autumn 21 Use channel 4 on your EVS handset Overview................................................................

### AP Statistics 7!3! 6!

Lesson 6-4 Introduction to Binomial Distributions Factorials 3!= Definition: n! = n( n 1)( n 2)...(3)(2)(1), n 0 Note: 0! = 1 (by definition) Ex. #1 Evaluate: a) 5! b) 3!(4!) c) 7!3! 6! d) 22! 21! 20!

### Lecture 6: Discrete & Continuous Probability and Random Variables

Lecture 6: Discrete & Continuous Probability and Random Variables D. Alex Hughes Math Camp September 17, 2015 D. Alex Hughes (Math Camp) Lecture 6: Discrete & Continuous Probability and Random September

### Practice Exam 1: Long List 18.05, Spring 2014

Practice Eam : Long List 8.05, Spring 204 Counting and Probability. A full house in poker is a hand where three cards share one rank and two cards share another rank. How many ways are there to get a full-house?

### Lecture 16: Expected value, variance, independence and Chebyshev inequality

Lecture 16: Expected value, variance, independence and Chebyshev inequality Expected value, variance, and Chebyshev inequality. If X is a random variable recall that the expected value of X, E[X] is the

### Chapter 16: law of averages

Chapter 16: law of averages Context................................................................... 2 Law of averages 3 Coin tossing experiment......................................................

### Expected Value. Let X be a discrete random variable which takes values in S X = {x 1, x 2,..., x n }

Expected Value Let X be a discrete random variable which takes values in S X = {x 1, x 2,..., x n } Expected Value or Mean of X: E(X) = n x i p(x i ) i=1 Example: Roll one die Let X be outcome of rolling

### Statistics and Random Variables. Math 425 Introduction to Probability Lecture 14. Finite valued Random Variables. Expectation defined

Expectation Statistics and Random Variables Math 425 Introduction to Probability Lecture 4 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan February 9, 2009 When a large

### Chapter 5. Discrete Probability Distributions

Chapter 5. Discrete Probability Distributions Chapter Problem: Did Mendel s result from plant hybridization experiments contradicts his theory? 1. Mendel s theory says that when there are two inheritable

### Chapter 6 Review 0 (0.083) (0.917) (0.083) (0.917)

Chapter 6 Review MULTIPLE CHOICE. 1. The following table gives the probabilities of various outcomes for a gambling game. Outcome Lose \$1 Win \$1 Win \$2 Probability 0.6 0.25 0.15 What is the player s expected

### The Central Limit Theorem Part 1

The Central Limit Theorem Part. Introduction: Let s pose the following question. Imagine you were to flip 400 coins. To each coin flip assign if the outcome is heads and 0 if the outcome is tails. Question:

### Roulette. Math 5 Crew. Department of Mathematics Dartmouth College. Roulette p.1/14

Roulette p.1/14 Roulette Math 5 Crew Department of Mathematics Dartmouth College Roulette p.2/14 Roulette: A Game of Chance To analyze Roulette, we make two hypotheses about Roulette s behavior. When we

### V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPECTED VALUE

V. RANDOM VARIABLES, PROBABILITY DISTRIBUTIONS, EXPETED VALUE A game of chance featured at an amusement park is played as follows: You pay \$ to play. A penny and a nickel are flipped. You win \$ if either

### You flip a fair coin four times, what is the probability that you obtain three heads.

Handout 4: Binomial Distribution Reading Assignment: Chapter 5 In the previous handout, we looked at continuous random variables and calculating probabilities and percentiles for those type of variables.

### Random Variables and Their Expected Values

Discrete and Continuous Random Variables The Probability Mass Function The (Cumulative) Distribution Function Discrete and Continuous Random Variables The Probability Mass Function The (Cumulative) Distribution

### Random Variable: A function that assigns numerical values to all the outcomes in the sample space.

STAT 509 Section 3.2: Discrete Random Variables Random Variable: A function that assigns numerical values to all the outcomes in the sample space. Notation: Capital letters (like Y) denote a random variable.

### ACMS 10140 Section 02 Elements of Statistics October 28, 2010. Midterm Examination II

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages of the examination

### 4. Continuous Random Variables, the Pareto and Normal Distributions

4. Continuous Random Variables, the Pareto and Normal Distributions A continuous random variable X can take any value in a given range (e.g. height, weight, age). The distribution of a continuous random

### Elementary Statistics and Inference. Elementary Statistics and Inference. 16 The Law of Averages (cont.) 22S:025 or 7P:025.

Elementary Statistics and Inference 22S:025 or 7P:025 Lecture 20 1 Elementary Statistics and Inference 22S:025 or 7P:025 Chapter 16 (cont.) 2 D. Making a Box Model Key Questions regarding box What numbers

### Binomial random variables

Binomial and Poisson Random Variables Solutions STAT-UB.0103 Statistics for Business Control and Regression Models Binomial random variables 1. A certain coin has a 5% of landing heads, and a 75% chance

### Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7

Econ 132 C. Health Insurance: U.S., Risk Pooling, Risk Aversion, Moral Hazard, Rand Study 7 C2. Health Insurance: Risk Pooling Health insurance works by pooling individuals together to reduce the variability

### STT315 Chapter 4 Random Variables & Probability Distributions KM. Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables

Chapter 4.5, 6, 8 Probability Distributions for Continuous Random Variables Discrete vs. continuous random variables Examples of continuous distributions o Uniform o Exponential o Normal Recall: A random

### Toss a coin twice. Let Y denote the number of heads.

! Let S be a discrete sample space with the set of elementary events denoted by E = {e i, i = 1, 2, 3 }. A random variable is a function Y(e i ) that assigns a real value to each elementary event, e i.

### In the situations that we will encounter, we may generally calculate the probability of an event

What does it mean for something to be random? An event is called random if the process which produces the outcome is sufficiently complicated that we are unable to predict the precise result and are instead

### ECE 316 Probability Theory and Random Processes

ECE 316 Probability Theory and Random Processes Chapter 4 Solutions (Part 2) Xinxin Fan Problems 20. A gambling book recommends the following winning strategy for the game of roulette. It recommends that

### MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2)

MIDTERM EXAMINATION Spring 2009 STA301- Statistics and Probability (Session - 2) Question No: 1 Median can be found only when: Data is Discrete Data is Attributed Data is continuous Data is continuous

### Elementary Statistics and Inference. Elementary Statistics and Inference. 17 Expected Value and Standard Error. 22S:025 or 7P:025.

Elementary Statistics and Inference S:05 or 7P:05 Lecture Elementary Statistics and Inference S:05 or 7P:05 Chapter 7 A. The Expected Value In a chance process (probability experiment) the outcomes of

### Binomial random variables (Review)

Poisson / Empirical Rule Approximations / Hypergeometric Solutions STAT-UB.3 Statistics for Business Control and Regression Models Binomial random variables (Review. Suppose that you are rolling a die

### Lahore University of Management Sciences

Lahore University of Management Sciences CMPE 501: Applied Probability (Fall 2010) Homework 3: Solution 1. A candy factory has an endless supply of red, orange, yellow, green, blue and violet jelly beans.

### Random variables, probability distributions, binomial random variable

Week 4 lecture notes. WEEK 4 page 1 Random variables, probability distributions, binomial random variable Eample 1 : Consider the eperiment of flipping a fair coin three times. The number of tails that

### ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers

ACMS 10140 Section 02 Elements of Statistics October 28, 2010 Midterm Examination II Answers Name DO NOT remove this answer page. DO turn in the entire exam. Make sure that you have all ten (10) pages

### STA 247 Answers for practice problem set #1

STA 247 Answers for practice problem set #1 Question 1: The random variable X has a range of {0, 1, 2} and the random variable Y has a range of {1, 2}. The joint distribution of X and Y is given by the

### Probability: The Study of Randomness Randomness and Probability Models. IPS Chapters 4 Sections 4.1 4.2

Probability: The Study of Randomness Randomness and Probability Models IPS Chapters 4 Sections 4.1 4.2 Chapter 4 Overview Key Concepts Random Experiment/Process Sample Space Events Probability Models Probability

### Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions.

Chapter 4 & 5 practice set. The actual exam is not multiple choice nor does it contain like questions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

### Notes 11 Autumn 2005

MAS 08 Probabilit I Notes Autumn 005 Two discrete random variables If X and Y are discrete random variables defined on the same sample space, then events such as X = and Y = are well defined. The joint

### Betting systems: how not to lose your money gambling

Betting systems: how not to lose your money gambling G. Berkolaiko Department of Mathematics Texas A&M University 28 April 2007 / Mini Fair, Math Awareness Month 2007 Gambling and Games of Chance Simple

### Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution

Recall: Ch5: Discrete Probability Distributions Section 5-1: Probability Distribution A variable is a characteristic or attribute that can assume different values. o Various letters of the alphabet (e.g.

### 5. Continuous Random Variables

5. Continuous Random Variables Continuous random variables can take any value in an interval. They are used to model physical characteristics such as time, length, position, etc. Examples (i) Let X be

### Lecture 5: Mathematical Expectation

Lecture 5: Mathematical Expectation Assist. Prof. Dr. Emel YAVUZ DUMAN MCB1007 Introduction to Probability and Statistics İstanbul Kültür University Outline 1 Introduction 2 The Expected Value of a Random

### Expected Value and the Game of Craps

Expected Value and the Game of Craps Blake Thornton Craps is a gambling game found in most casinos based on rolling two six sided dice. Most players who walk into a casino and try to play craps for the

### The Casino Lab STATION 1: CRAPS

The Casino Lab Casinos rely on the laws of probability and expected values of random variables to guarantee them profits on a daily basis. Some individuals will walk away very wealthy, while others will

### Chapter 5 Discrete Probability Distribution. Learning objectives

Chapter 5 Discrete Probability Distribution Slide 1 Learning objectives 1. Understand random variables and probability distributions. 1.1. Distinguish discrete and continuous random variables. 2. Able

### Decisions and Games. Lunch Lecture for W.I.S.V. Christiaan Huygens at TU Delft 28 November 2008. Tom Verhoeff

Decisions and Games Lunch Lecture for W.I.S.V. Christiaan Huygens at TU Delft 28 November 2008 Tom Verhoeff Department of Mathematics & Computer Science c 2008, T. Verhoeff @ TUE.NL /9 Decisions and Games

### Statistics 100 Binomial and Normal Random Variables

Statistics 100 Binomial and Normal Random Variables Three different random variables with common characteristics: 1. Flip a fair coin 10 times. Let X = number of heads out of 10 flips. 2. Poll a random

### WHERE DOES THE 10% CONDITION COME FROM?

1 WHERE DOES THE 10% CONDITION COME FROM? The text has mentioned The 10% Condition (at least) twice so far: p. 407 Bernoulli trials must be independent. If that assumption is violated, it is still okay

### Math 150 Sample Exam #2

Problem 1. (16 points) TRUE or FALSE. a. 3 die are rolled, there are 1 possible outcomes. b. If two events are complementary, then they are mutually exclusive events. c. If A and B are two independent

### Math 141. Lecture 5: Expected Value. Albyn Jones 1. jones/courses/ Library 304. Albyn Jones Math 141

Math 141 Lecture 5: Expected Value Albyn Jones 1 1 Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 History The early history of probability theory is intimately related to questions arising

### The Binomial Probability Distribution

The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2015 Objectives After this lesson we will be able to: determine whether a probability

### IEOR 4106: Introduction to Operations Research: Stochastic Models. SOLUTIONS to Homework Assignment 1

IEOR 4106: Introduction to Operations Research: Stochastic Models SOLUTIONS to Homework Assignment 1 Probability Review: Read Chapters 1 and 2 in the textbook, Introduction to Probability Models, by Sheldon

### Homework 4 - KEY. Jeff Brenion. June 16, 2004. Note: Many problems can be solved in more than one way; we present only a single solution here.

Homework 4 - KEY Jeff Brenion June 16, 2004 Note: Many problems can be solved in more than one way; we present only a single solution here. 1 Problem 2-1 Since there can be anywhere from 0 to 4 aces, the

### X: 0 1 2 3 4 5 6 7 8 9 Probability: 0.061 0.154 0.228 0.229 0.173 0.094 0.041 0.015 0.004 0.001

Tuesday, January 17: 6.1 Discrete Random Variables Read 341 344 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.

### EE 322: Probabilistic Methods for Electrical Engineers. Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University

EE 322: Probabilistic Methods for Electrical Engineers Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University Discrete Random Variables 1 Introduction to Random Variables

### 2. Discrete random variables

2. Discrete random variables Statistics and probability: 2-1 If the chance outcome of the experiment is a number, it is called a random variable. Discrete random variable: the possible outcomes can be

### Thursday, November 13: 6.1 Discrete Random Variables

Thursday, November 13: 6.1 Discrete Random Variables Read 347 350 What is a random variable? Give some examples. What is a probability distribution? What is a discrete random variable? Give some examples.